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Abstract. We describe a class of models that can be used to predict how the instantaneous
firing rate of a neuron varies in response to a dynamic stimulus. These models are based on
learned pointwise nonlinear transforms of the stimulus, followed by a temporal linear filtering
operation on the transformed inputs. In one case, the transformation is the same for all
lag-times. Thus, this “input nonlinearity” converts the initial numerical representation of
the stimulus (e.g. air pressure) to a new representation which is optimal as input to the
subsequent linear model (e.g. decibels). We present algorithms for estimating both the input
nonlinearity and the linear weights, including regularization techniques, and for quantifying
the experimental uncertainty in these estimates. In another approach, the model is generalized
to allow a potentially different nonlinear transform of the stimulus value at each lag-time.
Although more general, this model is algorithmically more straightforward to fit. However,
it contains many more degrees of freedom, and thus requires considerably more data for
accurate and precise estimation. The feasibility of these new methods is demonstrated both on
synthetic data, and on responses recorded from a neuron in rodent barrel cortex. The models
are shown to predict responses to novel data accurately, and to recover several important
neuronal response properties.

1 Introduction

Neural encoding models predict how the instantaneous firing rate of a neuron varies in re-
sponse to a dynamic input, such as the speed of a jittering bar in the visual field, a time-varying
sound, the spike rates of a collection of upstream neurons, or a combination of such a stimulus
and the spike history of the neuron itself. One major reason for interest in such models is that,
once fit to neural data, their parameters can be used to investigate the encoding properties
of the modelled neuron; which may, in turn, shed light on the function of the corresponding
brain area. In one of the simplest and most widely-used models, the predicted firing rate
is a weighted linear combination of preceding stimulus values. In many cases, such linear
models do not predict the firing rate of a neuron well (Sahani & Linden, 2003b; Machens
et al., 2004; Petersen & Montemurro, 2006). Thus, while their parameters may sometimes
be broadly indicative of the encoding properties of the neuron, the picture they yield is at
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best incomplete, and may occasionally be radically inaccurate. This suggests that nonlinear
encoding models may be needed to provide an accurate description of the neuron’s functional
response (e.g. Marmarelis & Naka, 1973; Fishbach et al., 2001; de Ruyter van Steveninck &
Bialek, 1988).

Considerable effort has recently been directed toward LNP (Linear-Nonlinear-Poisson)
models, where a linear temporal filter acting on a time-varying stimulus signal is followed by
an output nonlinearity to predict the firing rate (Brenner et al., 2000; Schwarz et al., 2002;
Paninski, 2003, 2004; Simoncelli et al., 2004; Sharpee et al., 2004; Pillow & Simoncelli, 2006).
One motivation for such models is to capture the nonlinearity of neuronal spike generation,
although some other nonlinearities may also be described this way. By contrast, here we
focus on nonlinear transforms that precede a temporal linear filtering stage. Such transforms
may model nonlinear synaptic or dendritic responses in the neuron being described, but may
also capture nonlinearities at earlier stages of processing or in receptor transduction (where,
for example, stimulus strength may be encoded logarithmically, or with power law scaling).
Input nonlinearities such as these can, in principle, lead to significant failures of the linear
model. Suppose, for instance, that a neuron combined filtered inputs from two populations of
half-wave rectifying sensors, the populations being sensitive to stimulus deflections in opposite
directions, as in figure 1. If the influence of both populations were roughly equal, the neuron
would effectively respond to the absolute value of the sensory inputs. In this case, a linear
model fit to a stimulus that contained equal deflections in both directions, could do no better
than predict a constant firing rate.

[Figure 1 about here.]

We describe two models designed to capture such input nonlinearities, inspired by tech-
niques that generalize linear regression to the nonlinear setting (e.g. Suits et al., 1978). The
first is a bilinear model, in which, prior to a linear combination, a single estimated nonlinear
transform is applied to all the stimulus values. In the second model this constraint is relaxed,
and a separate nonlinearity is estimated for each input to the linear combination stage. For
reasons that will become apparent, we will refer to this as the “full-rank” model. It is related
to the generalized additive model (Breiman & Friedman, 1985; Hastie & Tibshirani, 1999).
Despite the larger number of parameters involved, the full-rank model is algorithmically more
straightforward to fit than the bilinear one. However, the many additional degrees of freedom
mean that, in comparison to the bilinear model, many more data are needed to achieve a
given level of reliability in the estimated parameters. Furthermore, the resulting description
is considerably less compact than the bilinear model, potentially leading to difficulties in
interpretation.

Algorithms to estimate the parameters of both models are described in sections 2.1 and 2.2.
The bilinear model, and implicitly the full-rank model, have appeared before in the context
of Hammerstein cascades or NL cascade models (e.g. Narendra & Gallman, 1966; Hunter &
Korenberg, 1986; Juusola et al., 1995; Bai, 1998; Westwick & Kearney, 2001). Here, we give
these models a probabilistic basis, allowing for the construction of principled regularization
techniques (section 2.5); estimation of error bars (section 2.6); we draw connections between
the full-rank model and the bilinear model (section 2.3); and we extend the formulation of the
bilinear model to the framework of predicting point-process spike trains (section 2.9), leading
to the Generalized Bilinear Model or the “NLNP model”. We also evaluate the models on
simulated and real neural data in sections 3 and 4.
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2 The models

2.1 The bilinear model

The model. Consider a one dimensional time-varying stimulus s(t). The linear predictive
model is given by r̂(t) = c +

∑τmax

τ=0 wτs(t − τ), where c is a background firing rate, w is a
(τmax + 1)-dimensional vector of weights — sometimes called the linear receptive field of the
neuron — and r̂(t) is the predicted firing rate of the cell at time t. The model parameters are
set so that r̂(t) matches the real firing rate r(t) as closely as possible. In the following, r(t)
will usually represent a peri-stimulus-time histogram (PSTH), i.e., the number of spikes in a
time bin around t, averaged over multiple trials in which the same stimulus is presented. In
this case, a natural measure of closeness is the average squared difference between r̂(t) and
r(t), corresponding to the Gaussian likelihood. In section 2.9 we will consider the case in
which r(t) is a single-trial spike train with 1 (spike) or 0 (no spike) in each time bin. Here,
the negative log likelihood (or deviance) of a point-process model will be more a suitable
distance metric. Generalization to higher dimensional stimuli is straightforward: in this case
the index τ ranges over time and space, for example, instead of just time.

In this section we introduce an unknown pointwise transformation f(.) of s(t) into the
model, and provide an algorithm to estimate the corresponding parameters. This transfor-
mation will be referred to as the “input nonlinearity”. This model has the form

r̂(t) = c +

τmax
∑

τ=0

wτf(s(t− τ)). (1)

In many cases the appropriate f is not known and is desirable to be estimated from the data.
Once f has been estimated, the resulting model is almost as conceptually simple as the linear
model, but can be considerably more powerful. We call this the “bilinear” model for reasons
that will become clear below. Figure 2 illustrates the predictive sequences of the model.

[Figure 2 about here.]

Estimation procedure. It is very hard to manually explore the high dimensional space
of functions, especially with the possibility that f might be different for each neuron in a
population. For fixed f , the bilinear model reduces to a linear model, and w can be estimated
by linear regression. Learning f from the data, instead of assuming it, can be done as follows.
First we choose a fixed set of basis functions {fi} and then express f as a linear combination
of these:

f(.) =
∑

i

bifi(.). (2)

Naturally the basis functions have to be chosen to approximately encompass the possible space
of input nonlinearities (in practise, this might involve some manual exploration). In this paper
we use a piecewise linear basis for f ; see Appendix A for the definition. Inserting equation 2
into the model (equation 1) gives: r̂(t) = c +

∑

τi wτbifi(s(t− τ)). Making the abbreviation
Mtτi = fi(s(t−τ)), the model can be re-expressed in a compact way: r̂(t) = c+

∑

τi wτ biMtτi.
This expression is further simplified by redefining M. Let us write M as a family of matrices
indexed by t: [M(t)]τi = Mtτi. Then redefine

M(t)→

(

1 0
0 M(t)

)

(3)
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and w→ [w1 w], b→ [b1 b], so that now c = w1 · b1 and

r̂(t) =
∑

τi

wτbiMtτi.

Here, w and b are the parameter vectors, w describing the response to time, and b describing
the input nonlinearity. M is the data array and is fixed.

