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The neural code

Basic goal: infer input-output relationship between

• External observables x (sensory stimuli, motor responses...)

• Neural variables y (spike trains, population activity...)



Several levels of neural data analysis

• “Subcellular” level: measurements of intracellular voltage or

ionic concentrations (intracellular “patch” electrodes,

two-photon imaging, molecular tagging)

• “Circuit” level: electrical activity of single neurons or small

groups of isolated neurons (multi-electrode recordings,

calcium-sensitive microscopy)

• “Systems” level: blood flow or other indirect measurements

of electrical activity in coarsely-defined brain areas (fMRI,

EEG, MEG...)



Three challenges

1. Reconstructing the full spatiotemporal voltage on a

dendritic tree given noisy, intermittently-sampled subcellular

measurements

2. Decoding behaviorally-relevant information from multiple

spike trains

3. Inferring connectivity from large populations of

noisily-observed spike trains



The filtering problem

Spatiotemporal imaging data opens an exciting window on the

computations performed by single neurons, but we have to deal with noise

and intermittent observations.

(Djurisic et al., 2004)



Basic paradigm: compartmental models

• write neuronal dynamics in terms of equivalent nonlinear, time-varying

RC circuits

• leads to a coupled system of stochastic differential equations



Inference of spatiotemporal neuronal state

given noisy observations

State-space approach: qt = state of neuron at time t.

We want p(qt|Y1:t) ∝ p(qt, Y1:t). Markov assumption:

p(Q, Y ) = p(Q)p(Y |Q) = p(q1)
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To compute p(qt, Y1:t), just recurse

p(qt, Y1:t) = p(yt|qt)

Z

qt−1

p(qt|qt−1)p(qt−1, Y1:t−1)dqt−1.

Linear-Gaussian case: requires O(dim(q)3T ) time; in principle, just matrix

algebra (Kalman filter). Approximate solutions in more general case via

sequential Monte Carlo (Huys and Paninski, 2009).

Major challenge: dim(q) can be ≈ 104 or greater.



Low-rank approximations

Key fact: current experimental methods provide just a few low-SNR

observations per time step.

Basic idea: if dynamics are approximately linear and time-invariant, we can

approximate Kalman covariance Ct = cov(qt|Y1:t) as a perturbation of the

marginal covariance C0 + UtDtU
T

t
, with C0 = limt→∞ cov(qt).

C0 is the solution to a Lyapunov equation. It turns out that we can solve

linear equations involving C0 in O(dim(q)) time via Gaussian belief

propagation, using the fact that the dendrite is a tree.

The necessary recursions — i.e., updating Ut, Dt and the Kalman mean

E(qt|Y1:t) — involve linear manipulations of C0, using

Ct = [(ACt−1A
T + Q)−1 + Bt]
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,

and can be done in O(dim(q)) time (Paninski, 2009).



Example: inferring voltage from subsampled

observations

(Loading low-rank-speckle.mp4)
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Applications

• Optimal experimental design: which parts of the neuron

should we image? (Submodular optimization; Krause and

Guestrin, ’07)

• Estimation of biophysical parameters (e.g., membrane

channel densities, axial resistance, etc.): reduces to a simple

nonnegative regression problem once V (x, t) is known

(Huys et al., 2006)

• Detecting location and weights of synaptic input



Application: synaptic locations/weights



Application: synaptic locations/weights

Including known terms:

d~V /dt = A~V (t) + W ~U(t) + ~ǫ(t);

Uj(t) = known input terms.

Example: U(t) are known presynaptic spike times, and we want

to detect which compartments are connected (i.e., infer the

weight matrix W ).



Detecting synapses
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Part 2: optimal decoding of spike train data



Semiparametric GLM

Parameters (~k, h) estimated by L1-penalized maximum likelihood (concave); f

estimated by log-spline (Calabrese, Woolley et al. 2009). Currently the best

predictive model of these spike trains.



MAP stimulus decoding

It is reasonable to estimate the song X that led to a response R via the MAP

X̂ = arg max
X

p(X|R).

