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We perceive visual stimuli even in the presence of incessant image motion due to fixational eye
movements. We would like to better understand how these movements affect the perception of visual
stimuli, without any assumed knowledge of trajectory of the eye during a given fixation [1, 5]. The
challenge lies in the estimation of the image given noisy, spatiotemporally-filtered retinal ganglion cell
responses, without detailed knowledge of the true eye path on any given trial.

To approach the problem, we construct an extended hidden Markov model (HMM), with eye position
included as a hidden Markovian state variable. Retinal responses are modeled using a generalized linear
model approach [2, 4] which is sufficiently general to incorporate realistic spatiotemporal filtering as well
as auto- and cross-correlations between spike trains. We develop an expectation-maximization (EM)
approach to infer the eye path and underlying image simultaneously: in this setting the expectation (E)
step corresponds to the inference of the eye path, given a fixed estimated image, and the maximization (M)
step corresponds to the inference of the image, given a fixed estimated eye path. We use a sequential
Monte Carlo (“particle filtering”) method to carry out the E step, and employ a computationally-efficient
concave optimization approach [3] to compute the maximum a posterior (MAP) estimate of the image in
the M step. This EM method turns out to be significantly more stable and accurate than the
computationally-intensive mixture-of-Gaussian filter approach developed in [4], and may also be applied
to correct eye-movement artifacts in the estimation of receptive fields in visual sensory neurophysiology
experiments.
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