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Summary
Calcium imaging is an increasingly powerful and popular technique for studying large neuronal ensembles. How-
ever, data interpretation remains challenging; the fast spiking of neurons is indirectly observed through a noisy
slower calcium signal, obtained at a low imaging rate. FOOPSI [1] and “peeling” [2] are two algorithms for ex-
tracting spikes from imaging data using nonnegative sparse deconvolution. They both use a simple linear model in
each pixel: upon each spike, the calcium signal increases by a fast stereotypical transient and then it decays slowly
towards a baseline concentration. Although effective, these methods are typically applied on a pixel-by-pixel basis
(or summed across the full ROI) and do not combine information optimally across pixels.

Here we extend FOOPSI to derive an efficient spatiotemporal deconvolution and demixing algorithm. Our key in-
sight is that under this linear model, the spatiotemporal calcium evolution matrix has rank equal to the (unknown)
number of underlying neurons. Our problem can be cast as a rank-penalized estimation of a structured matrix and
solved in a relaxed form using convex optimization. Our algorithm can be parallelized by considering nonover-
lapping ROIs and scales linearly with time and quadratically with the number of pixels in each ROI. Moreover,
we develop a highly optimized GPU implementation.

Our algorithm leads to dramatic denoising compared to non-spatial approaches. We can further apply a nonnega-
tive structured matrix factorization to simultaneously deconvolve and demix the spike trains, even in the presence
of spatially overlapping neurons. We introduce a method-of-moments approach to fitting the model parameters
that is quicker and more robust than the previous approximate expectation-maximization methods. We also derive
and compare several model selection strategies (e.g., BIC, AIC, Cp). We apply our methods to simulated and
in-vitro spinal cord data, for which ground truth is available via antidromic stimulation, with promising results.

Additional Details
If d is the total number of pixels, our spatiotemporal model can be described by the following equations:

noiseless, baseline-subtracted image: F (t) =
N∑
i=1

aiCi(t), ai ∈ Rd, location vector for neuron i.

observed noisy image: Y (t) = F (t) + b+ ε, b, ε ∈ Rd, b : baseline vector, ε ∼ N (0,Σ)

underlying 1-d calcium signals:
dCi(t)

dt
= −Ci(t)

τ
+ ni(t), τ : time constant, ni : spiking of neuron i.

Note that this simple model can be readily extended to model multi-exponential dynamics (e.g. non-instantaneous
rise times). Using this notation, we estimate the d-by-T matrix F of the spatiotemporal dynamics by solving:

minimize
F

1

2
‖Σ−1/2(Y − b1T

T − F )‖2 +
N∑
i=1

1

λi

∑
t=1

ni(t) + λNN‖F‖∗

subject to F (1) ≥ 0, ni(t) ≥ 0, i = 1, . . . , N, t = 1, . . . , T.

(P1)

Here 1T is a vector of ones of length T , λi are the firing rates of the neurons, ‖ · ‖∗ denotes the nuclear norm of a
matrix, i.e., the sum of its singular values, and λNN is the regularization parameter. The nuclear norm penalizes the



Figure 1: Application of our algorithm to in-vitro spinal cord data using the genetically encoded calcium indicator
GCaMP3 . The algorithm was applied to data from two 15-by-15 patches containing each a single neuron. The
225 pixels on the y-axis in the left and middle panels correspond to the 15-by-15 patches vectorized column-by-
column. Our algorithm leads to substantial denoising and produces estimates of both the spikes (not shown) and
the spatial locations of the neurons (right panels). The results are best viewed in movie format. For more info
please visit: http://www.stat.columbia.edu/˜eftychios/Home/Cell_Separation.html

rank of the inferred matrix since it is the convex envelope of the non-convex rank function. Note that the number
of neuronsN is in general unknown. However, since ai ≥ 0 pointwise, nonnegativity constraints ni(t) ≥ 0 can be
directly expressed as F (t)− γF (t− 1) ≥ 0, where γ = 1−∆t/τ , is the discretized time constant. The problem
(P1) is convex and can be solved efficiently using the ADMM method [3] in O(d2T ) time.

After solving (P1) we obtain an estimate of N by thresholding the singular values of F . By forming the ma-
trices A = [a1, . . . , aN ] and C = [C1, . . . , CN ] of size d-by-N and T -by-N respectively. We can then obtain
explicit estimates of the spatial locations A and the calcium traces C by solving the problem (P2) using standard
nonnegative matrix factorization methods.

minimize
A,C

1

2
‖Σ−1/2(Y − b1T

T − ACT )‖2 +
N∑
i=1

1

λi

∑
t=1

ni(t)

subject to A ≥ 0, C(1) ≥ 0, ni(t) ≥ 0, i = 1, . . . , N, t = 1, . . . , T.

(P2)
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