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Often we would like to estimate some two-dimensional firing rate function from limited spike train observations.
We may consider the following examples:1) We observe a spatial point process whose rate is given by λ(~r) =
f(z(~r) +

∑
i aigi(~r)), where z(~r) = z(x, y) represents an unknown two-dimensional function, gi(~r) is some

set of known basis functions and ai is a set of scalar weights. 2) We observe a temporal process whose rate is
given by λ(t) = f

(
z(~r(t)) + ~kT ~y(t)

)
, where ~r(t) is some known time-varying path through space — e.g., the

time-varying position of a rat in a maze [1] or the hand position in a motor experiment [2,3] — ~y(t) is a vector
of fully-observed covariates (possibly including spike history effects), and ~k is a vector of weights. 3) We make
repeated observations of a temporal point process whose mean rate function may change somewhat from trial
to trial1; in this case we may model the rate as λ(t, i), where t denotes the time within a trial and i denotes the
trial number [4].

In each case, the function f(.) is assumed to be convex and log-concave. Now we further assume that z is
generated by sampling from a Gaussian process with covariance function C(~r, ~r′). This allows us to employ
standard regularization methods to estimate z, with no fear of any bad local maxima. An important feature of
these methods is that, unlike standard linear smoothing techniques, these Gaussian process methods automati-
cally adjust their smoothness depending on how much data is available at a given spatial location ~r: the more
data we have near ~r, the less smooth we have to assume z is at ~r in order to obtain reliable estimates. See also
[5,6] for discussion of related Gaussian process-based approaches.

Here we show that, by making certain assumptions on the covariance function C (namely, that the inverse of C
has a certain block-tridiagonal form), we can compute the maximum likelihood estimate for z in O(d3/2) time
where d = dim(z). This may potentially be sped up to O(d) if more specialized multigrid algorithms are used.
We may also optimize the parameters defining C (by maximizing the marginal likelihood, either directly or via
EM) in O(d2) time. Since typically d > 104, this gain in computational efficiency is quite significant.
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1Thanks to C. Shalizi for pointing out this example.


