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A major trend in systems neuroscience is to record simultaneously from large neuronal popu-
lations. A key objective in statistical neuroscience is to develop scalable and efficient methods for
extracting as much information as possible from these recordings. One important direction involves
hierarchical statistical modeling: estimating receptivefields (RFs) (or motor preferences) one neuron
at a time is highly suboptimal, and in many cases we can do muchbetter by sharing statistical infor-
mation across neurons. In particular, we can exploit the fact that nearby neurons often have similar
receptive fields. Here “nearby” might be defined topographically (e.g., in the case of cat primary vi-
sual cortex, where nearby neurons typically have similar orientation preferences) or more abstractly,
in terms of, e.g., shared genetic markers.

We discuss two approaches for exploiting neighborhood information. The first method maximizes
an appropriately penalized likelihood: we penalize deviations between neighboring RFs and compute
the corresponding maximum a posteriori RF map. We use a smooth convex penalizer that allows
for large occasional breaks or outliers in the inferred RF map. Posterior confidence intervals can be
obtained here via “MAP-perturb” trick [1]. The second method is based on direct Gibbs sampling from
the posterior, where the prior is of “low-rank” form, which enables fast direct sampling via the exact
forward-backward approach discussed in [2]. Both approaches are computationally tractable, scalable
to very large populations, and avoid imposing any overly restrictive constraints on the inferred RF map
that would lead to oversmoothing. The first method is computationally cheaper, but the second method
is able to model RFs in non-vector spaces (e.g., orientation). Both methods are equally applicable to
multineuronal spike train or imaging data, and can dramatically reduce the experimental time required
to characterize RF maps to the desired precision.

Supplementary material

We discuss the first approach described above in a bit more detail here, and provide an example
illustrating the importance of hierarchical and robust joint estimation of the RF map. Letβp ∈ Rm be

the RF of a neuron at locationp, and letβ ∈ R
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, assuming we are estimating

neurons withm-dimensional receptive fields that live on ann × n spatial grid, for concreteness. (As
emphasized above, this simple spatial setting can be generalized significantly.) In our first approach,
the estimateβ is chosen to minimize the objective function
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wheref(.) is a convex “Huber” function which behaves smoothly at zero but grows asymptotically
linearly; βp, βp′ , βp′ ∈ R

m are the RFs at pixels(i, j), (i, j + 1) and(i + 1, j), respectively. The
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second term is the penalty that encourages nearby neurons tohave similar inferred RFs.
This objective function is convex. As a result the optimization has no non-global local minima

in β, and therefore standard ascent algorithms are guaranteed to converge to a global minimum. By
exploiting the special structure of the problem, i.e., the sparsity of the Hessian, standard conjugate
gradient minimization approaches can solve the problem very efficiently.
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The figure on the left corresponds to an RF map of160000 neurons; the RGB color indicates the three-
dimensional vectorβp at each spatial locationp. Our estimated map (based on the robust Huber prior)
is shown on the right, and the estimated map based on a quadratic f(.) — corresponding to a Gaussian
process prior — is shown in the middle panel, for comparison.Borders between sharp breaks in the
maps are preserved in the right panel, whereas the map in the middle is over smoothed.
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