To estimate w and b, we find values for them that minimize the squared distance between
the observed and the predicted spike rates, E =

∑

t(r(t)− r̂(t))2 = ||r− r̂||2. (Alternatively,
one can maximize the point-process likelihood; this will be described in section 2.9.) One
method for doing this comes from rewriting the model as

r̂(t) =
∑

τi

wτbiMtτi =
∑

τ

wτ

(

∑

i

biMtτi

)

=
∑

τ

wτBtτ

or r = Bw, where the matrix Btτ =
∑

i biMtτi. That is, if b is kept fixed, it can be combined
with the other fixed components of the model, namely the data array M, to produce a pseudo-
data matrix B. Now the model is linear in w and can be easily inverted to obtain the estimate
w = (BTB)−1BTr. This is the unique best estimate of w given the fixed b under the square
loss E , assuming BTB is of full rank (if BTB is of reduced rank, the inverse in the definition
of w is interpreted as a pseudoinverse, and so the linear estimate may be considered unique
in general).

On the other hand, if w is fixed, the model is

r̂(t) =
∑

τi

wτbiMtτi =
∑

i

bi

(

∑

τ

wτMtτi

)

=
∑

i

biWti,

where Wti =
∑

τ wτMtτi. Now the conditional estimate for b is (WTW)−1WTr.
If w and b are alternately updated in this way, at each step holding the other vector fixed

at its most recent value, E decreases or stays constant at each step. This estimation procedure
has to be initialized with a guess for the parameter vector that is held fixed during the first
step. The iterations should be continued until E it converges. At that point, w and b are
noted, and their first elements removed and formed into the baseline firing rate c = w1 · b1.
The model now consists of a temporal filter w, an input nonlinearity f(x) =

∑

i bifi(x) and
a baseline firing rate c. This procedure has the structure of alternating least squares (ALS)
(e.g. Young et al., 1976). In certain cases, when the time-range of the stimulus is large
compared to the size of w and b, there is an economical and fast alternative to this algorithm
(see Appendix B).

Note that, once the input nonlinearity is determined, it may be fixed and used in ex-
tensions of the linear model such as the generalized linear model (which includes an output
nonlinearity) and models with spike history terms (Pillow et al., 2005; Truccolo et al., 2005).
If the input nonlinearity is consistent across a subset of a population of cells, it can also be
fixed (or approximated by a simpler function) so that estimation on the rest of the population
can be carried out as in a linear model. It is also possible to estimate spike history terms
simultaneously with the input nonlinearity and the temporal filter (see section 2.9).

As discussed above, a linear model is guaranteed to have a unique optimum, but unfor-
tunately we are not able to give a similar uniqueness guarantee for the bilinear model. For
each one of the two parameter vectors w and b there is a unique optimum conditioned on
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the other, but since the other vector also changes in the optimization, there is no guaranteed
joint uniqueness. Thus one can only be certain of reaching a local minimum of E . Using
numerical simulations and random data arrays M and r, we found a few such local minima.
In practise, however, these have not caused problems; at most two different local minima
were ever observed in the neuronal data discussed in section 4, and they were almost identical
in shape. But in larger models initialization of the parameters might be important (e.g. see
section 2.3).

2.2 The full rank model

The bilinear model is directly linked to the concept of a “separable” receptive field (DeAngelis
et al., 1995; Depireux et al., 2001; Linden et al., 2003). Consider a visual spatiotemporal
receptive field, for example: this can be written as a matrix Wτx, and a linear spike rate
prediction model would be r̂(t) =

∑τmax

τ=0

∑

x WτxS(t − τ, x), with S a time-varying movie
presented to the retina. In some cases, it is reasonable to approximate the full matrix Wτx

(which may in general be of full rank) with a simpler, rank-1 matrix, Wτx = uτvx. In this case
we say that the receptive field is “separable,” because the receptive field may be written as a
product of two separate functions of time and space, u and v, respectively. In the context of
visual spatiotemporal fields, this separability concept is beneficial, since we need only estimate
dim(u) + dim(v) parameters, instead of the (typically much-larger) dim(u)× dim(v), in the
case of a full-rank matrix W. On the other hand, the class of separable receptive fields
is strictly less flexible than the general class of full-rank (inseparable) receptive fields; for
example, separable receptive fields are unable to model direction selectivity.

In the present case of the bilinear model, the receptive field wτbi can be thought of as a
separable (rank-1) receptive field in time (τ) and in stimulus value (i), and the data tensor
Mtτi as a two dimensional time varying “stimulus,” varying in the τ and i dimensions. This
leads to a generalization of the bilinear model in which wτbi, a rank-1 matrix, is replaced by a
general matrix Cτi to form the full-rank model. Being a generalization of the bilinear model, it
has the potential of capturing more intricate structure of the stimulus response function, but
it has more parameters (dim(w)×dim(b) in the full-rank case instead of dim(w)+dim(b) in
the rank-1 case), so that the data requirements increase when the stimulus is high dimensional,
to avoid overfitting (explaining noise on the training data and performing poorly on cross-
validation data; in such cases the significance of the model parameters is unclear).

The full-rank model uses the same data array M as the bilinear model:

r̂(t) = c +
∑

τi

CτiMtτi = c +
∑

τi

Cτifi(s(t− τ)). (4)

One can estimate this model in a single step, by standard linear regression methods to fit the
weights Cτi and the offset c.

The full-rank model has a unique global optimum (in the sense discussed above) because
it is linear in the matrix M . In particular, both the objective function E and the parameter
space (the space of all matrices Cτi and constant offsets c) are convex: E is convex because it is
a quadratic function, and the parameter space is convex because adding two general matrices
together will produce another matrix. Therefore fitting the full-rank model is analogous to
descending a parabola on the real line: we are guaranteed to reach the optimum.

Now, returning to the bilinear model: this model has the same objective function as
the full-rank model, but a different parameter space: we have to restrict our search to the
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space of all rank-1 matrices wτbi. This parameter space is not convex because, by definition,
the sum of two rank-1 matrices is a rank-2 matrix, exempting special cases. Therefore, the
iterative algorithm for the input nonlinearity model is not guaranteed to converge to the
global optimum, even though each step of the optimization (fitting w with b fixed, and vice
versa) does have a unique optimum. However, as we discussed above, in our experience to
date this lack of a global optimizer guarantee has had minimal impact on the performance of
the model (likely because each step of the algorithm has a guaranteed optimal solution).

2.3 Rank-k models

Since the bilinear model is a rank-1 special case of the full-rank model, one can also consider
rank-k approximations to the full-rank model. These may be able to capture more detailed
response properties of the neuron, but at the expense of a potential increase in overfitting,
compared to the rank-1 model. A common method for finding low rank approximations to a
matrix is the singular value decomposition (SVD, Strang, 1988); this is frequently applied to
linear auditory receptive fields (Depireux et al., 2001; Linden et al., 2003). Taking the single
leading SVD term produces an approximation to the full-rank model, Cτi ≈ wτbi, giving a
bilinear input nonlinearity model (Bai, 1998). However, it can be shown that the (w,b) thus
found minimize the squared Euclidean distance between C and wbT, rather than the squared
distance between the real and the predicted firing rates. Thus, while the SVD method may
provide a good initial guess for wbT, we need to apply the alternating least squares procedure
of section 2.1 to optimize our loss function E .

Approximating the full-rank model by the k leading SVD components of a full-rank model,
Cτi = w1

τ b1
i + w2

τb
2
i + ...+ wk

τ bk
i , is equivalent to taking a sum of k bilinear models, so that the

firing rate is predicted by r̂(t) = c +
∑

k

∑

τ wk
τ fk(s(t − τ)). The extra bilinear models may

describe finer aspects of the stimulus response functions. Again, the parameters w1..k and
b1..k, obtained by SVD, minimize an inappropriate objective function (the Euclidean distance
to the full-rank matrix C). However, the ALS estimation can still be applied to minimize the
squared error ||r− r̂||2, if one redefines the data array M. E.g. if k = 3,

M(t)←









1 0 0 0
0 M(t) 0 0
0 0 M(t) 0
0 0 0 M(t)









,

with “0” indicating blocks of 0’s, the model r̂(t) =
∑

τi wτbiMtτi is exactly a sum of three
bilinear models, with w1,2,3 and b1,2,3 appearing as concatenated vectors in its parameters.
More specifically, after learning the parameters with the ALS procedure, w and b are de-
composed into w = [w1 w1 w2 w3], b = [b1 b1 b2 b3] with c = w1 · b1, and the
three bilinear models are recovered. The ALS procedure can, of course, be initialized with
the vectors coming from the SVD approximation to the full-rank model.

