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Methods
• Electrophysiolgy: 42 adult (weight 140-340 g, mean 220 g) Wistar rats (Hilltop 
Laboratories) were head �xed and had craniotomies made over the barrel cortex region. 
Blind whole-cell recordings were made from neurons spanning all depths of a single 
barrel column. During recordings the rats were maintained in an unanesthetized, 
lightly-sedated state using fentanyl. 

• Stimulus: Whiskers on the contra-lateral face were trimmed to a length of 10 mm. 
Nine multi-directional piezoelectric stimulators (Simons, D.J. 1983) were arranged 
around the face, attempting to keep the PW always at center (de�ned by extracellular 
mapping and post-hoc histology). For reverse correlation analysis, we delivered complex 
sparse noise stimuli to 9 whiskers simultaneously, consisting of high-velocity pulses 
(peak velocity 2200o  / second, 5ms rise-time) in random directions and random times. 
These velocities approximate those of rats whisking in the natural environment (Ritt, J.T. 
et al., 2008)  

•  Histology: Neurons were �lled with biocytin and identi�ed histologically post-hoc 
for morphological analysis. Neurons were registered according to cell type, laminar 
depth, location within the barrel �eld, and relation to the barrel vs. septum. 

•  Analysis: Physiology data was analyzed using custom-written routines in MATLAB. 
All stimulus-response model predictions were performed on cross-validation data.  
Laminar identities were de�ned by the cortical depth of the recovered soma.  

1. Modeling the subthreshold response and spatiotemporal receptive �elds of neurons in S1. 

7.  Thalamorecipient layers, but not others, are driven by passive
      whisker stimuli.  

•  In the construction of complex spatiotemporal receptive fields, surround inputs 
sum linearly.

•  A linearized stimulus-response model can explain over 90% of the predictable 
subthreshold response to a novel stimulus in all layers of barrel cortex.  

•  L4,  L5 thick tufted, and L6 neurons share similar onset latencies and are  
significantly driven by passive whisker stimuli alone, suggesting that they 
subserve the same circuit and all receive direct thalamocortical inputs from VPM.

•  L2, and L5 slender tufted neurons share similar onset latencies, low SNR, and 
lack of stimulus evoked �ring, suggesting they subserve the same circuit and �re 
only during active whisking or other behaviorally relevant times.       

• Passive whisker stimuli alone, even when spatiotemporally complex or 
“optimal”,  typically fail to drive supragranular neurons (L2 and L3) to spike 
threshold.

• Adaptation plays a vital role in linearizing the neural response to complex 
stimuli allowing the surround to contribute to spiking activity above the PW 
alone.  
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Fund, the Rita Allen Foundation (RMB), NSF CAREER award (LP), NEI R01 - EY1101 (KM).

  Subthreshold receptive �elds and stimulus-response functions are estimated using a voltage-weighted average on a nonlinear stimulus space.  

4. Receptive properties by laminar location and cell type
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   Our knowledge of receptive fields and sensory transformations in rodent barrel 
cortex (S1) lags behind other sensory systems. Firing rates of neurons in S1 can be low, 
making reverse correlation of high-dimensional stimuli challenging. Additionally, most re-
searchers rely on simple single-whisker laboratory stimuli for receptive field mapping, 
which are neither ethological nor capable of revealing spatiotemporal complexity. Here we 
use a novel multi-whisker stimulator system that moves 9 whiskers independently in arbi-
trary directions, exploring a vastly larger stimulus space than conventionally examined. By 
recording intracellularly rather than extracellularly, we can additionally access information 
available in the subthreshold response to calculate receptive fields even for neurons with 
little or no spiking activity. 
  After exploring a number of stimulus-response models, including conventional 
Linear-Nonlinear models as well as quadratic models, we found that a filtered input nonlin-
earity model (of the form discussed in Ahrens et al, 2008) provided an effective and parsi-
monious representation of the responses.  In this model, the whisker deflections are 
mapped through a static nonlinearity that re-represents the whisker movements binned 
into an 8-directional space, before being temporally filtered, weighted across whiskers, and 
summed to predict the voltage response.   Our model is able to predict neural responses to 
novel stimuli with a correlation coefficient as high as 0.84. Furthermore, through repeated 
presentations of identical stimuli, we show that our model captures ~ 90% of the predict-
able variance (Sahani and Linden 2003), suggesting that the main nonlinearities in stimulus 
response are spike-threshold rather than network nonlinearities. 
  Analysis of the spatiotemporal receptive fields across layers and cell-types reveals 
the emergence of unique spatial and temporal features encoded in the supra- and infra-
granular layers, and serves as a useful comparison to similar studies from the visual and au-
ditory systems. Because all of our neurons are recovered histologically and registered ac-
cording to cell-type and sub-circuit identity (barrel vs. septal) we are able to make infer-
ences about the functional roles of specific sub-circuits in sensory processing as well as di-
rectionality of functional information flow. Finally, because we are able to calculate recep-
tive fields online and play “optimal” stimuli back to the same neurons, we are well suited to 
study how specific receptive fields are constructed, as well as what stimuli are likely to drive 
spiking responses in different layers of S1.

Introduction

2.  Linearized model aproximates nearly optimal performance.
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3.  Interpretation of spatiotemporal receptive �eld (STRF)
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5. Pairwise whisker
 interactions sum linearly.
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Responses to all possible combinations 
of whisker de�ections were analysed
during complex stimulus presentation. 

6.  Adapted neural response, but not unadapted, is linear in
      barrel cortex.
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* De�ned as the signal power/ noise power (Sahani & Linden, 2003).
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* Can be anywhere from 2 to all whiskers. 


