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Recordings from large populations of neurons are increasingly common.  
How can we reduce the number of dimensions of our neural signal 
without throwing away relevant information?  Can we recover models of 
the dynamics of neural signals in a way that is robust to outliers, 
nonstationarity and other deviations from a model?  Can we separate 
global dynamics from local connections?

Linear Dynamical GLM

Dynamics and input:

Pre-nonlinearity rate:

Spikes:
Linear (but not necessarily Gaussian) dynamics, with lower dimension than 
number of spikes, followed by linear-nonlinear-point-process (Poisson, 
Bernoulli...) spiking, possibly including dependence on spike history.  (Input 
and spike history terms are not included in the diagram)

Existing learning methods: Expectation-Maximization [5,7] is prone to 
local minima, Method of Moments [1] requires separate analytic 
calculations for different variants of the model, cannot handle local spike 
history dependence.  Both assume stationary linear Gaussian dynamics, 
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-Nuclear norm minimization provides a convex heuristic for 
problems with low-dimensional solutions - no local minima!
-Different noise models, nonlinearities can easily be swapped in.
-Numerical experiments show that as the number of neurons grows, 
accuracy increases, even for non-stationary dynamics.
-In certain regimes, sparse local connectivity can be separated from 
low-dimensional global influences.

But this is not convex!  We can replace the rank condition with a convex 
function of      that leads to low-rank solutions: the sum of singular values 
or nuclear norm
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xt Guaranteed convergence to the global optimum! Applied to linear system identification 
with Gaussian noise in [4].  This is the first application we know of to other concave log 
likelihoods.
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How do we perform this minimization?  Add auxiliary variable    to separate smooth log 
likelihood and nuclear norm term.  Add Lagrange multipliers     to enforce equality between 
them, and augment Lagrangian with the difference between    and    to make the 
optimization more robust.

Newton’s Method:

SVD threshold:

Dual gradient ascent 
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SPCP performance on model data.  50 neurons, 10 latent dimensions, 5% connectivity, 
5000 bins, max firing rate = 25/bin, soft nonlinearity.
Left: Comparison of true and recovered connectivity on model data. False positives in 
green, false negatives in red, hits in yellow.  Intensity is synaptic strength.
Right: ROC curve showing 90% synapses recovered with only 20% false positives.

Experiments

Recovering Latent Dynamics

Non-Gaussian Non-stationary Dynamics

Synthetic data, 200 neurons, 2 latent dimensions, 2000 bins, soft nonlinearity.  The dynamics are strongly 
non-Gaussian and non-stationary, but can still be recovered if the number of neurons is large enough 
relative to the rank of the dynamics.  Left top: true firing rate for a subset of neurons.  Left bottom: 
recovered firing rate plus median filtering.  Right: true latent dynamics (black) vs recovered dynamics 
(red) after median filtering for two dimensions. In principle this is possible even if certain units drop out 
for some stretch.
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This is a variant of exponential family PCA for point processes [2,6].  Unlike 
other approaches, this allows for a globally optimal solution.

Synthetic data, linear-Gaussian system, 500 neurons, 8 dimensional dynamics, 10000 bins, f(x) = exp(x).
Top left: scaled spectrum of the true matrix     (black), spike matrix     (blue) and recovered matrix     
(red).  Note the spectrum of     more closely match the shape of    . Top right: Eigenvalues of the true 
dynamics matrix     (black) and matrices recovered by NN minimization (red) and subspace identification 
(blue).  Circle is the radius of stability.  Note the biases in subspace ID due to the nonlinearity.  Bottom: 
true (black) vs recovered (red) dynamics for 2 of the latent dimensions.  
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In the absence of spike history term, the matrix     of pre-nonlinearity 
rates is low-rank.  One way to find the subspace of dynamics might be 
to maximize the likelihood of the data with a penalty for the rank of    Y

Y

If we include the linear dependence on spike history,     is no longer low-rank. 
However, in large networks the history matrix is likely to be sparse and the 
connectivity can be separated from the low-rank dynamics by stable principal 
component pursuit (SPCP) [7]:
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such that                       and      is the pseudoinverse of the spike history.  
Unlike existing methods to separate local connectivity from global dynamics 
based on EM [2,6], this is a convex problem.

L+ S = Y H†

= C XY + D H
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