2.4 Models with multiple stimulus features

The framework discussed above allows for arbitrary transformations of the stimulus value,
once a stimulus feature has been decided upon. For example, in the context of analyses of
whisker barrel data, one might decide a priori that the velocity is the key stimulus feature
of interest (Pinto et al., 2000), and define s(t) to be the velocity at time t — and now by
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fitting the models described above one can infer what function of the velocity, f(s), is most
predictive of the firing rate. But how do we know a priori that the velocity is the “correct”
feature to analyze (and nonlinearly transform)? Perhaps a better model could be obtained
by nonlinearly transforming the position of the whisker, or the acceleration. Different choices
of the stimulus feature (i.e., velocity vs. acceleration) may lead to a different performance of
the model.1 Completely different stimuli can also be combined in one model, e.g. the light
intensity and sound volume of an audiovisual stimulus. If we seek a single most appropriate
stimulus, we can of course sequentially train one model per stimulus and then check which
is most predictive. But the stimuli may interact or jointly influence the firing rate, in which
case it is desirable to have a model that uses all relevant stimuli to construct the predicted
firing rate. It is common practice to formulate the design matrices of linear models such that
they include multiple stimuli (e.g. Luczak et al., 2004); here we show how such formulations
extend to the data tensor M of bilinear and full-rank models. As an example, consider the
following model that assumes an additive combined effect of three stimuli on the firing rate:

r̂(t) = c +
∑

τ

(

w1
τf

1(s1(t− τ)) + w2
τf

2(s2(t− τ)) + w3
τf

3(s3(t− τ))
)

,

where s1,2,3(t) are three different stimuli or stimulus features, each with their own temporal
filter (e.g. w1) and input nonlinearity (e.g. f1, determined by b1). We define tensors M as
before, e.g. M1

tτi = f1
i (s1(t− τ)) (the different stimuli may be assigned the same, or different,

basis functions). In tensor notation, the model is

r̂(t) = c +
∑

τi

(

w1
τb

1
i M

1
tτi + w2

τb
2
i M

2
tτi + w3

τb
3
i M

3
tτi

)

.

Training such a model is similar to training a rank-k model. We define a new stimulus
tensor containing the three old ones:

M(t) =









1 0 0 0
0 M1(t) 0 0
0 0 M2(t) 0
0 0 0 M3(t)









,

where e.g. [M1(t)]τi = M1
tτi. If we also concatenate the w1,2,3 and the b1,2,3 vectors to

form w = [w1 w1 w2 w3] and b = [b1 b1 b2 b3], then the model takes on the shape
of the simple bilinear model: r̂(t) =

∑

τi wτbiMtτi. b and w are estimated as before, using
the ALS procedure. As before, the optimal b may be uniquely defined given w, and vice
versa: all of our convexity discussion carries through unmodified to this more general setting.
Once converged, the individual temporal filters and input nonlinearities, and the constant
offset, may be extracted from these concatenated vectors.

The full-rank analogue of this uses the same stimulus array. The model is

r̂(t) = c +
∑

τi

(

C1
τiM

1
tτi + C2

τiM
2
tτi + C3

τiM
3
tτi

)

=
∑

τi

CτiMtτi.

1This is not true in linear models if the stimulus features are linear transformations of one another. Here,
however, that property disappears due to the input nonlinearity.
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This is again the standard linear form of a full-rank model. After estimating the matrix C
with the usual method the individual receptive fields are obtained as follows:

C =









c 0 0 0
0 C1 0 0
0 0 C2 0
0 0 0 C3









.

The 0’s of this matrix indicate blocks of entries that do not participate in the regression due
to the block-diagonal form of M, because in the model, these entries are multiplied by zeroes.

2.5 Regularization

To cope with limited or noisy data, we now equip the bilinear model with regularization
methods, to reduce the chances of overfitting (i.e. using the model parameters to explain
noise in the training data). By minimizing the squared error ||r − r̂||2, we have implicitly
been looking for the maximum likelihood (ML) solution for the parameters (wML and bML)
under a noise model

r(t) = r̂(t) + ση(t),

where η(t) is a zero mean and unit variance Gaussian random variable, and σ is the (unknown)
noise scale. Gaussian noise is a reasonable assumption because the PSTH is the average of
multiple spike trains, so that by the central limit theorem, the noise around the “true” rate
is approximately Gaussian. The likelihood of the observed spike rate under this model is
(2πσ2)−T/2 exp(−||r − r̂||2/2σ2) and therefore minimizing E maximizes the likelihood. This
probabilistic formulation now allows for principled regularization techniques and estimates
for error bars. If we observe r, then the noise term induces a probability distribution over
the parameters of the model; we can now specify prior probability distributions on those
parameters that describe our expectations, such as the degree of smoothness of w. Imposing
priors is thus a method for regularizing the parameters of the model. Gaussian priors are very
convenient choices; e.g. P prior(w) ∼ N (0,Sw) with Sw the prior covariance matrix describing
the expected smoothness, size, etc. of w. We will often work with the inverse covariance D
so that Sprior = D−1.

Bilinear model. As described in section 2.1, the update for w, when b is fixed, is just
the solution to a linear regression problem with design matrix Btτ =

∑

i biMtτi. Incorporating
a Gaussian prior distribution into a linear regression problem with Gaussian noise is quite
well understood in the neural encoding setting (Sahani & Linden, 2003a; Machens et al.,
2004): we simply maximize the log-posterior distribution on w instead of the log-likelihood.
This log-posterior may be written as log(P (w,b|M, r)) = − 1

2σ2 r̂
Tr̂ + 1

σ2 r
Tr̂ − 1

2w
TDww −

1
2b

TDbb+ const, where the constant does not depend on w or b and r̂ is given in terms of w
and b; we may maximize this expression analytically with respect to w to obtain the usual
regularized least squares solution:

w = (BTB + σ̂2Dw)−1BTr,

where σ̂2 is an estimate of the noise scale σ2. For example, in ridge regression, the matrix
Dw is a multiple of the identity, so that the values of w are encouraged to be small. Another
common choice for Dw is a matrix with 2’s on the diagonal, −1’s on the neighbouring positions,
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all scaled by a parameter λw which sets the “strength” of the regularization (equivalently,
1/λw sets the reliability of the data). Such a Dw will penalize high derivatives of w; this may
be seen easily if we notice that the corresponding Gaussian log-prior on w is proportional to
−wTDww = −

∑

i[w(i+1)−w(i)]2 . The regularized final estimate of w is now the Maximum
A Posteriori (MAP) estimate, wMAP.

The case of b is more complicated, because properties of the input nonlinearity f(x) =
∑

i bifi(x) have to be controlled instead of properties of b: smoothness in b is not exactly
the same as smoothness in f . In Appendix C we derive expressions for Db that control the
first and second derivatives of f . Db is defined there as a quadratic form, so that e.g. to

penalize the first derivative of f we find Db so that bTDbb = λb ·
∫

(

∂f(x)
∂x

)2
dx. (This is

the continuous analogue of Dw defined above.) Again there is a multiplier λb which sets
the strength of the regularization. Once the prior has been set, the update for b becomes
b = (WTW + σ̂2Db)−1WTr, with Wti =

∑

τ wτMtτi. The regularized final estimate is now
bMAP.

So far, we have described priors depending on simple scaling parameters λw and λb which
determine the strength of regularization. There may also be other parameters, which e.g. set
the scale of smoothness. That is, the priors are parametrised by one or more parameters θw,b,
which are typically set by hand through cross-validation or by utilizing prior knowledge of
the expected scale and smoothness of w and b; good values for the θ’s depend on the size,
amount of noise, etc, of the dataset. A more principled way of setting the θ’s is through an
automatic adaptive regularization method described in Appendix F. This method is similar
to Evidence Optimization techniques for linear models (Sahani & Linden, 2003a). After
implementation, these automatic techniques can produce good results with no time spent on
manual intervention. We plan to make these algorithms available on our website.

