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Abstract

We present a unified approach to unsuper-
vised Bayesian learning of factor models for
binary data with binary and spike-and-slab
latent factors. We introduce a non-negative
constraint in the spike-and-slab prior that
eliminates the usual sign ambiguity present
in factor models and lowers the generaliza-
tion error on the datasets tested here. For the
generative models we use probit functions,
which can be sampled without tuning param-
eters, unlike previous works that used logistic
functions. The posterior distributions involve
mixtures of binary and truncated Gaussian
variables, for which we present exact Hamil-
tonian Monte Carlo samplers and compare
their properties to Gibbs samplers.

1 INTRODUCTION

Several studies in recent years have shown that factor
models for unsupervised learning of partially observed
data can successfully avoid overfitting by exploiting
two key elements. The first is a Bayesian approach
that samples from the model parameters instead of
committing to a single MAP estimate [Salakhutdinov
and Mnih, 2008, Mohamed et al., 2008]. The second
element is the use of sparse or discrete latent variables,
which also contributes to the interpretability of the
generative models.

When the latent variables are continuous, the most
popular approach to achieve sparsity in a MAP setting
is through the L1 penalty [Olshausen and Field, 1997].
But recent results suggest that a Bayesian approach
with a spike-and-slab prior can lead to better perfor-
mance [Mohamed et al., 2012], both computationally
and in terms of predictive ability, since Bayesian mod-
els can avoid the costly tuning of the sparsity hyper-
parameters via cross-validation.

An alternative form of latent sparsity occurs when the
latent variables are binary instead of continuous and
such models have also shown very good performance
in many cases.

In this paper we focus on binary data and present
a unified Bayesian approach to explore, in a given
dataset, which of several forms of latent sparsity best
describes the observations. Along with binary and
spike-and-slab latent variables, we introduce a spike-
and-slab model with a non-negativity constraint on
the hidden factors. This is a form of non-negative
matrix factorization that lowers the generalization er-
ror of the spike-and-slab model on the datasets tested
here and, to our knowledge, has not been studied be-
fore. Moreover, by eliminating the usual sign ambigu-
ity present in factor models we obtain, as for binary
latent variables, a natural interpretation of the signs of
the learned factor loadings. An important motivation
for this new model is the analysis of spiking activity of
neural populations, where the signs of the factor load-
ings indicate the excitatory or inhibitory nature of the
latent inputs.1

Another aspect of this work is the use of probit func-
tions in the generative models. Compared to logistic
functions, these probit models lead to posterior distri-
butions that can be sampled efficiently without tuning
of sampling parameters. We also present some empir-
ical evidence that indicates a faster mixing rate than
logistic based models. Exploiting the latent variable
interpretation of the probit function, Monte Carlo pos-
terior inference requires sampling from mixtures of bi-
nary and truncated Gaussian variables. We present
the details of exact Hamiltonian Monte Carlo (HMC)
samplers for these distributions, based on the recent
results of [Pakman and Paninski, 2013a,b], and com-
pare them to simpler Gibbs samplers.

1We are currently pursuing applications to large neural
datasets; the results will appear elsewhere.



2 GENERATIVE MODELS

The observations are i.i.d. binary vectors

xt ∈ {−1,+1}N t = 1, . . . , T

which we model using K latent sparse factors. In gen-
eral, we consider the case where only a subset of the
entries in each xt are observed. This allows a more
general application of our method as well as a means
for evaluating the quality of the learned model.

We will consider three generative models, which differ
in the structure of the latent factors:

Model 1: Binary Factors

Each xt = (x1t, . . . , xNt) is generated as

skt∣ak ∼ {
1 with prob. ak ,
0 with prob. 1 − ak ,

xnt∣zn, st ∼ {
+1 with prob. Φ (zn ⋅ st) ,
−1 with prob. 1 −Φ (zn ⋅ st) ,

(1)

where

zn ⋅ st =
K+1
∑
k=1

znkskt n = 1, . . . ,N , (2)

zn(K+1) is a constant offset, and we defined s(K+1)t ≡ 1.
In this model the latent factors skt are binary variables
and the values of the observations xnt are sampled
from a Bernoulli distribution with parameter

Φ (q) =
1
√

2π
∫

∞

0
dy e−

1
2 (y−q)

2

(3)

which is the probit function. Using

Φ (q) +Φ (−q) = 1 ,

we can express (1) as

p(xnt∣st,zn) = Φ(xntzn ⋅ st) .

