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The fundamental question in

neuroscience

The neural code: what is P (response | stimulus)?

Main question: how to estimate P (r|s) from (sparse)

experimental data?



Curse of dimensionality

Both stimulus and response can be very high-dimensional.

Stimuli:

• images

• sounds

• time-varying behavior

Responses:

• observations from single or multiple simultaneously-recorded

point processes



Avoiding the curse of insufficient data

1: Estimate some functional f(p) instead of full joint p(r, s)

— information-theoretic functionals

2: Select stimuli more efficiently

— optimal experimental design

3: Improved nonparametric estimators

— minimax theory for discrete distributions under KL loss

(4: Parametric approaches; connections to biophysical models)



Part 1: Estimation of information

Many central questions in neuroscience are inherently

information-theoretic:

• What inputs are most reliably encoded by a given neuron?

• Are sensory neurons optimized to transmit information

about the world to the brain?

• Do noisy synapses limit the rate of information flow from

neuron to neuron?

Quantification of “information” is fundamental problem.

(...interest in neuroscience but also physics, telecommunications,

genomics, etc.)



Shannon mutual information

I(X; Y ) =

∫

X×Y

dp(x, y) log
dp(x, y)

dp(x) × p(y)

Information-theoretic justifications:

• invariance

• “uncertainty” axioms

• data processing inequality

• channel and source coding theorems

But obvious open experimental question:

• is this computable for real data?



How to estimate information

I very hard to estimate in general...

... but lower bounds are easier.

Data processing inequality:

I(X; Y ) ≥ I(S(X); T (Y ))

Suggests a sieves-like approach.



Discretization approach

Discretize X,Y → Xdisc, Ydisc, estimate

Idiscrete(X; Y ) = I(Xdisc; Ydisc)

• Data processing inequality =⇒ Idiscrete ≤ I

• Idiscrete ր I as partition is refined

Strategy: refine partition as samples N increases; if number of

bins m doesn’t grow too fast, Î → Idiscrete ր I

Completely nonparametric, but obvious concerns:

• Want N >> m(N) samples, to “fill in” histograms p(x, y)

• How large is bias, variance for fixed m?



Bias is major problem

ÎMLE(X; Y ) =
mx
∑

x=1

my
∑

y=1

p̂MLE(x, y) log
p̂MLE(x, y)

p̂MLE(x)p̂MLE(y)

p̂MLE(x) = pN(x) =
n(x)

N
(empirical measure)

Fix p(x, y),mx,my and let sample size N → ∞. Then:

• Bias(ÎMLE) : ∼ −(mx − my + mxmy − 1)/2N .

• Variance(ÎMLE) : ∼ (log m)2/N ; dominated by bias if

m = mxmy large.

• No unbiased estimator exists.

(Miller, 1955; Paninski, 2003)



Convergence of common information

estimators

Result 1: If N/m → ∞, ÎMLE and related estimators

universally almost surely consistent.

Converse: if N/m → c < ∞, ÎMLE and related estimators

typically converge to wrong answer almost surely. (Asymptotic

bias can often be computed explicitly.)

Implication: if N/m small, large bias although errorbars vanish,

even if “bias-corrected” estimators are used (Paninski, 2003).



Estimating information on m bins with

fewer than m samples

Result 2: A new estimator that is uniformly consistent as

N → ∞ even if N/m → 0 (albeit sufficiently slowly)

Error bounds good for all underlying distributions: estimator

works well even in worst case

Interpretation: information is strictly easier to estimate than p!

(Paninski, 2004)



Derivation of new estimator

Suffices to develop good estimator of discrete entropy:

Idiscrete(X; Y ) = H(Xdisc) + H(Ydisc) − H(Xdisc, Ydisc)

H(X) = −
mx
∑

x=1

p(x) log p(x)



Derivation of new estimator

Variational idea: choose estimator that minimizes upper bound

on error over

H = {Ĥ : Ĥ(pN) =
∑

i

g(pN(i))} (pN = empirical measure)

Approximation-theoretic (binomial) bias bound

max
p

Biasp(Ĥ) ≤ B∗(Ĥ) ≡ m · max
0≤p≤1

|−p log p−
N

∑

j=0

g(
j

N
)BN,j(p)|

McDiarmid-Steele bound on variance

max
p

V arp(Ĥ) ≤ V ∗(Ĥ) ≡ N max
j

∣
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∣

g(
j

N
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Derivation of new estimator

Choose estimator to minimize (convex) error bound over

(convex) space H:

ĤBUB = argminĤ∈H [B∗(Ĥ)2 + V ∗(Ĥ)].

Optimization of convex functions on convex parameter spaces is

computationally tractable by simple descent methods

Consistency proof involves Stone-Weierstrass theorem, penalized

polynomial approximation theory in Poisson limit N/m → c.



Error comparisons: upper and lower bounds
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Undersampling example
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true I(X; Y ) = 0.76 bits



Shannon (−p log p) is special

Obvious conjecture:
∑

i p
α
i , 0 < α < 1 (Renyi entropy) should

behave similarly.
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Result 3: Surprisingly, not true: no estimator can uniformly

estimate
∑

i p
α
i , α ≤ 1/2, if N ∼ m (Paninski, 2004).