Full-rank model. Regularizing the full-rank model is not straightforward, because in
the time direction it uses a discrete basis, whereas in the stimulus value direction it uses
a piecewise linear (i.e. continuous) basis. Here we adopt the somewhat unusual strategy of
penalizing the first derivative in the time direction (this is the standard thing to do) but
the second derivative in the stimulus value direction (since the input nonlinearity should not
favour flat functions). Again, the regularization is done through a Gaussian prior on the
model parameters C, specified as a regularization matrix DC - the analogue of Dw or Db for
the bilinear model parameters. In Appendix D, we derive expressions for DC so that rough
receptive fields are penalized. Linear Evidence Optimization techniques can be readily applied
here (e.g. using an adaptive prior λDC and learning an optimal value for λ, or by using other
forms of prior covariance matrices; see Sahani & Linden, 2003a).

2.6 Error bars through Gibbs sampling

Error bars for a linear model with Gaussian noise are easy to find. A linear model is defined by
a design matrix X (the stimulus), a set of weights v (the receptive field), an observation vector
y (the spike rate) and a noise scale σ, so that y = Xv+ση(t), with η(t) independent Gaussian
noise with zero mean and unit variance. If D were the inverse prior covariance, then the error
bars on v would be estimated by the square root of the diagonal elements of the posterior
covariance matrix σ̂2(XTX+σ̂2D)−1, because the diagonal elements of a covariance matrix are
the marginal variances of the parameters. In the bilinear case, there is no analytical estimate
for the error bars due to the dependencies between w and b. The error bars are determined by
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the spread of the posterior distribution of the parameters, P (w,b|r,M,Dw,Db, σ̂2), around
the estimated parameters, wMAP and bMAP. Fortunately, it is quite easy to sample from this
distribution using Gibbs sampling (e.g. MacKay, 2004). This sampling procedure, detailed in
Appendix E, produces a set of samples {wn,bn}, which can be used to derive estimates for
the error bars — by simply finding the pointwise standard deviations of these samples around
wMAP and bMAP. Some precautions are needed, described in the next section, to ensure that
these estimates are correct. Also note that the estimated error bars for b are not the error
bars on the input nonlinearity f(.) = Fb =

∑

i bifi(.), where F is the matrix containing the
basis elements fi(.): if Σ is the sample covariance matrix of the Gibbs samples {[bn]i} around

[bMAP]i, then the error bar on f(x) at position x is given by the usual formula (FΣFT)
1/2
x,x .

The error bars for the parameters of the full-rank model can be estimated in a similar
same way as for a linear model, but once again they must be converted to error bars on the
receptive field. The posterior covariance matrix is Σ = σ̂2(MTM + σ̂2DC)−1 (see section 2.5;
M is here the data array and DC the regularization array, both with with (τ, i) vectorized so
that they become matrices). Defining an appropriate basis matrix F similar to the above, the

error bars are now (FΣFT)
1/2
xτ,xτ .

2.7 Degeneracies

Bilinear model. A model contains degeneracies if different settings of its parameters produce
identical input-output relationships. Such a model may also be called “non-identifiable”: we
cannot uniquely identify the parameters from the observed data. The bilinear model contains
such degeneracies: the model does not change if w → λ · w and b → 1

λ · b, because the
parameters only appear as the product wbT. This nonidentifiability leads to overestimation
of the error bars. Error bars are estimated according to the principle “How much can this
parameter be moved without changing the predicted firing rate too much?”; if any change in
a parameter can be countered by changes in other parameters so that r̂ is unchanged, the
error bars may potentially be infinitely wide (if there is no prior information to constrain the
parameter estimates). Probabilistically, degeneracies induce flat directions in the likelihood.
The Gibbs sampling procedure samples from these directions and overestimate the error bars.
Figure 3 clarifies this picture by showing four equivalent configurations of the bilinear model.

[Figure 3 about here.]

The bilinear model has a second degerenacy: there is an equivalence between b and the
constant c:

c +
∑

τi

wτ (bi + d)Mtτi = c +
∑

τi

wτbiMtτi + d ·
∑

τi

wτMtτi.

Now the last term is a constant with respect to b:
∑

τi

wτMtτi =
∑

τ

wτ

∑

i

fi(s(t− τ)) =
∑

τ

wτ · 1, (5)

because the piecewise linear basis functions sum to 1,
∑

i fi(x) = 1.2 Thus, if b gets changed
by adding a constant d to every entry of the vector, this change can be countered by sub-
tracting d ·

∑

τ wτ from c. The equivalence of the models thus obtained can lead to seemingly

2Most sensible bases have the property of summing to 1, e.g. the piecewise linear, discrete, and spline bases.
If they do not sum to 1, but another setting of b causes f(x) = 1, then the degeneracy will be more complicated
than just a vertical shift.
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large errorbars on b and c. This additive degeneracy also appears in figure 3, as a vertical
shift in b and as a shift in c.

To remove the additive degeneracy and restore the identifiability of the model, one can
change the basis set {fi(.)} by removing one function fj before defining the data array M:
this forces f(.) =

∑

i6=j bifi(.) to be zero at a specific point (specifically, it is zero at the

jth node, f(xj) = 0; see Appendix A); equation 5 does not hold anymore because now
∑

i6=j fi(.) 6= 1. Thus the additive degeneracy disappears and all the Gibbs samples will lie
at a fixed height. (Note that one could also remove the additive degeneracy in an easier way,
by removing the constant offset c from the model, i.e. by not performing the redefinition of
M in equation 3 of section 2.1, but although this works for the bilinear model, this does not
remove the degeneracy of the full-rank model; see below.) The multiplicative degeneracy can
be fixed post-hoc, by rescaling the Gibbs samples to minimise the squared distance between
the samples and bMAP. The inverse rescaling is applied to the corresponding w samples.

Full-rank model. There is also a degeneracy in the full-rank model: changing Cτi to
Cτi + dτ , with d an arbitrary vector that sums to zero, gives r̂(t)→ r̂(t) +

∑

τ dτ
∑

i(fi(s(t−
τ))) = r̂(t) +

∑

τ dτ · 1 = r̂(t). That is, there is no change in the input-output relation of the
model, but the receptive field does change: a(τ, x) =

∑

i Cτifi(x)→ a(τ, x) + dτ . This again
leads to overestimation of the error bars. This problem can be tackled in the same way as
the additive degeneracy in the bilinear model: remove one of the basis functions fj from the
basis set {fi}, so that the degeneracy disappears due to

∑

i6=j fi(.) 6= 1, and the estimated
errorbars will have the right size.

2.8 Output nonlinearity

It will rarely be the case that the input nonlinearity framework can capture the entire stimulus
response function of a neuron. In some cases it may be useful to slightly extend the model
so that it also includes an output nonlinearity, which can, for example, prevent the predicted
firing rate from becoming negative. The basis function framework can also be used to estimate
such an output nonlinearity. That is, once a bilinear or full-rank model is fit to give an
estimated firing rate r̂(t), one can apply a pointwise function g(.) to it so that g(r̂(t)) is
a better estimate of r(t) than r̂(t) alone. For example, g might cut off r̂(t) when it drops
below zero. One way of finding g, described by Chichilnisky (2001), is to to find the average
number of spikes that are elicited when r̂ is in a certain interval; g(x) is now defined by that
average, when x is in the interval. This procedure is equivalent to fitting a nonlinear function
g, expressed in a discrete basis g(.) =

∑

j djgj(.), to the graph of (r̂(t), r(t)). d is fit by linear
regression, just like b in the bilinear model. Instead of a discrete set of basis functions, one
can choose any set; in section 3 we used piecewise linear basis functions with the same type
of regularizing prior as for the input nonlinearity. The fitting of the output nonlinearity is
just one-dimensional nonlinear regression (Suits et al., 1978), and may be applied easily to
either the input nonlinearity or full-rank models.

