Statistics 1211 (4)
Professor Salzman
Homework\#2
Solutions - Section 2

Chapter 2.4.47 (10 Points)

a. $P(B \mid A)=\frac{P(A \cap B)}{P(A)}=\frac{0.25}{0.50}=0.50$
b. $P\left(B^{\prime} \mid A\right)=\frac{P\left(A \cap B^{\prime}\right)}{P(A)}=\frac{0.25}{0.50}=0.50$
c. $P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{0.25}{0.40}=0.625$
d. $P\left(A^{\prime} \mid B\right)=\frac{P\left(A^{\prime} \cap B\right)}{P(B)}=\frac{0.15}{0.40}=0.375$
e. $P(A \mid A \cup B)=\frac{P(A \cap(A \cup B))}{P(A \cup B)}=\frac{0.50}{0.65}=0.7692$

Chapter 2.4.50 (10 Points)

a.
$P(M \cap L S \cap P R)=0.05$ directly from the table of probabilities
b.
$P(M \cap \operatorname{Pr})=P(M, \operatorname{Pr}, L S)+P(M, \operatorname{Pr}, S S)=0.05+0.07=0.12$
c.
$P(S S)=$ sum of 9 probabilities in SS table $=0.56$
d.
$P(M)=0.08+0.07+0.10+0.05+0.07=0.49$
$P(P r)=0.02+0.07+0.07+0.02+0.05+0.02=0.25$
e.
$P(M \mid S S \cap P l)=\frac{P(M \cap S S \cap P l)}{P(S S \cap P l)}=\frac{0.08}{0.04+0.08+0.03}=0.533$
f.
$P(S S \mid M \cap P l)=\frac{P(S S \cap M \cap P l)}{P(M \cap P l)}=\frac{0.08}{0.08+0.10}=0.44$
$P(L S \mid M \cap P l)=1-P(S S \mid M \cap P l)=1=0.44=0.556$

Chapter 2.4.61 (10 Points)

$P(0$ def in sample 10 def in batch $)=1$
$P(0$ def in sample 11 def in batch $)=\frac{\binom{9}{2}}{\binom{10}{2}}=0.800$
$P(1$ def in sample $\mid 1$ def in batch $)=\frac{\binom{9}{1}}{\binom{10}{2}}=0.200$
$P(0$ def in sample $\mid 2$ def in batch $)=\frac{\binom{8}{2}}{\binom{10}{2}}=0.622$
$P(1$ def in sample $\mid 2$ def in batch $)=\frac{\binom{2}{1}\binom{8}{1}}{\binom{10}{2}}=0.356$
$P(2$ def in sample 12 def in batch $)=\frac{1}{\binom{10}{2}}=0.022$

a.
$P(0$ def in batch 10 def in sample $)=\frac{0.5}{0.5+0.24+0.1244}=0.578$
$P(1$ def in batch 10 def in sample $)=\frac{0.24}{0.5+0.24+0.1244}=0.278$
$P(2$ def in batch 10 def in sample $)=\frac{0.1244}{0.5+0.24+0.1244}=0.144$
b.
$P(0$ def in batch 11 def in sample $)=0$
$P(1$ def in batch 11 def in sample $)=\frac{0.06}{0.06+0.0712}=0.457$
$P(2$ def in batch 11 def in sample $)=\frac{0.0712}{0.06+0.0712}=0.543$

Chapter 2.4.66 (10 Points)