In fact, need N > m(1−α)/α: smaller α =⇒ more data needed.

(Proof via Bayesian lower bounds on minimax error.)



Directions

• KL-minimax estimation of full distribution in sparse limit

N/m → 0 (Paninski, 2005b)

• Continuous (unbinned) entropy estimators: similar result

holds for kernel density estimates

• Sparse testing for uniformity: much easier than estimation

(N ≫ m1/2 suffices)

• Open questions: 1/2 < α < 1? Other functionals?



Part 2: Adaptive optimal design of

experiments

Assume:

• parametric model pθ(y|~x) on outputs y given inputs ~x

• prior distribution p(θ) on finite-dimensional model space

Goal: estimate θ from experimental data

Usual approach: draw stimuli i.i.d. from fixed p(~x)

Adaptive approach: choose p(~x) on each trial to maximize

I(θ; X) (e.g. “staircase” methods).



Snapshot: one-dimensional simulation
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Main result

Under regularity conditions, a posterior CLT holds

(Paninski, 2005a):

pN

(√
N(θ − θ0)

)

→ N (µN , σ2); µN ∼ N (0, σ2)

• (σ2
iid)

−1 = Ex(Ix(θ0))

• (σ2
info)

−1 = argmaxC∈co(Ix(θ0)) log |C|

=⇒ σ2
iid > σ2

info unless Ix(θ0) is constant in x

co(Ix(θ0)) = convex closure (over x) of Fisher information

matrices Ix(θ0). (log |C| strictly concave: maximum unique.)



Illustration of theorem
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Technical details

Stronger regularity conditions than usual to prevent “obsessive”

sampling and ensure consistency.

Significant complication: exponential decay of posteriors pN off

of neighborhoods of θ0 does not necessarily hold.



Psychometric example

• stimuli x one-dimensional: intensity

• responses y binary: detect/no detect

p(1|x, θ) = f((x − θ)/a)

• scale parameter a (assumed known)

• want to learn threshold parameter θ as quickly as possible
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Psychometric example: results

• variance-minimizing and info-theoretic methods

asymptotically same

• just one unique function f ∗ for which σiid = σopt; for any

other f , σiid > σopt

Ix(θ) =
(ḟa,θ)

2

fa,θ(1 − fa,θ)

• f ∗ solves

ḟa,θ = c
√

fa,θ(1 − fa,θ)

f ∗(t) =
sin(ct) + 1

2

• σ2
iid/σ

2
opt ∼ 1/a for a small



Computing the optimal stimulus

Simple Poisson regression model for neural data:

yi ∼ Poiss(λi)

λi|~xi, ~θ = f(~θ · ~xi)

Goal: learn ~θ in as few trials as possible.

Problems:

• ~θ is very high-dimensional; difficult to update p(~θ|~xi, yi),

compute I(θ, y|~x)

• ~x is very high-dimensional; difficult to optimize I(θ, y|~x)



Efficient updating

Idea: Laplace approximation

p(~θ|{~xi, yi}i≤N) ≈ N (µN , CN)

Justification:

• posterior CLT

• likelihood is log-concave, so posterior is also log-concave

=⇒ Updating µN , CN is easy via Newton’s method: O(d2) time



Efficient stimulus optimization

Sketch:

• Laplace approximation means Shannon information ∼
Fisher information

• Matrix perturbation theory simplifies nonlinear matrix

problem

• Constraints on ||~x||2 reduce problem to eigenvalue problem

followed by a numerical 1-dimensional optimization — much

easier than full d-dimensional optimization!

=⇒ Computing optimal stimulus takes O(d3) time



Near real-time adaptive design

(Lewi et al., 2006)
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Entropy bias bound

Biasp(Ĥ) = Ep(Ĥ) − H(p)

=
m

∑

i=1

(

p(i) log p(i) +
N

∑

j=0

g(
j

N
)BN,j(p(i))

)

≤ m · max
0≤p≤1

| − p log p −
N

∑

j=0

g(
j

N
)BN,j(p)|

• BN,j(p) =
(

N
j

)

pj(1 − p)N−j: polynomial in p

• If
∑

j g(j)BN,j(p) close to −p log p for all p, bias will be small

=⇒ standard uniform polynomial approximation theory

Back



Entropy variance bound

“Method of bounded differences” (McDiarmid, 1989): let F (x1, x2, ..., xN )

be a function of N i.i.d. r.v.’s.

If any single xi has small effect on F , i.e,

sup |F (..., x, ...) − F (..., y, ...)| < c,

then

V ar(F ) <
N

4
c2

(inequalities due to Azuma-Hoeffding, Efron-Stein, Steele, etc.).

Our case:

Ĥ =
∑

i

g(
n(i)

N
)

max
j

∣

∣

∣

∣

g(
j

N
) − g(

j − 1

N
)

∣

∣

∣

∣

< c =⇒ V ar

(

∑

i

g(
n(i)

N
)

)

≤ Nc2
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