How do neural circuits work?

» Network level: which neurons
are interconnected?
» Cellular level:
~ Where are the synaptic
inputs in a given dendritic
tree?
~ What is their strength?

synaptic weights

-synaptic neuron

Basic paradigm: compartmental model

Known anatomy and physical

constants of cell (leak coetffi- A

cient, coupling between compart- = T
ments) can be encoded in a —
sparse, symmetric matrix A —

The dynamical model

Dynamic Equation: Viiar = AV + WU + ¢

Valid in subthreshold regime, may be enforced pharmacologically.

V;: Vector of unobserved voltages. Dim(V;)= N ~ 103
A: Matrix encoding anatomy and electrical constants
W Vector of unknown synaptic weights

U:: Known presynaptic spike signals

» ¢;. Dynamical noise
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Observation Equation: Vi = BV + my

» ¥i: Vector of observations. Dim(y;)=S, S< N, t=1...T.
» B;: Observation matrix.

» 1;: Observation noise, Gaussian with covariance C,.
The Quadratic Log-likelihood:

logp(Y, VIW) = logp(VIW) + logp(Y|V)

From dynamic eq. = From observation eq.

» Marginalize over unobserved voltages:

log p(Y|W) = log / oY, VIW)aV| = rWi + *wim Wi

/

2

Sparse solutions with the Lasso

Solution to sparseness problem: L penalty.

W()\) = arg max {r,-W’ + %WIM/,/f W= Wi|}
:

Convex problem, M negative semi-definite.
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Common imaging scheme: scan sampling

Voltages are measured at a small number of compartments that
change uniformly with time

NeedS T ™ O(N) measurements tO reCOnStrUCt S|gna| (Nynquist-Shannon theorem).

New imaging scheme: compressed sensing

» Measures a linear combination of the voltages at all compartments
W|th randOm COeffICIentS (Pakman, Huggins & Paninski, 2012)

B: = X (AT_2U1 + -+ AUT 2+ UT_1)_1
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Offsets neural dynamics
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» Needs T ~ O(log N) measurements to reconstruct signal with high

prObabI|Ity (Candes et. al., 2006).
» Implemented with compressive fluorescence microscopy.

(Studer, V. et.al. (2012), Compressive fluorescence microscopy for biological and hyperspectral imaging, PNAS 109(26), E1679-E1687)

Comparison of imaging schemes in toy model

Right: toy neural geometry with 35 com-
partments and three non-zero synap-
tic weights at circles. Below: median
and .25/.75 quantiles of inferred weights
with matching colors, in 100 simula-
tions, as a function of the experiment s0000k00000 oJoo
length. True weights in dashed lines.
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Sparse Bayesian inference

» Spike-and-Slab prior (mitchel & Beauchamp, 1988)

sila ~ Bernoulli( a)
L o(W;) fors;=0,
Wilsi, T ~ {N(O,Tz) fors; = 1.

» The parameters a and 7 can be determined with an EM algorithm.

» The posterior distribution of the sparsity variables s; can be Gibbs sampled and
each step requires the quotient

p(Y|si=1,S5_;,a,1) 1
p(Y|si=0,5jar) (1)
where S_; are the sparsity variables without the ith component.
» The probabilities in (1) are Gaussian integrals and can be computed in O(|S;]°).
» We developed a method to compute (1) in O(|S;]?) as the integral of a Gaussian
expectation value.

» Our method allows to use a collapsed Gibbs sampler also when the W, has a
definite sign (Dale’s law): the quotient (1) becomes the integral of an expectation
value of a truncated multivariate Gaussian.

Simulations in a real reuronal geometry

» N ~ 103 compartments.
» Optical methods stimulate presynaptic neurons with precision.

» Known dendritic geometry and physical constants.
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