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How do neural circuits work?

I Network level: which neurons
are interconnected?

I Cellular level:
I Where are the synaptic

inputs in a given dendritic
tree?

I What is their strength?

Basic paradigm: compartmental model

Known anatomy and physical
constants of cell (leak coeffi-
cient, coupling between compart-
ments) can be encoded in a
sparse, symmetric matrix A

The dynamical model

Dynamic Equation: Vt+dt = AVt + WUt + εt

Valid in subthreshold regime, may be enforced pharmacologically.

I Vt: Vector of unobserved voltages. Dim(Vt)= N ∼ 103

I A: Matrix encoding anatomy and electrical constants
I W : Vector of unknown synaptic weights
I Ut: Known presynaptic spike signals
I εt: Dynamical noise

Observation Equation: yt = BtVt + ηt

I yt: Vector of observations. Dim(yt)= S, S � N, t = 1 . . .T .
I Bt: Observation matrix.
I ηt: Observation noise, Gaussian with covariance Cy .

The Quadratic Log-likelihood:

log p(Y ,V |W ) = log p(V |W )︸ ︷︷ ︸
From dynamic eq.

+ log p(Y |V )︸ ︷︷ ︸
From observation eq.

I Marginalize over unobserved voltages:

log p(Y |W ) = log
[∫

p(Y ,V |W )dV
]
= riW i +

1
2

W iMi ,i ′W i ′

Sparse solutions with the Lasso

Solution to sparseness problem: L1 penalty.

Ŵ (λ) = arg max
W

{
riW i +

1
2

W iMi ,i ′W i ′ − λ
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|W i|

}
Convex problem, M negative semi-definite.

Common imaging scheme: scan sampling

Voltages are measured at a small number of compartments that
change uniformly with time

Bt =


1 · · ·

1
1

· · ·


Needs T ∼ O(N) measurements to reconstruct signal (Nynquist-Shannon theorem).

New imaging scheme: compressed sensing

I Measures a linear combination of the voltages at all compartments
with random coefficients (Pakman, Huggins & Paninski, 2012)

Bt = Gt︸︷︷︸
Gaussian entries

× (AT−2U1 + · · · + AUT−2 + UT−1)
−1︸ ︷︷ ︸

Offsets neural dynamics

I Needs T ∼ O(log N) measurements to reconstruct signal with high
probability (Candes et. al., 2006).

I Implemented with compressive fluorescence microscopy.
(Studer, V. et.al. (2012), Compressive fluorescence microscopy for biological and hyperspectral imaging, PNAS 109(26), E1679-E1687)

Comparison of imaging schemes in toy model

Right: toy neural geometry with 35 com-
partments and three non-zero synap-
tic weights at circles. Below: median
and .25/.75 quantiles of inferred weights
with matching colors, in 100 simula-
tions, as a function of the experiment
length. True weights in dashed lines.

Sparse Bayesian inference

I Spike-and-Slab prior (Mitchell & Beauchamp, 1988)

si|a ∼ Bernoulli(a)

Wi|si, τ ∼
{
δ(Wi) for si = 0 ,
N (0, τ2) for si = 1 .

I The parameters a and τ can be determined with an EM algorithm.
I The posterior distribution of the sparsity variables si can be Gibbs sampled and

each step requires the quotient
p(Y |si = 1,S−i,a, τ )
p(Y |si = 0,S−i,a, τ )

(1)

where S−i are the sparsity variables without the i th component.
I The probabilities in (1) are Gaussian integrals and can be computed in O(|Si|3).
I We developed a method to compute (1) in O(|Si|2) as the integral of a Gaussian

expectation value.
I Our method allows to use a collapsed Gibbs sampler also when the Wi has a

definite sign (Dale’s law): the quotient (1) becomes the integral of an expectation
value of a truncated multivariate Gaussian.

Simulations in a real reuronal geometry

I N ∼ 103 compartments.
I Optical methods stimulate presynaptic neurons with precision.
I Known dendritic geometry and physical constants.

True weights Posterior inclusion probability x 100

Median inferred weights Dispersion of inferred weights
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