2.9 Fitting spike trains: Generalized Bilinear or LNLP Models

So far, we have dealt only with spike rates, i.e. the average time-binned spike counts over
multiple repetitions of the same simulus. The squared error ||r−r̂||2 is an appropriate objective
function for spike rates. The squared error is, however, not an appropriate objective function
when fitting the models to spike trains, i.e. when r(t) is 1 or 0 at any one time. An appropriate
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objective function is the point-process likelihood (i.e., the probability of the measured spike
train under the model given by w and b) — or equivalently, the log-likelihood. Taking r̂(t) =
probability of spike in time bin t (so that r̂(t) = dt · (predicted number of spikes per second),
with dt the size of a time bin), and {tk} the real spike times (so r(tk) = 1 and r(t) = 0 if t
is not a spike time), the point-process log-likelihood can be approximated by its limit as the
bin size goes to zero (Berman & Turner, 1992):

L =
∑

k

log r̂(tk)−
∑

t

r̂(t)

Here r̂(t) is a model of the form r̂(t) = g(
∑

τ wτf(s(t− τ))) = g(
∑

τi Mtτiwτbi) (bilinear)
or r̂(t) = g(

∑

τi MtτiCτi) (full-rank), with g a fixed function (the link function, or output
nonlinearity — here g is fixed and not estimated as in the previous section), and the constant
offset c is incorporated into M as usual. The argument of g is exactly what we previously
called the bilinear or the full-rank model. Commonly, a linear model with output nonlinearity
is called a Generalized Linear Model (GLM; McCullagh & Nelder, 1989) or Linear-Nonlinear-
Poisson model (LNP; Simoncelli et al., 2004); thus the bilinear version is a Generalized Bilinear
Model or NLNP model (the first N standing for nonlinear) as depicted in figure 4, and the
full-rank version is still a GLM.

[Figure 4 about here.]

We seek to estimate the same parameters as before, i.e. w and b, or C, by maximizing
L. For the full-rank model, the methods are the same as for linear models, and a unique
optimum of L is guaranteed if g is convex and log-concave (Paninski, 2003, 2004).

There is no analytical solution that maximizes L, but one can use gradient ascent on L
with respect to the model parameters. For the bilinear model, defining for brevity y(t) =
∑

τi Mtτiwτbi so that r̂(t) = g(y(t)), the gradient in the b direction is

∂L

∂bj
=
∑

k

g′(y(tk))

g(y(tk))

∑

τ

Mtkτjwτ −
∑

t

g′(y(t))
∑

τ

Mtτjwτ

with a similar expression for ∂L/∂wτ . Note that the gradient simplifies when g is the
exponential function due to g′(y)/g(y) = 1. One can still use a Gaussian prior for b and
w, in which case the objective function becomes the log-posterior L − 1

2w
TDww − 1

2b
TDbb,

whose gradient with respect to b is ∂L/∂bj −
[

Dbb
]

j
(and a similar expression for ∂L/∂w),

where Dw and Db are regularization matrices as described in section 2.5.
Note that if g is convex and log-concave (e.g. g(y) = exp(y), g(y) = log(1 + exp(y)), the

optimization is separately concave in the parameter vectors just like the Gaussian likelihood
— i.e. if b is fixed, then the optimization is concave in w and thus has a unique optimum
(Paninski, 2004), implying that we may easily fit the model by alternating maximization, just
as in the setting of squared-error discussed above — that is, switching between maximizing L
with respect to w keeping b fixed, and with respect to b keeping w fixed. In our experience,
this alternating maximization is superior to doing gradient descent on L with respect to w and
b jointly. Instead of gradient methods, (alternating) Iteratively Reweighted Least Squares
techniques are also available for the regularized estimation of the parameters.

One of the main reasons for using spike timing data rather than spike rate data is that
the spike history of the neuron can be incorporated in the model in a natural way (Paninski,
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2004). Spike history effects, such as refractory periods and self-excitation, are often modeled
as an additive feed-back current: if the model neuron emits a spike, the current z, varying
over a small interval of J time bins, is fed back into the neuron. That is, j time steps
after the last spike, the probability of spiking is changed by an amount zj . Thus the model

is r̂(t) =
∑

τi wτbiMtτi +
∑J

j=1 zjsp(t − j), where sp(t) is either the true spike train r(t)
(when doing inference), or the spike (sp = 1) or no-spike (sp = 0) instantiations of the
estimated firing rate r̂(t) (when generating sample spike trains). To estimate the current
shape z together with w and b from the data, one incorporates the true spike train into the
stimulus array M as follows. If the data array M is initially of size T × A × B, then define
Mt,A+j,B+1 = r(t − j) for j = 1...J . The estimation procedure is now the same as before
(see section 2.1), but at the end, one defines zj = wA+j · bB+1. That is, the spike history has
become part of the data array and is treated as a “stimulus” which is not mapped through an
input nonlinearity, unlike the true stimulus s(t) (cf. section 2.4), so that the spike current z
can be estimated together with the other model parameters — w in this case. In particular,
the log-likelihood is concave in (w, z) and (b, z), so we may easily estimate w and z together,
given b, or conversely b and z, given w.

3 Experiments on model data

The first set of experiments was carried out with three model data sets. Each data set was
constructed as follows. A one-dimensional stimulus s(t) was generated as Gaussian white noise
with unit variance, and transformed into a rate P (t) according to three different processes,
described below. Five spike trains, corresponding to five repeated “trials” of the experiment,
were generated as a Poisson process with rate P (t) (after some uniform noise was added to
P (t) before generating each spike train, to simulate unknown non-stimulus-locked “internal
processes”). The observed firing rate r(t) was taken to be the mean of these five spike trains.
The first half of the spike rate and stimulus was used to train various input nonlinearity and
full-rank models, which were tested on the second half; their performance was quantified by
means of the predictive power (Sahani & Linden, 2003b). This is a performance measure
which takes into account trial-by-trial variability of the response. It has an expected value of
1 for a model that predicts all predictable fluctuations in the firing rate, and 0 for a model
which predicts only the mean. The duration of a trial varied between 300 and 100000 time
points, which served to study the overfitting properties of the various models.

The rates P (t) were generated according to the following three processes:

I. One filter. P (t) =
∑τmax

τ=0 k(τ)s(t − τ)2. That is, the stimulus values were squared and
linearly filtered by k(τ).

II. Two filters, additive. P (t) =
∑τmax

τ=0 k1(τ)s(t − τ) +
∑τmax

τ=0 k2(τ)s(t − τ)2. That is,
the firing rate is a sum of two linear temporal filtering operations, one acting on the
stimulus values, and one acting on their squares.

III. Two filters, multiplicative. P (t) = c1+(
∑τmax

τ=0 k1(τ)s(t− τ)) (c2 +
∑τmax

τ=0 k2(τ)|s(t− τ)|).
Here, the firing rate of a linear process is multiplicatively modulated by another process
acting on the absolute stimulus values.

The third process is designed to mimic systems with a certain degree of adaptation, or
response normalization (Schwarz et al., 2002). The bilinear model and the full-rank model are
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explicitly not able to capture the properties of such a model (although there are extensions
of the input nonlinearity model that can capture them; see Discussion); it is included to test
the behavior of the models when they fail. We trained and tested the following models on
the following datasets, using minimal regularization to enable clean comparisons:

1. bilin(1) and SVD bilin(1). One-term bilinear models (i.e., r̂(t) = c +
∑

τ wτf(s(t−
τ))) fit through the ALS procedure and through taking the first SVD component of the
corresponding full-rank model.

2. bilin(2). A two-term bilinear model (r̂(t) = c+
∑

τ

(

w1
τf

1(s(t− τ)) + w2
τf

2(s(t− τ))
)

,
estimated by the method described in section 2.3).

3. Full-rank. A full-rank model (r̂(t) = c +
∑

τ wτfτ (s(t− τ))).

4. Full-rank SVD. The leading SVD terms of a full-rank model. This has the same
structure of a multi-term input nonlinearity model, but the estimation of the terms is
suboptimal; see section 2.2. An SVD term was included when its eigenvalue was larger
than 1/4 of the leading eigenvalue.

Figure 5 shows the singular values of the SVD of the full-rank models when trained on
each of the three spike rates I-III. The singular value spectrum is informative about the nature
and complexity of the underlying process: the single temporal filter (I) causes one eigenvalue
to dominate all others, while the multiplicative process (III) results in a gently decreasing
spectrum. The two-filter process (II) can be identified in the spectrum by the two dominant
singular values. Note that one or a few isolated values are not necessarily the signature of
a simple underlying process: there can be complex processes that do not leave their print
on the singular value spectrum of a full-rank model. In that case their presence has to be
discovered through the predictive performance of the models.

[Figure 5 about here.]

