Dynamic sensory information transmission as

a function of population size, sensory temporal correlation and single neuron signal-to-noise

> Kamiar Rahnama Rad and Liam Paninski Columbia University

Questions of interest

-Efficient coding hypothesis discussed by Attneave, Barlow, Atick, et al.

- Performance of population codes as a function of
- 1. spatial stimulus correlations
- 2. temporal stimulus correlations
- 3. network noise correlations

Challenges - Non-linearity and non-Gaussianity of neural responses

- Stimulus distributions with temporal dynamics and correlation structures

Neural System as a Stochastic Dynamical Process

Figure 1: The dynamics of sensory input may be described as a stochastic dynamical process: a state variable q_t evolves through time according to some Markovian dynamics $p(q_t|q_{t-1}, \theta)$, as specified by a few model parameters θ . Neural acitivity y_t are a noisy, subsampled version of q_t , summarized by an observation distribution $p(y_t|q_t)$.

- Hidden unobvserved state: $Q := Q_1, Q_2, \cdots, Q_T$ -Noisy observation: $Y := Y_1, Y_2, \cdots, Y_T$ $P(Q, Y) = p(q_1) \prod_{t=2}^T p(q_t | q_{t-1}) \prod_{t=1}^T p(y_t | q_t)$

Examples of Stochastic Dynamics

- Hidden unobserved states and Noisy observations:
 - 1. Spatial location of a rate moving in a close environment and the neural activity of place cells.
- 2. Spatio-temporally varying visual stimuli and the corresponding neural activity in V1.
- 3. Two-dimensional position of the hand and the activity of multiple simultaneously recorded neurons from the contralateral primary motor cortex.

Background on High SNR results

- Static sensory input Q and observations from a population of neurons : $R_k \ k = 1, \dots, n \sim \prod_{k=1}^n f(R_k | Q)$ [Clarke and Barron, 1990, Brunel and Nadal, 1998]

$$I(\{R_1, \cdots, R_n\}; Q) = H(Q) - \mathcal{E}_Q \left[\log \sqrt{\frac{2\pi e}{nJ(Q)}} \right]$$

- time varying stationary sensory input Q_t and observations from a population of neurons : $\{R_1(t), \dots, R_n(t)\} \sim \prod_{k=1}^n f(R_k(t)|Q_t)$

$$I(\{R_1(t), \cdots, R_n(t)\}_{1:T}; Q_{1:T}) = H(Q_{1:T}) - TE_Q \left[\log \sqrt{\frac{2\pi e}{nJ(Q)}} \right]$$
$$I(\{R_1(t), \cdots, R_n(t)\}_{1:T}; Q_{1:T}) - \sum_{t=1}^T I(R_t; Q_t) = H(Q_{1:T}) - \sum_{t=1}^T H(Q_t)$$
$$= T \left[H(Q_1|Q_0) - H(Q_1) \right]$$

where $J(q) := -E_R \partial_q^2 \log f(R|q)].$

Background on Low SNR results: Dynamic Stimuli

– Observations available from a few weakly tuned neurons. LNP model : $R|Q \sim \text{Poiss}(\lambda(\epsilon Q))$

$$Q_T^{\text{MAP}} \approx \epsilon \sigma_Q^2 \sum_{t=1}^T \left(\frac{\lambda'}{\lambda} R_t - \lambda'\right) e^{-(T-t)dt/\tau}$$

– Maximum a posteriori (MAP) estimate is Linear in the responses [Bialek and Zee, 1990, Pillow et al., 2009] for a finite number of neurons.

 $g_1(R) = \frac{\lambda'}{\lambda}(0)R - \lambda'(0)$

Information rates of temporally correlated stimuli: Low SNR regime

$$I(R_{1:T}; Q_{1:T}) \approx \sum_{t=1}^{T} I(R_t; Q_t) \approx T \frac{\epsilon^2 J}{2} \sigma_Q^2$$
$$I(R_{1:T}; Q_T) \approx \frac{\epsilon^2 J}{2} \sum_{t=1}^{T} \operatorname{var}_{Q_T} \left[\mathbb{E}(Q_t | Q_T) \right]$$
$$= \frac{\epsilon^2 \sigma_Q^2 J}{2} \sum_{t=1}^{T} \operatorname{cor} \left[Q_t, Q_T \right] \quad \text{for Gaussian } Q_t$$

- 1. Time varying stationary sensory input $E[Q_0Q_t] \sim e^{-t/\tau}$
- 2. Neurons are only weakly tuned to the stimulus properties, or equivalently that the stimulus magnitude is relatively small. $R_t \sim f(y_t | \epsilon q_t)$ for $\epsilon \ll 1$.
- 3. Define Fisher information $J := -E_R[\partial_q^2 \log f(R|q)]|_{q=0}$.