Model 2: Spike-and-Slab Factors

In this model, we add an additional layer after the
binary variables skt. Each xt is now generated as

skt∣ak ∼ {
1 with prob. ak ,
0 with prob. 1 − ak ,

(4)

vkt∣skt ∼ N(0,1) (5)

xnt∣zn, ft ∼ {
+1 with prob. Φ (zn ⋅ ft) ,
−1 with prob. 1 −Φ (zn ⋅ ft) ,

where

fkt = sktvkt ,

and zn ⋅ ft is defined as in (2), with f(K+1)t ≡ 1. From
(4) and (5) it follows that the latent factors are sam-
pled from

fkt ∼ akN(0,1) + (1 − ak)δ(fkt) k = 1, . . . ,K (6)

which is a spike-and-slab distribution [George and Mc-
Culloch, 1993, Mitchell and Beauchamp, 1988]. Note
that this distribution achieves sparsity by assigning a
positive probability mass to the event fkt = 0.

Model 3: Non-negative Spike-and-Slab Factors

This model is equal to Model 2, but we truncate the
slab variables in (5) to be vkt ≥ 0. In this case and in
Model 1, the non-negativity of fkt or skt allows us to
interpret their influence on xnt as increasing its rate
(znk > 0) or decreasing its rate (znk < 0). As men-
tioned above, this sign is relevant in the analysis of
neural populations, where the signs of znk indicate the
excitatory or inhibitory nature of the latent inputs.

2.1 Prior on the factor loadings

We use the spike-and-slab prior to regularize the
learned values of znk,

cnk ∣b ∼ {
1 with prob. b ,
0 with prob. 1 − b ,

znk ∣cnk ∼ {
δ(znk) for cnk = 0 ,
N(0, τ2) for cnk = 1 .

One should distinguish the sparseness of st or ft, which
is inherent to the data generating process, from this
regularizing sparsity prior on znk. One could also add
non-negativity constraints on znk, although we have
not explored this possibility.

2.2 Hyperparamters

For the hyperparameters ak, b and τ2 we will assume
flat priors and sample from the posterior, although one
can also consider Beta priors on ak, b, and an inverse-
Gamma prior on τ2.

2.3 Relation to previous works

Model 1 is the simplest example of a sigmoid belief
network [Neal, 1990, 1992], having only one layer of
hidden units. It is similar to a restricted Boltzmann
machine [Smolensky, 1986, Hinton, 2002], but with di-
rected connections from the hidden to the visible units.

Model 2 is similar to the spike-and-slab generative
model for binary data studied in [Mohamed et al.,
2012]. Bayesian factor models for binary data with



non-sparse latent variables were studied in [Mohamed
et al., 2008].

An important aspect in which our Models 1 and 2
differ from [Neal, 1990, 1992, Mohamed et al., 2012] is
that those works used logistic sigmoid functions, while
we use probit functions. So although the generative
models are similar, the inference algorithms are quite
different, as we discuss next.

An alternative two-layer directed Bayesian network for
binary variables, with a different generative structure
than Model 1, is the Noisy-Or network, which is pop-
ular in the field of medical diagnostics [Shwe et al.,
1991]. For other approaches to factor models of binary
data see [Zhou et al., 2012, Pillow and Scott, 2012].

3 INFERENCE

As we mentioned above, in general we will not observe
all the N ×T elements of X, but only a subset. Let us
denote by O the indices of the observed subset, and
by On and Ot the indices of the observed entries in
the rows xn and columns xt of X, respectively. By an
abuse of notation, in the posterior distributions below
we use X to denote the subset O of observed entries
of X.

3.1 Model 1

As usual with probit models, we consider (3) as
a marginal over a non-negative random variable y.
Given a set of observations xnt, we are interested in
sampling from the posterior distribution

p(S,Y,Z,c,a, b, τ2∣X) ∝ ∏
(n,t)∈O

p(xnt, ynt∣st,zn)

×∏
t

p(st∣a)∏
n

p(zn∣cn, τ
2
)p(cn∣b) (7)

where we defined

p(xnt, ynt∣st,zn) =
1
√

2π
e−

1
2 (ynt−xntzn⋅st)

