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A detailed understanding of the organization of local neural circuits requires determining not only
the connectivity pattern in a neural population, but also the exact location and strength of synaptic
interactions in the dendritic tree.

In a previous work [1], we showed how to approach this problem by combining the ability to stimu-
late individual presynaptic neurons with simultaneous imaging of postsynaptic neurons at subcellular
resolution. This work extends our previous results in two directions. On the one hand we revisit the
inference method used to extract the locations and strengths of the synaptic weights from the observed
data. While in [1] the synaptic weights were the maximum a posteriori (MAP) solution of a state-space
model with an L1 prior (the “Lasso” model), in this work we also obtain confidence intervals by adopting
a fully Bayesian approach. In particular, we compare the results of several popular sparsity-inducing
priors for the synaptic weights: the Bayesian Lasso [2], the Horseshoe [3] and the Spike-and-Slab [4].
Particular emphasis is placed on the constraint imposed by Dale’s law, which states that the synaptic
weights have a definite sign, thus leading to truncated probability distributions.

Equipped with the full posterior distribution of the synaptic weights, our second contribution explores
optimal experimental design. We extend the type of voltage measurements from localized observations
to linear combinations of voltages across several locations with random coefficients. This setting cor-
responds to a “compressed sensing” sampling scheme [5], which yields an impressive reduction in the
number of measurements required to infer the synaptic weights. In particular, we show how to choose
the correlation among the random coefficients to offset the correlation between successive measurements
imposed by the neuron dynamics. We illustrate our results on simulated measurements in toy and real
neurons.

Figure 1: Schematic of proposed method. By observing a noisy, subsampled spatiotemporal voltage signal
on the dendritic tree, we can infer the strength of a given presynaptic cell’s inputs at each location on the
postsynaptic cell’s dendritic tree.
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Figure 2: Inference of synaptic weights using sparsity-inducing priors. Synaptic weights inferred
in a T-shaped toy neuron with 35 compartments similar to that studied in [1]. The neuron had non-zero
synaptic weights at compartments 6, 10, 20 and 32. The green bars show the Lasso estimates using the
techniques developed in [1]. The heights of the red bars are the medians, at each compartment, of the posterior
distribution using a Spike-and-Slab prior. The .25 and .75 quantiles are also indicated. The Spike-and-Slab
prior was superior to the Bayesian Lasso and the Horseshoe priors (not shown).
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