LNP neuron with temporally correlated sensory input

$$I(Q_T; R_{1:T}) \approx \frac{\epsilon^2 \sigma_Q^2 J}{2} \sum_{t=1}^T \operatorname{cor} [Q_t, Q_T] = \frac{\epsilon^2 \sigma_Q^2 J}{2} \sum_{t=1}^T e^{-(T-t)dt/\tau}$$
$$= \frac{\epsilon^2 \sigma_Q^2 J}{2} \frac{1 - e^{-Tdt/\tau}}{1 - e^{-dt/\tau}}$$

1. dynamics : $dq_t = -\tau^{-1}q_t + \sigma dB_t$ or, $q_{t+dt} = e^{-dt/\tau}q_t + \sigma\sqrt{dt}\epsilon_t$ 2. $\operatorname{cov}(q_0, q_{kdt}) = \frac{\tau\sigma^2}{2}e^{-kdt/\tau}$ and $\sigma_Q^2 = \frac{\tau\sigma^2}{2}$ 3. neural responses: $R_i(t) \sim \operatorname{Poiss}(f_i(\epsilon q_t)dt)$ for $i = 1, \cdots, n$ – mutual information increases linearly with the number of neurons

$$J := \sum_{i=1}^{n} \left[-f_i (\frac{f'_i}{f_i})' + f''_i \right]_{q=0} dt$$

Figure 2: Colormap of $I(Q_T; R_{1:T})$ as a function of τ and T.

Information rates of temporally correlated stimuli: Intermediate SNR regime

- 1. Observations available from a large population of neurons, i.e. $n \to \infty$
- 2. Neurons are only weakly tuned to the stimulus properties, or equivalently that the stimulus magnitude is relatively small. $R_k(t) \sim f(r_k(t)|\epsilon q_t)$ for $\epsilon \sim n^{-1/2}$.
- 3. We have *n* neurons with SNR~ n^{-1} .

Information rates of temporally correlated stimuli: Intermediate SNR regime

- Observations from $\{R_1(t), \cdots, R_n(t)\} \sim \prod_{k=1}^n f(R_k(t)|\frac{Q_t}{\sqrt{n}})$ is equivalent to the *Linear Gaussian Additive* model: $Z_t = Q_t + e_t$ where $e_t \sim \mathcal{N}(0, J_0^{-1})$

$$-Z_t = \frac{1}{\sqrt{nJ_0}} \sum_{k=1}^n \left(\frac{\partial \log f(R_k(t)|q)}{\partial q}\right)_{q=0}$$

is approximately (asymptotically) sufficient statistics

Large Population of LNP neurons receiving temporally correlated stimuli

$$Z_t = \sum_{k=1}^n \left(\frac{R_k(t)}{\lambda_0 dt \sqrt{n}} - \frac{1}{\sqrt{n}} \right) = Q_t + e_t \qquad \operatorname{var}[e_t] = (\lambda_0 dt)^{-1}$$

1. dynamics : $Q_{t+dt} = e^{-dt/\tau}Q_t + \sigma\sqrt{dt}\epsilon_t$

2. neural responses: $R_i(t) \sim \text{Poiss}(\lambda_0 e^{q_t/\sqrt{n}} dt)$ for $i = 1, \dots, n$

Figure 3: MAP estimate(red) of Q_t (green) based on full spiking activity compared to a simple linear estimate(black) based on linear transformation of the sum of spikes $\sum_{k=1}^{n} R_k(t)$.

Summary

- 1. The information rate can be characterized by the temporal correlation τ of the stimuli, population size n, and single neuron SNR ϵ .
- 2. The effective population size is $\sim n\epsilon \tau^{1/2}$ and the total power of the population is $\sim n\epsilon^2$.
- 3. In the intermediate SNR regime, regardless of the population size, the total energy of the neural activity is fixed. Therefore, the right scaling is $\epsilon \sim 1/\sqrt{n}$. In this regime, a *linear* decoder achieves the optimal performance of a non-linear MAP decoder.

– Main assumption is that given the stimuli, the neural activity of the population is *independent*. A natural next step is to include the spike history effects.