2

with ynt ≥ 0, and

p(st∣a) =
K

∏
k=1

asktk (1 − ak)
1−skt

p(zn∣cn, τ
2
) =

K+1
∏
k=1

p(znk ∣cnk, τ
2
)

p(cn∣b) =
K+1
∏
k=1

bcnk(1 − b)1−cnk

We can Gibbs sample in blocks from (7) by iterating

over:

∏
t

p(st,yt∣xt,Z,a) (8)

∏
n

p(zn,cn∣xn,yn,S, τ
2, b) (9)

p(ak ∣sk) = Beta (∣sk+∣, ∣sk−∣)

p(b∣c) = Beta (∣c+∣, ∣c−∣)

p(τ2∣Z) = InvGamma (
∣c+∣

2
+ 1,
∣∣Z∣∣2

2
) .

For the binary vectors c, the notation ∣c+∣ and ∣c−∣
indicates the total number of components with cnk =

1 and cnk = 0, respectively, for all n, k. A similar
notation is used for sk. Note the factorized form of the
distributions (8) and (9), which allows us to parallelize
the sampling over t and n, respectively.

For sampling from the distribution over the factor
loadings (9), we present the details in Appendix A.

3.2 Models 2 and 3

In these cases we are interested in sampling from the
distribution

p(S,V,Y,Z,c,a, b, τ2∣X) ∝∏
(n,t)∈O

p(xnt, ynt∣ft,zn)

∏
t

p(st∣a)p(vt)∏
n

p(zn∣cn, τ
2
)p(cn∣b). (10)

The steps of the Gibbs sampler are similar to Model 1,
but instead of (8) we now sample from

∏
t

p(yt,vt, st∣xt,Z,a) . (11)

3.3 Exact HMC vs. Gibbs sampler

For each t, the distribution (8) is

p(st,yt∣xt,Z,a) (12)

∝ ∏
n∈Ot

e−
1
2 (ynt−xntzn⋅st)

2

∏
k

asktk (1 − ak)
1−skt

with ynt ≥ 0. For this class of mixtures of binary and
truncated Gaussian variables, exact HMC techniques
have been developed recently [Pakman and Paninski,
2013b]. In appendix B.1 we present the details of the
exact HMC algorithm applied to (12).2 But for the
particular case of (12) we expect the simpler Gibbs
sampler to perform well, because when alternating be-
tween p(st∣yt,xt,Z,a) and

p(yt∣st,xt,Z,a) ∝ ∏
n∈Ot

e−
1
2 (ynt−xntzn⋅st)

2

, (13)

2The joint distribution p(S,Y,Z,c∣X,a, b, τ2) can also
be sampled using exact HMC but it is preferable to split
the sampling into the two steps (8) and (9) in order to
parallelize over t and n, respectively.



the factorization over n in the above expression leads
to a very fast mixing of the Markov chain. Although
we have not performed a thorough comparison, our
preliminary findings confirm that the Gibbs and HMC
samplers indeed have comparable mixing times when
sampling from (12).

The situation is different for the distributions in (11),

p(yt,vt, st∣xt,Z,a) (14)

∝ ∏
n∈Ot

e−
1
2 (ynt−xntzn⋅ft)

2

e−
∣vt ∣

2

2 ∏
k

asktk (1 − ak)
1−skt ,

in particular for Model 3, which restricts to ynt, vkt ≥ 0.
In these truncated cases, with correlations between the
vkt variables, the exact HMC approach is known to
mix much faster than Gibbs [Pakman and Paninski,
2013a]. In Section B.2 we present the details of the
exact HMC sampler for this distribution.

It is worth stressing that when using probit functions
there are no parameters to fine tune in the samplers.
The only free parameter in the exact HMC algorithm
is the total travel time τmax. In examples we present
below we used τmax = 23, but the results were indepen-
dent of τmax in a wide range of values. Note that in
the logistic model of [Mohamed et al., 2012] a leapfrog
HMC sampler was used that requires parameter tun-
ing to work efficiently, though more recent techniques
such as Bayesian optimization [Wang et al., 2013] or
NUTS [Hoffman and Gelman, 2011] may be effective
here.

4 PREDICTIONS AND MODEL
SELECTION

Once we have samples from the posterior distribution,
we can estimate the predicted posterior probability for
any xnt in Model 1 as

p(xnt = 1∣X) ≃
1

M

M

∑
m=1

Φ(z(m)n ⋅ s
(m)
t )

where z
(m)
n , s

(m)
t are Monte Carlo samples. For Mod-

els 2 and 3, we replace st with ft. From the posterior
probabilities we obtain the posterior expected value of
xnt as

⟨xnt⟩ = 2p(xnt = 1∣X) − 1 .

