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The coming statistical neuroscience decade

Some notable recent developments:

• machine learning / statistics methods for extracting

information from high-dimensional data in a

computationally-tractable, systematic fashion

• computing (Moore’s law, massive parallel computing)

• optical methods (eg two-photon, FLIM) and optogenetics

(channelrhodopsin, viral tracers, “brainbow”)

• high-density multielectrode recordings (Litke’s 512-electrode

retinal readout system; Shepard’s 65,536-electrode active

array)



Some exciting open challenges

• inferring biophysical neuronal properties from noisy recordings

• reconstructing the full dendritic spatiotemporal voltage from noisy,

subsampled observations

• estimating subthreshold voltage given superthreshold spike trains

• extracting spike timing from slow, noisy calcium imaging data

• reconstructing presynaptic conductance from postsynaptic voltage

recordings

• inferring connectivity from large populations of spike trains

• decoding behaviorally-relevant information from spike trains

• optimal control of neural spike timing

— to solve these, we need to combine the two classical branches of

computational neuroscience: dynamical systems and neural coding



Retinal ganglion neuronal data

Preparation: dissociated macaque retina

— extracellularly-recorded responses of populations of RGCs



Receptive fields tile visual space



Multineuronal point-process model

— likelihood is tractable to compute and to maximize (concave optimization)

(Paninski, 2004; Paninski et al., 2007; Pillow et al., 2008; Paninski et al., 2010)



Network model predicts correlations correctly

— single and triple-cell activities captured as well (Vidne et al., 2009)



Optimal Bayesian decoding

— further applications: decoding velocity signals (Lalor et al., 2009), tracking images

perturbed by eye jitter (Pfau et al., 2009)

— paying attention to correlations improves decoding accuracy (Pillow et al., 2008).



Inferring cones

— cone locations and color identity can be inferred accurately with high

spatial-resolution stimuli via maximum a posteriori estimates (Field et al., 2010).



Next step: inferring nonlinear subunits



Opportunity: hierarchical models

More general idea: sharing information across multiple simultaneously-recorded

cells can be very useful.

(Field et al, Nature ’10; Sadeghi et al, in preparation)



Opportunity: hierarchical models

More general idea: sharing information across multiple simultaneously-recorded

cells can be very useful. Exploit location, markers, other information to extract

more information from noisy data.

- w/ M. Gabitto (Zuker lab)



Another major challenge: circuit inference



Challenge: slow, noisy calcium data

First-order model:

Ct+dt = Ct − dtCt/τ + rt; rt > 0; yt = Ct + ǫt

— τ ≈ 100 ms; nonnegative deconvolution problem. Can be solved by new O(T )

methods (Vogelstein et al., 2010).



Simulated circuit inference
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— Connections are inferred with the correct sign in conductance-based integrate-and-fire

networks with biologically plausible connectivity matrices (Mishchencko et al., 2009).

Good news: connections are inferred with the correct sign. Fast enough to

estimate connectivity in real time (T. Machado). Next step: close the loop.



Opportunities: in vivo whole-cell recordings
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- data from Sawtell lab. Same fast nonnegative deconvolution methods as in

calcium setting.



Optimal stimuli for layer 2/3 barrel neurons
Problem: spiking in layer 2/3 appears very sparse.

Hypothesis: driven by complex, multi-whisker stimuli?

Approach: estimate a model dV/dt = f(stim), then compute stimulus which

leads to the most reliable input, then apply this stim and observe response. (All

done while holding the cell...)

- New nonlinear models provide much more predictive power; experiments in

progress (w/ A. Ramirez; Bruno lab)



A final example: spatiotemporal dendritic

imaging data

- fast methods for optimal inference of spatiotemporal Ca, V on trees.

Applications: synaptic localization, improved modeling of dendritic dynamics

(e.g., backpropagating APs), many more



Conclusions

• Modern statistical approaches provide flexible, powerful

methods for answering key questions in neuroscience

• Close relationships between biophysics and statistical

modeling

• Modern optimization methods make computations very

tractable; suitable for closed-loop experiments

• Experimental methods progressing rapidly; many new

challenges and opportunities for breakthroughs based on

statistical ideas
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