Appendix: calculations

$$\begin{split} p(y_t|q_t) &= f_0(y_t) \left[1 + \epsilon g_1(y_t) q_t + \frac{\epsilon^2}{2} g_2(y_t) q_t^2 + O(\epsilon^3) \right] \\ P(Y_{1:T}|Q_T) &= E_{Q_{1:T-1}} \left[\prod_{t=1}^T p(Y_t|Q_t) |Q_T \right] \\ &= \prod_{t=1}^T f_0(y_t) \left[1 + \epsilon \sum_{t=1}^T g_1(y_t) E[Q_t|Q_T] + \frac{\epsilon^2}{2} \sum_{t=1}^T g_2(y_t) E[Q_t^2|Q_T] + \epsilon^2 \sum_{t \neq t'} g_1(y_t) g_1(y_{t'}) E[Q_tQ_{t'}|Q_T] \right] \\ P(Y_{1:T}) &= E_{Q_{1:T}} \left[\prod_{t=1}^T p(Y_t|Q_t) \right] \\ &= \prod_{t=1}^T f_0(y_t) \left[1 + \epsilon \sum_{t=1}^T g_1(y_t) E[Q_t] + \frac{\epsilon^2}{2} \sum_{t=1}^T g_2(y_t) E[Q_t^2] + \epsilon^2 \sum_{t \neq t'} g_1(y_t) g_1(y_{t'}) E[Q_tQ_{t'}] \right] \\ &= E_{Q_{1:T}} \left[\prod_{t=1}^T p(Y_t|Q_t) \right] \\ &= \prod_{t=1}^T f_0(y_t) \left[1 + \frac{\epsilon^2}{2} \sum_{t=1}^T g_2(y_t) E[Q_t^2] + \epsilon^2 \sum_{t \neq t'} g_1(y_t) g_1(y_{t'}) E[Q_tQ_{t'}] \right] \\ &= R_{Q_{1:T}} \left[\prod_{t=1}^T p(Y_t|Q_t) \right] \\ &= \prod_{t=1}^T f_0(y_t) \left[1 + \frac{\epsilon^2}{2} \sum_{t=1}^T g_2(y_t) E[Q_t^2] + \epsilon^2 \sum_{t \neq t'} g_1(y_t) g_1(y_{t'}) E[Q_tQ_{t'}] \right] \\ Q_T^{MAP} &= -\frac{\epsilon}{\partial_2 \log p(Q_T)|Q_T=0} \sum_{t=1}^T g_1(y_t) \partial \left(E[Q_t|Q_T] \right) |Q_T=0 + O(\epsilon^2) \end{split}$$

Appendix: calculations

$$q_{t+1} = Aq_t + e_t \quad \operatorname{cov}[e_t] = C_q$$
$$y_t = Bq_t + n_t \quad \operatorname{cov}[n_t] = C_y$$

$$C^{f} = \left[(AC^{f}A^{T} + C_{q})^{-1} + B^{T}C_{y}^{-1}B \right]^{-1}$$

$$C^{s} = C^{f} + J \left[C^{s} - AC^{f}A^{T} - C_{q} \right] J^{T},$$

$$J := C^{f}A^{T} \left[AC^{f}A^{T} + C_{q} \right]^{-1}$$

$$C^{s} - JC^{s}J^{T} = C^{f} - J \left[AC^{f}A^{T} + C_{q} \right] J^{T} = C^{f} - C^{f}A^{T} \left[AC^{f}A^{T} + C_{q} \right]^{-1} AC^{f}$$

Appendix: calculations

When q is one-dimensional, define:

$$x := C^f$$
 and $a := A$ $\beta := B^T C_y^{-1} B$ $\sigma^2 = C_q$,

then,

$$x = \left[(a^{2}x + \sigma^{2})^{-1} + \beta \right]^{-1}$$

$$x = \frac{-(\beta\sigma^{2} - a^{2} + 1) + \sqrt{(\beta\sigma^{2} - a^{2} + 1)^{2} + 4a^{2}\beta\sigma^{2}}}{2\beta a^{2}}$$

$$J = \frac{xa}{a^{2}x + \sigma^{2}}$$

$$C^{s} - JC^{s}J^{T} = x - \frac{a^{2}x^{2}}{a^{2}x + \sigma^{2}} = \frac{x\sigma^{2}}{a^{2}x + \sigma^{2}}$$

$$\lim_{T \to \infty} \frac{1}{T} I(Q_{1:T}; Y_{1:T}) = \frac{1}{2} \log \frac{|C_q|}{|C^s - JC^s J^T|} = \frac{1}{2} \log \frac{\sigma^2}{\left(\frac{\sigma^2}{a^2 + \sigma^2 / x}\right)} = \frac{1}{2} \log \left(a^2 + \sigma^2 / x\right)$$
$$I(Q_T; Y_T) = \frac{1}{2} \log \frac{|C_y + BB^T \sigma^2 / (1 - a^2)|}{|C_y|} = \frac{1}{2} \log \left(1 + \frac{\sigma^2 \beta}{1 - a^2}\right)$$

References

- [Bialek and Zee, 1990] Bialek, W. and Zee, A. (1990). Coding and computation with neural spike trains. Journal of Statistical Physics, 59:103-115.
- [Brunel and Nadal, 1998] Brunel, N. and Nadal, J.-P. (1998). Mutual information, fisher information, and population coding. *Neural Comput.*, 10(7):1731-1757.
- [Clarke and Barron, 1990] Clarke, B. and Barron, A. (1990). Information-theoretic asymptotics of Bayes