In general we will be interested in computing these
predictions for indices (n, t) in a held-out dataset T
to measure the predictive power of each model or to
select the number of factors K. For this we consider
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Figure 1: Synthetic dataset. Values of Φ(z
(m)
n ⋅ s

(m)
t )

at several iterations m in Model 1 with K = 5, initial-
ized with random values, and original data in the synthetic
model described in the text. Note that the mixing is quite
fast and after only 10 iterations the samples resemble the
original data.

two measures of performance. The RMSE is given by3

RMSE2
=

1

4∣T ∣
∑

n,t∈T
(xnt − ⟨xnt⟩)

2

and the mean negative log-predictive probability is

MNLP = −
1

∣T ∣
∑

n,t∈T
log2 p(xnt∣X) .

Note that a blind model which assigns probability 1/2
to both x = ±1 gives MNLP = 1, and as the quality of
the predictive model improves we get smaller MNLP
values. If all we learn from the training dataset is the
proportion p̂ of data with x = 1, the learned model
assigns probability p̂ to x = 1 and yields

MNLPp̂ = −p̂ log2(p̂) − (1 − p̂) log2(1 − p̂) .

5 EXPERIMENTS

We implemented the algorithm in Python, using
CUDA in a GPU for the HMC sampler in order to
take advantage of the parallelization over t. We show
results for one synthetic and two real datasets.

The synthetic dataset is similar to that described
in [Mohamed et al., 2008]. Three 16-dimensional bi-
nary vectors were created with entries randomly set
to ±1 with equal probability. Each vector was repeated
200 times, giving T = 600. Finally, each of the 600×16
binary variables is flipped with probability .1. Figure 1

3The factor of 1/4 normalizes the RMSE to correspond
to a binary coding of 0/1 instead of −1/1.



shows the values of the 600 × 16 matrix Φ(z
(m)
n ⋅ s

(m)
t )

at different iterations of a MCMC chain using Model
1 with K = 5 and initialized with random values. Note
that after 10 iterations the samples closely resemble
the original data. Although a more thorough explo-
ration of this point is needed, the probit model seems
to mix faster than results reported for logistic func-
tions. For example, in a similar dataset in Figure 2.3
of [Mohamed, 2012] it is shown that for a generative
model with a logistic function (without sparse latent
variables), the samples obtained using leapfrog HMC
only resemble the original data after about 50 MCMC
iterations.

Figures 2, 3, and 4 show MNLP values for the three
datasets. We omit plots of RMSE values because
they are qualitatively similar. The animals at-
tributes dataset from [Kemp and Tenenbaum, 2008]
consists of T = 33 animal species and N = 102 ecologi-
cal and biological properties that are present or absent
for each species. Note that this is a case of ‘p > n’
dataset. The SPECT dataset, available at [Bache
and Lichman, 2013], is from [Kurgan et al., 2001] and
consists of data from cardiac tomography images from
T = 267 patients. The N = 23 variables consist of
22 binary feature patterns extracted from the images
plus an indicator that classifies each patient as nor-
mal/abnormal.

We randomly split the datasets into training and test
subsets with 90% and 10% of the data respectively.
We repeated this split fives times and run the sampler
in each case. The figures show the mean and standard
deviation over the five cases. We used 120 MCMC
iterations and discarded the first 30 iterations as burn-
in.

The figures illustrate a property observed in [Mohamed
et al., 2012] for similar Bayesian models: the overfit as
K grows is relatively slow. As is clear from the figures,
the different datasets have structures better captured
by discrete (Model 1) or continuous (Models 2 & 3) la-
tent variables. For the latter, note that the additional
degrees of freedom provided by the continuous latent
variables can be detrimental, as is clear in Figures 2
and 4.

Note also the importance of the non-negativity restric-
tion in Model 3, which in all the cases lowers the train
and test errors with respect to Model 2.

