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We develop an expectation-maximization (EM) algorithm for a class of noisy integrate-and-fire models, in
which the voltage evolves according to the linear stochastic differential equationdV (t) = (−g(t)V (t) +
I(t))dt + σdBt, with Bt standard Brownian motion, andV (t) is reset after each spike (Paninski et al.,
2004; Pillow et al., 2005). The functionsI(t) and g(t) (the input current and membrane conductance,
respectively) are given byI(t) =

∑
aiIi(t) andg(t) =

∑
bjgj(t), where the functionsIi(t) andgj(t) are

assumed known; thus the unknown parameters that we want to estimate areθ = {~a,~b, σ}. (The reset and
threshold voltage parameters may be assumed known, by the usual changeof variables.)

We fit the parametersθ via maximum likelihood, given only the functions{Ii(t)}, {gj(t)}, and the ob-
served spike times; no intracellular currents or voltages are observed. We previously (Paninski et al., 2004)
described methods for computing the likelihood and directly ascending the likelihood by a hill-climbing
procedure. In (Paninski et al., 2005) we proposed an alternate methodto compute the likelihood, which
facilitates the computation of gradient information. However, the computationalcomplexity of this gradient
method scales asO(d3), whered is the number of time points a given inter-spike interval is divided into
(the largerd is, the higher the numerical precision of the calculation). By casting the modelas a hidden
Markov model in continuous time and space (Paninski, 2006), we may adaptstandard EM approaches to
derive a method for computing likelihood gradients that only requiresO(d2) time (Salakhutdinov et al.,
2003). In addition, the EM algorithm provides a good “warm start” for optimization via conjugate gradient
ascent. The E-step of the algorithm requires the solution of a forward andbackward Fokker-Planck equation
with time-dependent coefficients; we derive an efficient and unconditionally stable algorithm for solving
this partial differential equation.
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