What do the models look like? Figure 6 shows the models for process II. The bilinear
model correctly picks out (noisy versions of) the two temporal filters and input nonlinearities.
The full-rank model also picks up these terms, but the two leading SVD terms show some
undesirable mixing of the linear and quadratic terms; the predictive power is lower than that
of the bilinear model.

[Figure 6 about here.]

To compare the various models, their performance is shown against the length of the trial
in figure 7. These graphs confirm our intuitions:

A. On dataset II, the one-term bilinear model cannot capture the structure of the spike
generating process, which the full-rank and the bilin(2) model do manage. The full-rank
model overfits for small datasets; for large datasets, the performances of the bilin(2) and
the full-rank models converge.

B. The effect of the output nonlinearity is illustrated using dataset I and the bilin(1) model.
The performance is consistently above the performance without output nonlinearity by a
small amount.
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C. The bilinear model esimated by ALS generally outperforms the same model estimated
by taking the first SVD component of the corresponding full-rank model, here shown
for dataset III. On this dataset, the full-rank model outperforms the bilinear model, but
only for large numbers of data points (because it captures more of the complexity of the
spike generating process); for smaller numbers, the bilinear model is superior due to less
overfitting.

D. On small datasets, taking the leading SVD terms of a full-rank model improves perfor-
mance, because it induces some post-hoc smoothing of the receptive field.

[Figure 7 about here.]

Finally, we fitted an NLNP model, or a Generalized Bilinear Model, to a spike train,
instead of a spike rate, using the point process likelihood, as described in section 2.9. To
generate the spikes, we used a quadratic input nonlinearity f(s) = s2 and an exponential
output nonlinearity g(.) = exp(.), so the model for the underlying spike rate was r(t) = exp(c+
∑

τ wτs(t − τ)2). Performing alternating gradient ascent on the objective function, which
included regularization terms, resulted in the parameters shown in figure 8. For comparison,
this figure also shows a fit of a bilinear model (using as its objective function the squared error
between the predicted firing rate and the observed binary spike train). The parameters of this
bilinear model are similar in shape to the true parameters, though they appear to be biased.
In this example, no spike-response current was used, although this would be straightforward
to implement.

[Figure 8 about here.]

4 Demonstration on real data

We estimated the full-rank model (using the velocity signal as the stimulus) and an input
nonlinearity model (with two terms, position and velocity) using spike-rate data from a cell
in rodent barrel cortex, stimulated by a white noise whisker displacement stimulus (Petersen
& Montemurro, 2006). The models are shown in figure 9. They both recover a direction
invariant response to velocity. In the bilinear model, this can be seen from the approximately
symmetric shape of the input nonlinearities (right panel). In the full-rank model this is evident
from the symmetry of the receptive field about the zero velocity line. Also, the bilinear model
demonstrates that this cell is more responsive to velocity than to position of the whisker; this
is evident from the shape of the temporal filters (left panel). Since both input nonlinearities
have been normalized, the size and shape of the temporal filter of a certain feature (position
or velocity) is an indication of how much variance in the spike rate that feature predicts.
These results are in agreement with conculsions drawn from spike-triggered covariance (STC)
analysis of the same data in Petersen & Montemurro (2006) and with previous results (Pinto
et al., 2000; Arabzadeh et al., 2003, 2005).

Although both models are structurally a small departure from the linear model, their
predictions are far superior. The predictive power of a linear model is 0.01 on training data
and negative on cross-validation data, whereas the predictive powers of the input nonlinearity
and full-rank models are 0.6 and 0.54 respectively, both on cross-validation data. Evidently,
the reason for this is the parabolic shape of the input nonlinearity.

[Figure 9 about here.]
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5 Discussion

The bilinear model (also called the Hammerstein or NL cascade model) and the full-rank
model provide useful non-linear approaches to describing a neuron’s time-varying response to
a stimulus. The estimation of parameters in these models is relatively straightforward; the
discussions of degeneracies and regularization methods presented in this paper allow for a care-
ful analysis of the model parameters and their error bars. The small number of paramefters
in the bilinear and NLNP models (dim(w) + dim(b) parameters) makes the data require-
ments modest; the full-rank model requires more data for estimation (it has dim(w) · dim(b)
paramters). The feasibility of fitting, and utility of, the models was demonstrated on model
data and on data from rodent barrel cortex.

Relation to other methods. A successful nonlinear model of similar flexibility to the
bilinear model is the Linear-Nonlinear-Poisson model (LNP; e.g. Simoncelli et al., 2004). The
LNP model has several variants. For example, the output nonlinearity might be fixed and the
temporal filter estimated by gradient ascent on the point-process likelihood (Paninski, 2004).
Such an LNP model is a special case of the NLNP model, in which the input nonlinearity is
the identity function. Other variants of the LNP model incorporate non-parametric output
nonlinearities, and may be estimated by Spike-Triggered Covariance analysis (de Ruyter van
Steveninck & Bialek, 1988; Schwarz et al., 2002; Petersen & Montemurro, 2006), a powerful
method for finding relevant directions (w vectors) in stimulus space. This technique’s provable
accuracy is limited to the case where the stimulus is Gaussian (Paninski, 2003) (though inter-
esting and useful results have been obtained using non-Gaussian stimuli; Touryan et al., 2005),
and not too high dimensional (as estimating the spike-triggered covariance involves identifying
order dim(w)2 parameters). STC analysis may automatically find multiple relevant stimulus
representations and can also be used to construct models with nonlinear stimulus-stimulus
interactions such as divisive normalization. The special case of an LNP model using just one
STC vector is similar to the bilinear model, but with the ordering of linear and nonlinear
operations reversed; in the limiting case that w is a delta-function (consisting of 0’s and
a single 1), this type of LNP model is mathematically equivalent to a bilinear model. LNP
models, bilinear models and full-rank models will have certain overlaps in the types of neurons
they can successfully model. Although each model has its own benefits and disadvantages in
terms of data requirements, ease of estimation, etc., in the end, the neuron under investiga-
tion determines which model provides the most appropriate description (as measured by the
predictive performance on cross-validation data).

Another useful method is Wiener-Volterra systems identification, a classical non-linear
estimation method which has been in use in neuroscience for a long time (e.g. Marmarelis
& Naka, 1973). Recently it has found applications in e.g. characterizing subthreshold dy-
namics in barrel cortex (Webber & Stanley, 2004). Since (in theory) these expansions
span all non-linear models, the models introduced in this paper can also be phrased as re-
stricted Volterra-Wiener expansions (e.g. the input nonlinearity model would become r̂(t) =
c +

∑

τj wτbj[s(t − τ)]j , in which the input nonlinearity is expressed as a power-series ex-

pansion, f(x) =
∑

j bjx
j). In practice this method is most suitable when an appropriate

reduction in the parameter space can be identified (e.g. Young & Calhoun, 2005); otherwise,
the number of parameters tends to be too large for such models to be practical (see also
Juusola et al., 1995 for a comparison between Volterra series and cascade models).
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Probabilistic interpretations. The noise models that were assumed for the bilinear
and full-rank models (Gaussian or Poisson noise) gave them a probabilistic interpretation,
allowing for principled regularization techniques and error bar estimation. Error bar estima-
tion for the full-rank model requires a single operation (as for linear models); for the bilinear
model, error bars may be estimated through Gibbs sampling. Obtaining error bars under
the point-process model is slightly more computationally intensive (since we need to employ
a Metropolis-Hastings step (MacKay, 2004) to sample from the posterior distributions), but
this is still tractable (Rigat et al., 2006; Cronin et al., 2006); in addition, bootstrap techniques
are available.

Bilinear model versus full-rank SVD components. In the model experiments, the
bilinear model outperformed the SVD decomposition of the full-rank model, confirming our
expectations, since using SVD minimizes the distance between the SVD terms and the full-
rank model, whereas minimizing the distance between the real and predicted firing rate is the
more appropriate objective. However, if it is not too costly to estimate the full-rank model,
the first SVD component can serve as a good initialization for the estimation procedure of
the bilinear model (or the first k SVD terms can initialize the ALS estimation of a rank-k
model).