6 CONCLUSIONS

Our results illustrate clearly that we can improve the
predictive ability of generative models with spike-and-
slab latent variables by adopting a simpler model with
binary latent variables or by imposing nonnegativity

1 2 3 4 5 6 7 8 9 10
Number of factors K

0.25

0.30

0.35

0.40

0.45

0.50

0.55

M
NL

P

Train Set

Model 1
Model 2
Model 3

1 2 3 4 5 6 7 8 9 10
Number of factors K

0.35

0.40

0.45

0.50

0.55

0.60

M
NL

P

Test Set

Model 1
Model 2
Model 3

Figure 2: Synthetic dataset. Mean and standard de-
viations of the MNLP in the train and test for the synthetic
model described in the text, as a function of the number K
of hidden factors. Note that the models are slow to overfit.
The randomly selected test sets give MNLPp̂ = 0.999.

constraints on the factors, similar to the case in non-
negative matrix factorization of real-valued data. We
have also shown that the use of probit functions leads
to efficient posterior sampling. Combined with the fact
that there is no need to tune sampling parameters in
these models, this makes this class of Bayesian pro-
bit models an attractive option for factor analysis of
binary data.

A SAMPLING THE FACTOR
LOADINGS

With a spike-and-slab prior for the factor loadings zn,
we need to sample from the distributions (9)

p(zn,cn∣xn,yn,S, τ
2, b) ∝ e−

1
2z

′

n+Qn,+zn++jn+⋅zn+

×
e−

zn+⋅zn+
2τ2

(2πτ2)∣cn+∣/2
δ(zn−) b

∣cn+∣(1 − b)∣cn−∣ . (15)

The vector jn has components

jnk = ∑
t∈On

xntsktynt , k = 1, . . . ,K + 1

and the matrix Qn is

Qn = ∑
t∈On

sts
T
t ∈ RK+1×K+1.

In the following we eliminate the subindex n to sim-
plify the notation. We can sample from (15) by de-
composing

p(z,c∣⋯) = p(z∣c,⋯)p(c∣⋯)
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Figure 3: Animals attributes dataset. See the text
for a description of the dataset. Note that the positiv-
ity restriction of Model 3 leads to a much better perfor-
mance than Model 2. The randomly selected test sets give
MNLPp̂ = 0.887.

where

p(z∣c,⋯) = N(z+∣µ+,Σ+)δ(z−)

p(c∣⋯) ∝
b∣c+∣(1 − b)∣c−∣

τ ∣c+∣
e

j′
+
Σ+j+
2

∣Σ−1
+ ∣

1/2
(16)

and we defined

Σ−1
+ = Q+ + Iτ−2 ∈ R∣c+∣×∣c+∣

µ+ = Σ+j+.

In order to sample the binary vector c from (16) using
a Gibbs or Metropolis sampler, we need the ratios

p(ck = 1∣c−k,⋯)

p(ck = 0∣c−k,⋯)
=

b

1 − b

γke
γ2
k
g2
k

2

τ
,

where c−k means that we exclude the kth component,
and we defined

γ−2k = Qkk +
1

τ2
− qT

c−k
Σc−kqc−k

gk = jk − qT
c−k

Σc−k jc−k .

Here the notation Σc−k means that we restrict the in-
dices to those indicated by c−k, and qc−k is the k-
th row of Q, restricted to the components indicated
by c−k.
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Figure 4: SPECT dataset. See the text for a de-
scription of the dataset. Note that the additional degrees
of freedom provided by the continuous latent variables in
Models 2 and 3 are detrimental to learning the data. The
randomly selected test sets give MNLPp̂ = 0.918.

B EXACT HMC SAMPLING

In this appendix we present the details of the exact
HMC sampling algorithms using the techniques devel-
oped in [Pakman and Paninski, 2013a,b]

B.1 Model 1

For each t, we are interested in sampling from the
mixed binary-continuous distribution (8)

p(st,yt∣xt,Z,a) ∝ p(xt,yt∣st,Z)p(st∣a) (17)

∝ ∏
n∈Ot

e−
1
2 (ynt−xntzn⋅st)

2

∏
k

asktk (1 − ak)
1−skt

with ynt ≥ 0. The idea is to map this distribution
into a piecewise Gaussian by augmenting the binary
variables st with continuous vaiables dt through the
conditional distribution

p(dt∣st) ∝ {
e−

dt ⋅dt
2 if skt =

sign(dkt)+1
2

∀k
0 otherwise .

Marginalizing over st we get

p(dt,yt∣xt,Z,a) = ∑
s′t

p(s′t,yt∣xt,Z,a)p(dt∣s
′
t)

= p(st,yt∣xt,Z,a)p(dt∣st) .