(Note that X is very high-dimensional!) For this model, we have:

log p(X|R) = log p(X) + log p(R|X) + const.

= log p(X) +
X

t

log p(rt|X, R...,t−1) + const.

Two basic observations:

• If log p(X) is concave, then so is log p(X|R), since each log p(rt|X, Y...,t−1) is.

• Hessian H of log p(R|X) w.r.t. X is banded: each p(rt|X, R...,t−1) depends

on X locally in time, and therefore contributes a banded term.

Newton’s method iteratively solves HXdir = ∇. Solving banded systems requires

O(T ) time, so computing MAP requires O(T ) time if log-prior is concave with a

banded Hessian.

— similar speedups available in constrained cases (Paninski et al., 2010), and in

MCMC setting (e.g., fast hybrid Monte Carlo methods (Ahmadian et al., 2010)).



Application: fast optimal decoding
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Decoding a full song

(Ramirez et al 2010)



Application: optimal stimulus design

Idea: we have full control over the stimuli we present. Can we

choose stimuli ~xt to maximize the informativeness of each trial?

— More quantitatively, optimize I(rt; θ|~xt) with respect to ~xt.

Maximizing I(rt; θ; ~xt) =⇒ minimizing uncertainty about θ.

In general, very hard to do: high-d integration over θ to

compute I(rt; θ|~xt), high-d optimization to select best ~xt.

GLM setting + low-rank matrix methods make this surprisingly

tractable: O(dim(θ)2) computation (Lewi et al., 2009).



Application to songbird data: choosing an

optimal stimulus sequence

— infomax speeds convergence by a factor of three or more.



Part 3: circuit inference



Challenge: slow, noisy calcium data

First-order model:

Ct+dt = Ct − dtCt/τ + rt; rt > 0; yt = Ct + ǫt

— τ ≈ 100 ms; nonnegative deconvolution problem. Can be solved by O(T )

relaxed constrained interior-point optimization (Vogelstein et al., 2008) or

sequential Monte Carlo (Vogelstein et al., 2009).



Monte Carlo EM approach

Given the spike times in the network, L1-penalized likelihood

optimization is easy. But we only have noisy calcium

observations Y ; true spike times are hidden variables. Thus an

EM approach is natural.

• E step: sample spike train responses R from p(R|Y, θ)

• M step: given sampled spike trains, perform L1-penalized

likelihood optimization to update parameters θ.

E step is hard part here. Use the fact that neurons interact

fairly weakly; thus we need to sample from a collection of

weakly-interacting Markov chains, via

Metropolis-within-blockwise-Gibbs forward-backward methods

(Neal et al., 2003).



Simulated circuit inference
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— Connections are inferred with the correct sign in conductance-based integrate-and-fire

networks with biologically plausible connectivity matrices (Mishchencko et al., 2009).

Good news: connections are inferred with the correct sign. But process is slow;

current work focusing on improved sampling methods (exploiting hybrid

forward-backward blockwise-Gibbs approach).



Optimal control of spike timing

Optimal experimental design and neural prosthetics applications

require us to perturb the network at will. How can we make a

neuron fire exactly when we want it to?

Assume bounded inputs; otherwise problem is trivial.

Start with a simple model:

λt = f(~k ∗ It + ht).

Now we can just optimize the likelihood of the desired spike

train, as a function of the input It, with It bounded.

Concave objective function over convex set of possible inputs It

+ Hessian is banded =⇒ O(T ) optimization.



Optimal electrical control of spike timing
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Extension to optical stimulation methods is straightforward

(Ahmadian and Paninski, 2010).



Example: intracellular control of spike timing
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Conclusions

• GLM and state-space approaches provide flexible, powerful

methods for answering key questions in neuroscience

• Close relationships between encoding, decoding, and

experimental design (Paninski et al., 2007)

• Log-concavity, banded matrix methods make computations

very tractable

• Experimental methods progressing rapidly; many new

challenges and opportunities for breakthroughs based on

statistical ideas
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