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The neural code

Input-output relationship between

• External observables x (sensory stimuli, motor responses...)

• Neural variables y (spike trains, population activity...)

Probabilistic formulation: p(y|x)



Basic goal

...learning the neural code.

Fundamental question: how to estimate p(y|x) from

experimental data?

General problem is too hard — not enough data, too many

inputs x and spike trains y



Avoiding the curse of insufficient data

Many approaches to make problem tractable:

1: Estimate some functional f(p) instead

e.g., information-theoretic quantities (Nemenman et al., 2002;

Paninski, 2003)

2: Select stimuli as efficiently as possible (Foldiak, 2001;

Machens, 2002; Paninski, 2005; Lewi et al., 2006)

3: Fit a model with small number of parameters



Retinal ganglion neuronal data

Preparation: dissociated macaque retina

— extracellularly-recorded responses of populations of RGCs

Stimulus: random spatiotemporal visual stimuli (Pillow et al., 2007)



Multineuronal point-process GLM
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λi(t) = f

(

b + ~ki · ~x(t) +
∑

i′,j

hi′,jni′(t − j)

)

,

— Fit by L1-penalized max. likelihood (concave optimization) (Paninski, 2004)

— Semiparametric fit of link function: f(.) ≈ exp(.)



— θstim is well-approximated by a low-rank matrix (center-surround)





Nearest-neighbor connectivity
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Network vs. stimulus drive

— Network effects are ≈ 50% as strong as stimulus effects





Network predictability analysis





Model captures spatiotemporal cross-corrs









Maximum a posteriori decoding

arg max~x log P (~x|spikes) = arg max~x log P (spikes|~x) + log P (~x)

— log P (spikes|~x) is concave in ~x: concave optimization again.



Application: Laplace approximation

Key problem: how much information does network activity

carry about the stimulus?

I(~x; D) = H(~x) − H(~x|D)

H(~x|D) =
∫

h(~x|D)p(D)dD; h(~x) = −
∫

p(~x) log p(~x)d~x

Laplace approx: p(~x|D) ≈ Gaussian with covariance J−1
x|D.

Entropy of this Gaussian: c − 1
2
log |Jx|D|. So:

H(~x|D) =

∫

h(~x|D)p(D)dD

≈ c −
1

2

∫

log |Jx|D|p(D)dD

— can sample from p(D) easily, by sampling from p(~x), p(D|~x).

Can check accuracy by Monte Carlo on p(~x|D) (log-concave, so

easy to sample via hit-and-run).



Does including correlations improve decoding?

— Including network terms improves decoding accuracy.



Next: Large-scale network modeling

— Do observed local connectivity rules lead to interesting

network dynamics? What are the implications for retinal

information processing? Can we capture these effects with a

reduced dynamical model?



Another extension: latent variable effects

State-space setting (Kulkarni and Paninski, 2007)



Part 2: Adaptive on-line experimental design

Goal: estimate θ from experimental data

Usual approach: draw stimuli i.i.d. from fixed p(~x)

Adaptive approach: choose p(~x) on each trial to maximize

I(θ; r|~x) (e.g. “staircase” methods).

OK, now how do we actually do this in neural case?

• Computing I(θ; r|~x) requires an integration over θ

— in general, exponentially hard in dim(θ)

• Maximizing I(θ; r|~x) in ~x is doubly hard

— in general, exponentially hard in dim(~x)

Doing all this in real time (∼ 10-100 msec) is a major challenge!

Joint work w/ J. Lewi, R. Butera, Georgia Tech. (Lewi et al., 2006)



Three key steps

1. Choose a tractable, flexible model of neural encoding

2. Choose a tractable, accurate approximation of the posterior

p(~θ|{~xi, ri}i≤N)

3. Use approximations and some perturbation theory to reduce

optimization problem to a simple 1-d linesearch



Step 1: GLM likelihood

λi ∼ Poiss(λi)

λi|~xi, ~θ = f(~k · ~xi +
∑

j

ajri−j)

log p(ri|~xi, ~θ) = −f(~k ·~xi +
∑

j

ajri−j)+ri log f(~k ·~xi +
∑

j

ajri−j)

Two key points:

• Likelihood is “rank-1” — only depends on ~θ along ~z = (~x, ~r).

• f convex and log-concave =⇒ log-likelihood concave in ~θ



Step 2: representing the posterior

Idea: Laplace approximation

p(~θ|{~xi, ri}i≤N) ≈ N (µN , CN)

Justification:

• posterior CLT (Paninski, 2005)

• likelihood is log-concave, so posterior is also log-concave:

log p(~θ|{~xi, ri}i≤N) ∼ log p(~θ|{~xi, ri}i≤N−1) + log p(rN |xN , ~θ)

— Equivalent to an extended Kalman filter formulation



Efficient updating

Updating µN : one-d search

Updating CN : rank-one update, CN = (C−1
N−1 + b~zt~z)−1 — use

Woodbury lemma

Total time for update of posterior: O(d2)



Step 3: Efficient stimulus optimization

Laplace approximation =⇒ I(θ; r|~x) ∼ Er|~x log |CN−1|

|CN |

— this is nonlinear and difficult, but we can simplify using

perturbation theory: log |I + A| ≈ trace(A).

Now we can take averages over p(r|~x) =
∫

p(r|θ, ~x)pN(θ)dθ:

standard Fisher info calculation given Poisson assumption on r.

Further assuming f(.) = exp(.) allows us to compute

expectation exactly, using m.g.f. of Gaussian.

...finally, we want to maximize F (~x) = g(µN · ~x)h(~xtCN~x).



Computing the optimal ~x

max~x g(µN · ~x)h(~xtCN~x) increases with ||~x||2: constraining ||~x||2
reduces problem to nonlinear eigenvalue problem.

Lagrange multiplier approach (Berkes and Wiskott, 2006)

reduces problem to 1-d linesearch, once eigendecomposition is

computed — much easier than full d-dimensional optimization!

Rank-one update of eigendecomposition may be performed in

O(d2) time (Gu and Eisenstat, 1994).

=⇒ Computing optimal stimulus takes O(d2) time.



Near real-time adaptive design
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Simulation overview



Gabor example

— infomax approach is an order of magnitude more efficient.



Conclusions

• GLM provides flexible, powerful methods for answering key

questions in neuroscience

• Close relationships between encoding, decoding, and

experimental design (Paninski et al., 2008)

• Log-concavity makes computations very tractable

• Many opportunities for machine learning techniques in

neuroscience
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Fitting coupling terms exposes smaller

receptive fields





Handling nonstationary parameters

Various sources of nonsystematic nonstationarity:

• Eye position drift

• Changes in arousal / attentive state

• Changes in health / excitability of preparation

Solution: allow diffusion in extended Kalman filter:

~θN+1 = ~θN + ǫ; ǫ ∼ N (0, Q)



Nonstationary example

0

1
T

ria
l 0

 θ
i

 

 

−1
0
1

T
ria

l 2
00

 θ
i

20 40 60 80 100
−1

0
1

T
ria

l 4
00

 θ
i

i

random
info. max.
θ true



Nonstationary example
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