Note that only one term survives in the sum, which
gives

U1 = − log p(dt,yt∣xt,Z,a) (18)

=
1

2
∑
n

(ynt − xntzn ⋅ st)
2
+

dt ⋅ dt

2
+ f(st) + const

where we defined

f(st) = −∑
k

skt log(ak) + (1 − skt) log(1 − ak). (19)

A sample of the continuous pair (dt,yt) from (18)
gives a binary-continuous sample (st,yt) from the
original distribution (17) using the simple rule

skt =
sign(dkt) + 1

2
. (20)

Since (18) is piecewise quadratic, we can sample from
it using the exact HMC method. For this, we intro-
duce momentum variables qy and qd and consider the
Hamiltonian

H = U1 +
qy ⋅ qy

2
+

qd ⋅ qd

2
.

In each iteration we sample initial momenta from stan-
dard Normal distributions4 and let the particle move
during a time τmax according to the Hamiltonian equa-
tions of motion

ẏt(τ) =
∂H

∂qy(τ)
, q̇y(τ) = −

∂H

∂yt(τ)
, (21)

and similarly for dt. The final positions of (dt,yt)

belong to a Markov chain with invariant distribu-
tion (18).

The solution of (21) for ynt is

ynt(τ) = xntzn ⋅ st + ρnt cos(τ) + ẏnt(0) sin(τ)

= xntzn ⋅ st + uy,nt sin(φy,nt + τ) (22)

with

ρnt = ynt(0) − xntzn ⋅ st

uy,nt =

√

ρ2nt + ẏ
2
nt(0)

φy,nt = tan−1(ρnt/ẏnt(0))

while the solution for dkt is

dkt(τ) = dkt(0) cos(τ) + ḋkt(0) sin(τ)

= ud,kt sin(φd,kt + τ) (23)

with

ud,kt =

√

d2kt(0) + ḋ
2
kt(0)

φd,kt = tan−1(dkt(0)/ḋkt(0)).

4The momenta are equal to the velocities in this case,
ẏ = qy and ḋ = qd

The coordinates evolve as (22) and (23) until any
of ynt, dkt reaches zero, at which point the velocity
changes discontinuously. Note that all the coordi-
nates dkt can reach zero, but only those ynt that have
uy,nt > ∣zn ⋅ st∣ can do so. Let us consider each case:

• ynt = 0

Since the particle is constrained by ynt ≥ 0, the
velocity is reflected as

ẏnt → −ẏnt (24)

• dkt = 0

Let us call τ−kt and τ+kt the times just before and
after the wall hit. If dkt(τ < τkt) < 0, imposing
conservation of energy at both sides of the dkt = 0
wall gives,

ḋ2kt(τ
+
kt)

2
=

ḋ2kt(τ
−
kt)

2
+∆1 (25)

where

∆1 = U1(skt = 0) −U1(skt = 1) .

If dkt(τ < τkt) > 0 we invert the roles of τ−kt and

τ+kt in the above equation. If ḋ2kt(τ
+
kt) > 0, the

particle crosses the wall with this new velocity
for ḋkt, and if ḋ2kt(τ

+
kt) < 0, it gets reflected with

ḋkt(τ
+
kt) = −ḋkt(τ

−
kt).

B.2 Models 2 and 3

In these cases we are interested in sampling from (11),

p(yt,vt, st∣xt,Z,a) (26)

∝ p(xt,yt∣vt,z)p(vt)p(st∣a)

∝ ∏
n∈Ot

e−
1
2 (ynt−xntzn⋅ft)

2

e−
∣vt ∣

2

2 ∏
k

asktk (1 − ak)
1−skt

with ynt ≥ 0, and for Model 3 also have the constraint
vkt ≥ 0. As in Model 1, we augment the binary vari-
ables st with continuous variables dt. The resulting
piecewise continuous distribution is

U2 = − log p(yt,vt,dt∣θ,xt) (27)

=
1

2
wT

t Dtwt − r ⋅wt +
dt ⋅ dt

2
+ f(st) + const

where f(st) was defined in (19) and

wt = (
vt

yt
) ∈ RK+Nt , (28)

with Nt the number of elements in Ot. The coefficient
of the linear term for wt in (27) is

r = (
rv
ry
) ∈ RK+Nt (29)



where

rv,k = −skt∑
n

zn(K+1)znk k = 1, . . . ,K (30)

ry,n = zn(K+1)xnt n ∈ Ot (31)

and the coefficient of the quadratic term in (27) is

Dt =M
T
t Mt ∈ R(K+Nt)×(K+Nt) (32)

where

Mt = (
Jt INt
IK 0

)

with Jt ∈ RNt×K ,

(Jt)n,k = −xntsktznk .