Extensions of the bilinear model. The dimension of lag time, called τ , does not have
to range over lag time only, but can also range over other stimulus features. In audition,
for example, it might range over lag time and frequency; the input nonlinearity would then
apply to sound level (Ahrens et al., 2006). In vision, τ could be used for time and space,
and the input nonlinearity for luminance. Another extension of the bilinear model is the
multilinear model (Ahrens et al., 2006). The extra components of multilinear models can be
used to capture further nonlinear phenomena such as short-term stimulus specific adaptation
effects, while maintaining a small and tractable number of parameters. Other extensions
of the bilinear model involve learning the basis functions, e.g. the position of the nodes of
a spline basis, by adding a nonlinear step to the ALS estimation procedure (Westwick &
Kearney, 2001). Finally, in this paper we assumed discrete basis functions in the τ direction.
Of course, any other basis set can be used, in which case the bilinear model would become
r̂(t) = c+

∑

ij bidj
∑

τ hj(τ)fi(s(t−τ)), with {hj} the basis functions in the τ direction. This
model is still bilinear and therefore all previously presented estimation techniques go through,
noting that now the prior for d has the same form as the prior for b.

Acknowledgements

We thank Rasmus Petersen for the data used in the example of figure 9 and for interesting
discussions, Zoubin Ghahramani for suggestions, and Quentin Huys for comments on the
manuscript. M.A. and M.S. were funded by the Gatsby Charitable Foundation and L.P. was
funded by NEI grant EY018003 and by a pilot grant from the Gatsby Charitable Foundation.

17



Appendix

A. Piecewise linear and discrete bases

The piecewise linear basis {fi(x)}Ni=1 consists of tent-shaped functions determined by a set of
nodes {xq}

N
q=1:

fi(x) =







(x− xi−1)/(xi − xi−1) if i > 1 and xi−1 ≤ x < xi

(xi+1 − x)/(xi+1 − xi) if i < N and xi ≤ x < xi+1

0 otherwise.

The discrete basis is also defined by a set of nodes {xq}
N+1
q=1 , but now

fi(x) =

{

1 if xi ≤ x < xi+1

0 otherwise.

If the stimulus takes on discrete values, then the basis can be simply defined as: fi(x) = 1 if
x takes on the ith stimulus value, and zero otherwise.

To compute error bars on the parameters of the models, it is necessary to remove one
basis function from the basis set in order to avoid degeneracies, as explained in section 2.7.

B. Alternative alternating least squares procedure

When dim(w) and dim(b) are small or the number of time points T is big (specifically, when
T > (dim(w)2 + dim(b)2)/2) then the estimation of the bilinear model can be accelerated
through the use of different arrays. Note that at each iteration of the algorithm stated
in section 2.1, the matrix Btτ =

∑

i biMtτi is redefined and used to estimate w through
w = (BTB)−1BTr. That is, it appears as BTB and as BTr. Both of these terms include
a sum over t and this may be big (both in computing time and memory storage) for long
experiments. Instead of performing the sum over t at every iteration, one can define alternative
data arrays Q and Y as follows: Qτiτ ′i′ =

∑

t MtτiMtτ ′i′ and Yτi =
∑

t Mtτir(t). Then
[BTB]ττ ′ =

∑

ii′ Qτiτ ′i′bibi′ and [BTr]τ =
∑

i Yτibi in the update for w, i.e. the sum over
t is now no longer required. The expressions for the b update are analogous: [WTW]ii′ =
∑

ττ ′ Qτiτ ′i′wτwτ ′ and [WTr]i =
∑

τ Yτiwτ .

C. Regularization of b in the input nonlinearity model

Note that the regularization techniques explained below are applicable to all models that use
basis functions. Penalizing the first derivative of f(x) =

∑

i bifi(x) can be written as placing
a prior covariance on the vector b, because adding a quadratic term 1

2b
TDbb to the objective

function E is equivalent to placing a Gaussian prior with inverse covariance Db on b. Thus,
we compute Db so as to penalize the first derivative of f :

λ

∫ (

df(x)

dx

)2

dx = λ

∫ (

d
∑

i bifi(x)

dx

)2

dx =
∑

ij

bibjD
b
ij . (6)

This equation holds if we define Db as

Db
ij = λ

∫

dfi(x)

dx

dfj(x)

dx
dx,
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where fi(.) are basis functions. Note that this is an improper prior (does not integrate to
1), since Db has a zero eigenvalue — but this penalization is nonetheless useful because it
corresponds to familiar features of f (the steepness). Instead of the first derivative, the second
derivative of f may be a more relevant property to control. The piecewise linear basis was
used for all examples in this paper, hence we derive an expression for Db taylored to this
basis set. Note that the second derivative of a piecewise linear function is ill-defined: here
we define it (up to an arbitrary constant multiplier) to be the difference between the slopes
at either side of the nodes. The piecewise linear basis consists of triangles, which start at 0
at a node xq−1, rise linearly to 1 at the neighbouring node xq, and descend linearly to 0 at
the next node xq+1; see Appendix A. Penalizing the curvature now involves only the nodes,
because in between the nodes, f is linear and has zero curvature. Using the notation x+

q and
x−

q for values just above and below xq (e.g. x−
q = xq − δ, for δ very small), we penalize

λ

∫
(

d2f

dx2

)2

dx = λ
∑

q

(gradient just left of xq − gradient just right of xq)
2

=
∑

ij

bibjD
b
ij

where Db
ij = λ

∫

f ′′
i (x)f ′′

j (x)dx is, for a piecewise linear basis set,

Db
ij = λ

∑

q

f ′
i(x

−
q )f ′

j(x
−
q )− f ′

i(x
−
q )f ′

j(x
+
q )− f ′

i(x
+
q )f ′

j(x
−
q ) + f ′

i(x
+
q )f ′

j(x
+
q ).

Note that the only nonzero terms in this sum are those for which |q − i| ≤ 1 and |q − j| ≤ 1
because piecewise linear basis functions are nonzero only across three nodes.

Other regularizing priors, that e.g. penalize higher derivatives (or the Laplacian in higher
dimensions; see also Poggio et al., 1985), can be derived in the same way (by replacing e.g. ∂

∂x

in equation 6 by a different linear operation and finding the corresponding Db).

D. Regularization of C in the full-rank model

Again using the symbol x for the stimulus value, and writing the receptive field as a(τ, x) =
∑

i Cτifi(x), the penalty term is defined to be
∑

τ

∫

x α
(

da
dτ

)2
+ β

(

d2a
dx2

)2
, penalizing high

derivatives in the τ direction and high second derivatives in the x direction. To write this

as a quadratic form in C, note that da
dτ =

∑

i (Cτi − Cτ−1,i) fi(x) and d2a
dx2 =

∑

i wτi
d2fi

dx2 . The
expression for the penalty term is

∑

τ

∫

x
α

(

da

dτ

)2

+ β

(

d2a

dx2

)2

=
∑

ττ ′ij

CτiCτ ′jD
C
τiτ ′i′

where DC is the inverse prior covariance of C,

DC
τiτ ′i′ = αD1

τiτ ′i′ + βD2
τiτ ′i′

= α(2δτ,τ ′ − δτ+1,τ ′ − δτ,τ ′+1)

∫

x
fi(x)fi′(x) + βδτ,τ ′

∫

x
f ′′

i (x)f ′′
i′(x).

Finally, because we are using a small but discrete resolution for x, called δx, we replace the
integrals by sums:
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∫

x
fi(x)fi′(x) = δx

∑

n

fi(xn)fi′(xn),

∫

x
f ′′

i (x)f ′′
i′ (x) =

1

δx

∑

q

[f ′
i(x

+
q )− f ′

i(x
−
q )][f ′

i′(x
+
q )− f ′

i′(x
−
q )].

Here xn are the points in the discretized space of stimulus value (such that xn+1 = xn+δx)
and xq are the nodes of the piecewise linear basis functions. DC is re-shaped into DC

mm′ when
using it in linear regression by vectorizing (τ, i): the index m replaces (τ, i) and m′ replaces
(τ ′, i′). The resolution δx appears in the definition of the prior as α · δx and as β/δx; the prior
should not depend on the resolution, but this can be countered by absorbing δx into α and β,
i.e. ignoring δx and tuning α and β by e.g. cross validation or automatically as in Appendix F.

