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Across multiple retinas, the relative fractions of 1, 2, and 3-cone subunits in the model fits approximately match 
anatomical predictions, and vary as expected with eccentricity. 

Punctate spots of light within the receptive field 
indicate cone locations, and allow us to transform 
the stimulus from pixel space to cone space. For 
most midget RGCs, the model recovers an 
accelerating subunit nonlinearity, with subunits of 
1, 2, or 3 cones. Cross-validated improvement in 
explained variance is ~10-20%. If we only consider 
stimuli for which the models differ in their 
predictions, it exceeds 50%. Improvement is driven 
more by the subunit nonlinearity than by the 
cone-to-subunit assignments.

Midget RGC responses to contrast-modulated sinusoidal gratings 
exhibit “frequency doubling”. The subunit model predicts frequency 
doubling but the LN model does not. Subunit model improvement is 
greatest at high spatial frequencies.
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Spatial structure and organization of nonlinear subunits in primate retina
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Model choices
• Subunits do not overlap
• Cone weights are positive
• Nonlinearities are splines
• Poisson spiking

Model fitting
• Block coordinate ascent on 
likelihood to estimate cone 
weights, subunit weights, and 
nonlinearities
• Greedy search over 
assignment matrices
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The subunit model captures 
more than 50% of the 
explainable variance on average, 
and outperforms the LN model 
by 40-50%.

The same 8-second sequence of noise was 
presented 50 times.
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How do circuit elements give rise to 
functional response properties of 
retinal ganglion cells?

Anatomically, retinal ganglion cells (RGCs) are at the third stage of a  
hierarchical circuit containing  two feed-forward stages of convergence and 
nonlinear transduction.

Functionally, spatial nonlinearities have been characterized in the 
responses of many  RGC types, and modeled as nonlinear “subunits” within 
the receptive field (Hochstein and Shapley, 1976; Victor and Shapley, 1979). 
Subunits are thought to reflect bipolar cell circuitry (Demb et al., 2001; 
Crook et al., 2008), but it is challanging to directly record from this 
interneuron layer. 

Computationally, the roles of many RGC types are influenced by 
subunits — e.g. detection of fine-grained patterns and spatial invariance —  
but quantitative models of subunit structure in terms of the elements of 
the circuit, especially at the population level, are lacking.

We measured spiking responses in large populations of midget RGCs by 
recording from isolated retinas using a multi-electrode array. We presented 
high-resolution visual noise stimuli, and fit a hierarchical model to describe 
the measured RGC responses. Given the complete input and output of the 
circuit, we infer properties of the interneuron computation, and our findings 
are consistent with properties of bipolar cells.
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We use an online targeted experiment to 
more directly test the recovered subunit 
structure. The subunit model predicts 
that cone signals combine linearly within 
subunits, and nonlinearly across subunits. 
Rapid parallelization allows us to fit the 
model to complete populations online. 
Stimulating individual cones provides a 
baseline level of response. Paired 
increments and decrements within a 
subunit should cancel responses more 
than paired increments and decrements 
to cones across subunits.
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