Let E, C, and L be the events associated with e-mail, cell phones, and laptops, respectively. We are told that $\mathrm{P}(\mathrm{E})=40 \%, \mathrm{P}(\mathrm{C})=30 \%, \mathrm{P}(\mathrm{L})=25 \%$, $P(E \cap C)=23 \%, P\left(E^{\prime} \cap C^{\prime} \cap L^{\prime}\right)=51 \%, P(E \mid L)=88 \%$, and $P(L \mid C)=70 \%$.
a. $\mathrm{P}(\mathrm{C} \mid \mathrm{E})=\mathrm{P}(\mathrm{E} \cap \mathrm{C}) / \mathrm{P}(\mathrm{E})=.23 / .40=.575$
b. $\quad \mathrm{P}(\mathrm{C} \mid \mathrm{L})=\mathrm{P}(\mathrm{C} \cap \mathrm{L}) / \mathrm{P}(\mathrm{L})=\mathrm{P}(\mathrm{C}) \mathrm{P}(\mathrm{L} \mid \mathrm{C}) / \mathrm{P}(\mathrm{L})=.30(.70) / .25=.84$
c. $\quad \mathrm{P}(\mathrm{C} \mid \mathrm{E} \cap \mathrm{L})=\mathrm{P}(\mathrm{C} \cap \mathrm{E} \cap \mathrm{L}) / \mathrm{P}(\mathrm{E} \cap \mathrm{L})$. For the denominator, $\mathrm{P}(\mathrm{E} \cap \mathrm{L})=\mathrm{P}(\mathrm{L}) \mathrm{P}(\mathrm{E} \mid \mathrm{L})=$ $(.25)(.88)=.22$. For the numerator, use $\mathrm{P}(\mathrm{E} \cup C \cup L)=1-\mathrm{P}\left(\mathrm{E}^{\prime} \cap \mathrm{C}^{\prime} \cap L^{\prime}\right)=1-.51=.49$ and write $\mathrm{P}(\mathrm{E} \cup C \cup L)=\mathrm{P}(\mathrm{C})+\mathrm{P}(\mathrm{E})+\mathrm{P}(\mathrm{L})-\mathrm{P}(\mathrm{E} \cap \mathrm{C})-\mathrm{P}(\mathrm{C} \cap \mathrm{L})-\mathrm{P}(\mathrm{E} \cap \mathrm{L})+\mathrm{P}(\mathrm{C} \cap \mathrm{E} \cap \mathrm{L})$
$\rightarrow .49=.30+.40+.25-.23-.30(.70)-.22+\mathrm{P}(\mathrm{C} \cap \mathrm{E} \cap \mathrm{L}) \rightarrow \mathrm{P}(\mathrm{C} \cap \mathrm{E} \cap \mathrm{L})=.20$.
So, finally, $\mathrm{P}(\mathrm{C} \mid \mathrm{E} \cap \mathrm{L})=.20 / .22=.9091$

Chapter 2.5.76 (10 Points)

$\mathrm{P}($ no error on any particular question $)=.9$, so $\mathrm{P}($ no error on any of the 10 questions $)=(.9)^{10}=$.3487. Then $\mathrm{P}($ at least one error $)=1-(.9)^{10}=.6513$. For \mathbf{p} replacing .1 , the two probabilities are $(1-\mathbf{p})^{\mathrm{n}}$ and $1-(1-\mathbf{p})^{\mathrm{n}}$.

Chapter 2.5.82 (10 Points)

Event A: $\{(3,1)(3,2)(3,3)(3,4)(3,5)(3,6)\}, \mathrm{P}(\mathrm{A})=\frac{1}{6}$;
Event B: $\{(1,4)(2,4)(3,4)(4,4)(5,4)(6,4)\}, \mathrm{P}(\mathrm{B})=\frac{1}{6}$;
Event C: $\{(1,6)(2,5)(3,4)(4,3)(5,2)(6,1)\}, \mathrm{P}(\mathrm{C})=\frac{1}{6}$;
Event $\mathrm{A} \cap \mathrm{B}:\{(3,4)\} ; \mathrm{P}(\mathrm{A} \cap \mathrm{B})=\frac{1}{36}$;
Event $\mathrm{A} \cap \mathrm{C}:\{(3,4)\} ; \mathrm{P}(\mathrm{A} \cap \mathrm{C})=\frac{1}{36}$;
Event $\mathrm{B} \cap \mathrm{C}:\{(3,4)\} ; \mathrm{P}(\mathrm{A} \cap \mathrm{C})=\frac{1}{36}$;
Event $\mathrm{A} \cap \mathrm{B} \cap \mathrm{C}:\{(3,4)\} ; \mathrm{P}(\mathrm{A} \cap \mathrm{B} \cap \mathrm{C})=\frac{1}{36}$;
$P(A) \cdot P(B)=\frac{1}{6} \cdot \frac{1}{6}=\frac{1}{36}=P(A \cap B)$
$\mathrm{P}(\mathrm{A}) \cdot \mathrm{P}(\mathrm{C})=\frac{1}{6} \cdot \frac{1}{6}=\frac{1}{36}=\mathrm{P}(\mathrm{A} \cap \mathrm{C})$
$\mathrm{P}(\mathrm{B}) \cdot \mathrm{P}(\mathrm{C})=\frac{1}{6} \cdot \frac{1}{6}=\frac{1}{36}=\mathrm{P}(\mathrm{B} \cap \mathrm{C})$
The events are pairwise independent.
$\mathrm{P}(\mathrm{A}) \cdot \mathrm{P}(\mathrm{B}) \cdot \mathrm{P}(\mathrm{C})=\frac{1}{6} \cdot \frac{1}{6} \cdot \frac{1}{6}=\frac{1}{216} \neq \frac{1}{36}=\mathrm{P}(\mathrm{A} \cap \mathrm{B} \cap \mathrm{C})$
The events are not mutually independent