E. Gibbs sampling in the bilinear model

Gibbs sampling involves fixing b to b1, drawing w1 from a probability distribution dependent
on b, and then fixing w to w1, and drawing b2 from a distribution dependent on w, etc. In
this way, {wn,bn} will form a set of samples from P (w,b|r,M,Dw,Db, σ̂2). These probability
distributions are

P (w|b, r,M, σ̂2) = N
[

(BTB + σ̂2Db)−1BTr, σ̂2(BTB + σ̂2Db)−1
]

and
P (b|w, r,M, σ̂2) = N

[

(WTW + σ̂2Dw)−1WTr, σ̂2(WTW + σ̂2Dw)−1
]

where Btτ =
∑

i biMtτi and Wti =
∑

τ wτMtτi; since sampling from a multivariate Gaussian
distribution requires only the computation of a matrix square root, Gibbs sampling here is
quite computationally efficient. The noise parameter σ̂2 is normally set to the squared error
between the real and predicted firing rates, using the parameters wMAP and bMAP obtained
by the ALS procedure (though we may easily sample from the posterior distribution of σ2 as
well). These MAP parameters are also good as starting points for Gibbs sampling.

F. Adaptive regularization of bilinear models

In the main text we have used an alternating least squares procedure to estimate the parameter
vectors of an input-nonlinearity model. It was easy to incorporate prior covariance matrices
for the parameter vectors. In many cases, however, it is not clear what a good prior is -
e.g., how much smoothing is needed to get sensible results from data with variable noise?
Ideally, one should incorporate some flexibility by making the prior matrices depend on one
or more parameters θ (e.g. λ, α and β in Appendices C and D). Whilst one can always use the
ad-hoc approach of hand-tuning these parameters (through intuition or cross-validation), we
developed a principled Bayesian approach using a Variational Bayes EM algorithm (Dempster
et al., 1977; Beal, 2003) to fit this hierarchical model, treating λ, α and β as hyperparameters
and using the variational Bayes approach to approximately integrate over the parameters b
and w. While the ALS procedure only keeps track of the mean of the parameter vectors,
the Bayesian approach also keeps track of their covariances; while previously, a new estimate
of one parameter was dependent only on the previous estimate of the other parameters, it
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now also depends on the uncertainty about the other parameters. Here we only present the
resulting algorithm. The derivations and variations will be discussed elsewhere.

The algorithm contains several variables which are updated inside a loop. The terms uw,b

and Σw,b represent estimates of the posterior means and covariance matrices of the parameter
vectors w and b, respectively. Sw(θw) and Sb(θb) are the prior covariance matrices that
are responsible for regularizing the estimates, and depend on (possibly multidimensional)
parameters θw,b, which have to be learnt. σ̂2 is an estimate of the scale of the Gaussian noise
of the spike rate; this estimate is also updated at every iteration of the algorithm. Finally, a
function F appears in the algorithm; this is the portion of the free energy, a lower bound on
the log-likelihood, that depends on the θ’s.

We initialize the algorithm with guesses for uw and ub (e.g. wMAP and bMAP); the pos-
terior covariance matrices Σw,b can be initialized as a multiple of the identity matrix. The
variance σ̂2 can be initialized by e.g. the squared error coming from the ALS procedure, or
by the variance of r(t).

The algorithm is now:

1. Define

• Cw ← Σw + uw[uw]T

• Qw
ij ←

∑

tkl C
w
klMtikMtjl

• [vw]i ←
∑

tk[u
b]kMtikr(t).

2. Update Σw and uw according to

Σw ← Sw

[

QwSw

σ̂2
+ I

]−1

uw ← Σw vw

σ̂2

3. Perform the analogous operations of steps 1 and 2 for Σb and ub.

4. Update σ̂2 according to

σ̂2 ←
1

T



rtr− 2
∑

tik

[uw]i[u
b]kr(t)Mtik +

∑

tijkl

Cw
ijC

b
klMtikMtjl





where T = length(r), Cw = uw[uw]T + Σw and Cb = ub[ub]T + Σb.

5. Do gradient ascent on the function

F =−
1

2
log |Sw| −

1

2
log |Sb| −

1

2
trace

(

Cw[Sw]−1 + Cb[Sb]−1
)

with respect to θw and θb (which may be multidimensional). The gradients are (written
both in terms of the prior covariance Sw and the inverse prior covariance Dw = [Sw]−1,
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so that the algorithm can be implemented using either form of regularization),

∂

∂θw
F =

1

2
trace

[

(

Cw[Sw]−1 − I
) ∂Sw

∂θw
[Sw]−1

]

=
1

2
trace

[

(I− CwDw) [Dw]−1 ∂Dw

∂θw

]

with an analogous expression for the gradient in the θb direction. One can either take
one or a few gradient steps, or continue the gradient ascent until convergence.

6. Continue this loop, i.e. go to step 1, until uw,ub and the Σ’s converge.

That concludes the algorithm. Note that step 1 reduces to a step in the ALS procedure
if the Σ’s are set to zero.

The prior for the full rank model can also be adaptively tuned, e.g. by using Evidence
Optimization techniques described in MacKay (1994) and Sahani & Linden (2003a). The
latter paper also presents some nice formulations of tunable prior covariance matrices S(θ).
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Figure 1: Schematic network with a symmetric input-output relation. −: inhibitory connec-
tion. +: excitatory connection. All “neurons” are half-wave rectifiers. The output will be
insensitive to the sign of the input; hence a linear fit to the I-O function (dashed line) is
constant.
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Figure 2: Schematic view of the bilinear model. It consists of two stages, or neural processing
operations. First, the stimulus values are transformed by an input nonlinearity f(.), and
secondly, a temporal filter w acts on the transformed stimulus values to form a predicted
spike rate. w and f(.) are both unknown and to be learnt from the data. An output
nonlinearity (section 2.8) is optional and not shown in the figure. If the input nonlinearity
stage is removed, or, equivalently, f(.) set to the identity, then the model reduces to the linear
model. The free parameters of the model are surrounded by gray boxes.
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Figure 3: Degeneracies of the bilinear model. Left: the temporal filter has a multiplicative
degeneracy. The crosses at τ = 0 are the values of the constant terms c = w1 · b1. Right:
the input nonlinearity has both a multiplicative and an additive degeneracy. The parameters
shown here are equivalent configurations of the bilinear model, i.e. each pair of w and f(.)
shown represent the same input-output relationship of the model. If the degeneracies are not
removed, estimated error bars on w and f will be oversized.
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Figure 4: Schematic view of the bilinear model with output nonlinearity. The parameters in
the gray boxes are learnt from the data. The spike-response current is optional.

29



0

1

2

3

4

5

A.  1 filter

si
ng

ul
ar

 v
al

ue

0

1

2

3

4

5

B.  2 filters
0

0.5

1

1.5

2

2.5

C.  2 mult. filters

Figure 5: Singular values of the SVD decomposition of the full-rank model trained on model
data A-C. Only the first 15 eigenvalues are shown. Note that in these examples, the number
of significant singular values are indicative of the complexity of the spike generating process
(dashed lines show the theshold for inclusion).
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Figure 6: Model fits to data generated from the two-filter process (II). A: true temporal filters
w1 and w2 (left) and input nonlinearities f1 and f2 (right). B: estimated bilinear model with
two terms. The error bars of one standard error (gray) are calculated by Gibbs sampling. C:
first two SVD terms of the estimated full-rank model. D: the true full-rank model given by
C = w1b1T

+ w2b2T
, shown as a surface (left) and as a matrix (right). E: the estimated

full-rank model. Error bars of one standard error at the maximum and minimum values of
the receptive field are shown as lines on the top and bottom right of the surface plot, and the
average error in the middle right, and are obtained as in linear regression.
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Figure 7: Performance of the models on datasets I-III, averaged over 10 instantiations of the
random stimulus. Details can be found in the main text.
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Figure 8: Point process model fits. Dotted: true filters. Black: filters found through min-
imizing the squared error. Gray: filters found by maximizing the point-process likelihood,
using the exponential output nonlinearity. The normalized shapes of the filters are similar,
but the input nonlinearity under the squared error appears to be somewhat biased towards
an overly-smooth U-shape.
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Figure 9: Bilinear and full-rank models applied to real whisker barrel cortex data Petersen &
Montemurro (2006). Top: input nonlinearity model on position and velocity (left: temporal
filters, right: input nonlinearities). The grey area shows one standard error, obtained by
Gibbs sampling. Bottom: full-rank model on velocity, shown as a surface (left) and a matrix
(right). Error bars of one standard error at the maximum and minimum values of the receptive
field are shown as lines on the top and bottom right of the surface plot, and the average error
in the middle right.
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