A sample (yt,vt,dt) from (27) gives a sample
(yt,vt, st) from the original distribution (26) using the
rule (20). In order to sample from (27) using HMC, we
introduce momentum variables qt and qd and consider
the Hamiltonian

H2 = U2 +Kw +
qd ⋅ qd

2
(33)

where

Kw =
1

2
qT
wD

−1
t qw. (34)

One can verify that det(Dt) = 1, so there is no term
proportional to log(det(Dr)) in Kw. Since qd = ḋ and
qwt =Dtẇt, as follows from (21), in each iteration we
sample the initial velocities from5

ḋkt(0) ∼ N(0,1) ,

ẇt(0) ∼ N(0,D−1
t ) . (35)

The solution to the equations of motion for wti is

wti(τ) = µti + ρti cos(τ) + ẇti(0) sin(τ) (36)

= µti + uti sin(τ + φti) (37)

with

µt = D−1
t r , (38)

ρti = wti(0) − µti (39)

uti =

√

ρ2ti + ẇti(0) (40)

φti = tan−1(ρti/ẇti(0)) (41)

5In general, HMC algorithms sample initial mo-
menta [Neal, 2010], but since we have exact solutions of
the equations of motion in terms of initial velocities, sam-
pling the latter is more efficient. This approach was used
before in [Pakman and Paninski, 2013a, Lan et al., 2012].

while the solutions for dkt are the same as in Model 1,
see (23). To sample from (35) and to compute (38),
note that

D−1
t = ZT

t Zt (42)

with

Zt = (
IK −JT

t

0 INt
) , (43)

so we can sample ε ∼ N(0,1) and define

ẇt(0) = Ztε. (44)

The coordinates evolve as (23) and (37) until any of
wti or dkt reaches zero, at which point the velocity
changes discontinuously. Similarly to Model 1, all of
the coordinates dkt can reach zero, but only those wti

with uti ≥ ∣µti∣ can do so. Also, in Model 2 we only
consider wti = 0 for i >K. Let us consider each case:

• wti = 0

In this case the velocity is reflected off the wti = 0
wall. Let us define the vector hi ∈ RK+Nt as

hi,j = δi,j j = 1, . . . ,K +Nt.

As we show in section B.3, the reflected velocity
is given by

ẇR
t = ẇt − 2αD−1

t hi (45)

where

α =
hi ⋅ ẇt

hT
i D

−1
t hi

. (46)

• dkt = 0

Here the situation is similar to Model 1, with ∆1

in (25) replaced by

∆2 = U2(skt = 0) −U2(skt = 1)

+ Kw(skt = 0) −Kw(skt = 1).

In both cases, after the velocity changes, we update the
values of (38)-(41) and then continue the trajectory.

B.3 Velocity Reflection in Models 2 and 3

We now derive equations (45)-(46) for the reflected
value of ẇt in Models 2 and 3. To simplify the notation
we omit the subindex t. Consider the w-dependent
terms in the Hamiltonian,

Hw =
1

2
(w −µ)TD(w −µ) +

1

2
ẇTDẇ



and the constraint

w ⋅ hi ≥ 0. (47)

Remember from (32) that D = MTM . Making a
change of coordinates

g =Mw −Mµ

we get

Hw =
1

2
g ⋅ g +

1

2
ġ ⋅ ġ

and the constraint (47) becomes

g ⋅ h̃i +µ ⋅ hi ≥ 0 ,

where h̃i = (M
−1)Thi. In this frame, when the equal-

ity is satisfied and the particle bounces off the wall,
the reflected velocity is [Pakman and Paninski, 2013a]

ġR = ġ − 2αh̃i (48)

with

α =
ġ ⋅ h̃i

∣∣h̃i∣∣
2

=
hi ⋅ ẇt

hT
i D

−1hi
.

Multiplying (48) on the left by M−1, we get the re-
flected velocity in the original frame

ẇR
= ẇ − 2αD−1hi .

It is easy to check that

ẇTDẇ = ẇR,TDẇR ,

so the energy is conserved in the reflection.
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