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ON HITTING TIMES, BESSEL BRIDGES, AND
SCHRÖDINGER’S EQUATION

GERARDO HERNÁNDEZ-DEL-VALLE

Abstract. In this paper we establish relationships between four

important concepts: (a) hitting time problems of Brownian mo-

tion, (b) 3-dimensional Bessel bridges, (c) Schrödinger’s equation

with linear potential, and (d) heat equation problems with moving

boundary. We relate (a) and (b) by means of Girsanov’s theorem,

which suggests a strategy to extend our ideas to problems in Rn

and general diffusions. This approach also leads to (c) because we

may relate, through a Feynman-Kac representation, functionals of

a Bessel bridge with two Schrödinger-type problems. Finally, the

relationship between (c) and (d) suggests a possible link between

Generalized Airy processes and their hitting times.
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1. Introduction

Finding the density for the first time a Brownian motion reaches a

moving boundary is an old and classic problem with a wide range of ap-

plications in both mathematics and applied sciences. The problem may

be traced back to Louis Bachelier’s doctoral thesis [Bachelier (1900)],

Théorie de la Spéculation, and to a paper by the Austrian physicist

Erwin Schrödinger [Schrödinger (1915)].

On the other hand, Robbins and Siegmund (1973) and later Groene-

boom (1987), Salminen (1988) and Martin-Löf (1998) are among the

first to explicitly establish the relationship between hitting time prob-

lems and parabolic partial differential equations.

The aim of this work is not to provide a new set of solutions to

the problem of boundary crossing. Our goal is instead conceptual: we

establish relationships between (a) hitting time problems of Brownian

motion, (b) 3-dimensional Bessel bridge, (c) Schrödinger’s equation

with linear potential, and (d) heat equation problems with moving

boundary. We determine conditions under which these problems are

equivalent.

The paper is organized as follows: The hitting time problem is in-

troduced in Section 2, and by use of Girsanov’s theorem, we relate it
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to a functional of a 3-dimensional Bessel bridge. This relationship is

established in Section 3.

In Section 4 we derive the Feynman-Kac representation that will

allow us to determine the correspondence between Bessel bridges and

Schrödinger’s equation with linear potential. Next, in Section 5 we

derive a pair of equivalent problems which in Section 6 are used to link

boundary crossing probabilities with the heat equation. We conclude

in Section 7 with some final remarks.

2. The problem

Throughout this paper B stands for a one-dimensional standard

Brownian motion, and f(·) is a real-valued function denoting a “moving

boundary”. Moreover

T := inf {t ≥ 0|Bt = f(t)}(1)

is the first time that B reaches the moving boundary f . The main

motivation of this work is to study the density of T . To be more

precise, we consider the following problem.

Problem 2.1. Determine the density of T , given that, for a > 0

(2) f(t) := a+

∫ t

0

f ′(u)du, f ′′(t) ≥ 0, and

∫ t

0

(f ′(u))
2
du < ∞

for t > 0.
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To analize Problem 2.1 it is convenient to note that using (1) and

setting

B̃t := Bt −
∫ t

0

f ′(u)du(3)

we obtain the following alternative representation of T :

T = inf

{

t ≥ 0|Bt = a+

∫ t

0

f ′(u)du

}

= inf

{

t ≥ 0|Bt −
∫ t

0

f ′(u)du = a

}

= inf
{

t ≥ 0|B̃t = a
}

.(4)

Since our study will make use of Girsanov’s theorem [see for instance:

Section 3.5, Chapter 3 in Karatzas and Shreve (1991)], let us first

introduce the heuristics that link these ideas:

2.1. Girsanov’s theorem and hitting time problems. Notice that

if there exists a measure P̃ under which the process B̃ is a one-dimensional

standard Brownian motion, then for T as in (1) [or (4)] and B̃ as in

(3), then

P̃(T < t) =

∫ t

0

h(s, a)ds, t > 0,

where

h(s, a) :=
|a|√
2πs3

exp

{

−a2

2s

}

, s > 0, a 6= 0.(5)
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This function h is the hitting time density of Brownian motion reaching

a fixed level a. Alternatively, h is also referred to as the derived source

solution of the heat equation [see for instance Rosenbloom and Widder

(1959)].

This last statement follows from observing, in (4), that the original

problem is reduced to that of hitting a ‘fixed’ boundary a.

Assuming such measure P̃ exists, how is it related to the original

measure P? More explicitly, what is the connection (if any) between

P(T < t) and P̃(T < t)?

To answer this question we first need to introduce, the so-called P

exponential martingales:

Remark. Exponential martingale and Novikov’s condition. Girsanov’s

theorem states that the process B̃ in (3) will be a one-dimensional stan-

dard Brownian motion under the measure P̃, as long as the following

exponential process

Zt := exp

{
∫ t

0

f ′(u)dBu −
1

2

∫ t

0

(f ′(u))2du

}

0 ≤ t < ∞(6)

is a P-martingale. In turn, for this last statement to hold, a sufficient

condition is Novikov’s condition [see for instance, Proposition 3.5.12 in
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Karatzas and Shreve (1991)] :

E

[

exp

{

1

2

∫ t

0

(f ′(u))2du

}]

< ∞ ∀ 0 ≤ t < ∞.(7)

Now, given the P-martingale Z in (6), together with the P̃-martingale

Z̃t := exp

{

−
∫ t

0

f ′(u)dB̃u −
1

2

∫ t

0

(f ′(u))2du

}

0 ≤ t < ∞,(8)

where B̃ is a Brownian motion under P̃, it follows from Girsanov’s the-

orem that the measures P and P̃ are equivalent and related as follows:

If (7) holds and Z and Z̃ are as in (6) and (8), respectively, then the

pairs (P, B) and (P̃, B̃) satisfy the following identities:

P̃

(

B̃t ∈ A
)

= E

[

ZtI(B̃t∈A)

]

= E

[

ZtI(Bt−
∫ t
0
f ′(u)du∈A)

]

and

P (Bt ∈ A) = Ẽ

[

Z̃tI(Bt∈A)

]

= Ẽ

[

Z̃tI(B̃t+
∫ t
0
f ′(u)du∈A)

]

.(9)

This sequence of ideas leads to the following representation:

Proposition 2.2. Given that T is as in (1) and condition (2) holds,

the exponential process Z̃ in (8) is a P̃-martingale. Furthermore, given
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the hitting time density h in (5), it follows

P (T < t)

=

∫ t

0

e−f ′(t)a− 1

2

∫ s
0
(f ′(u))2du

Ẽ

[

e
∫ s
0
f ′′(u)B̃udu

∣

∣

∣

∣

∣

T = s

]

h(s, a)ds,(10)

for t ≥ 0.

Proof. The first claim is justified from (2) and Novikov’s condition,

equation (7). Next, from Girsanov’s theorem and the representation

(9), we have the following equality

P(T < t) = Ẽ

[

Z̃tI(T<t)

]

,

where Z̃ is as in (8).

From the fact that Z̃ is a P̃-martingale and I(T<t) is FT∧t-measurable,

it follows from the Optional Sampling Theorem that

P(T < t) = Ẽ

[

Ẽ(Z̃t|FT∧t) I(T<t)

]

= Ẽ

[

Z̃t∧T I(T<t)

]

= Ẽ

[

Z̃T I(T<t)

]

.(11)

Finally, from (11) together with the integration by parts formula:

e−
∫ t
0
f ′(u)dB̃u− 1

2

∫ t
0
(f ′(u))2du = e−B̃tf

′(t)+
∫ t
0
f ′′(u)B̃udu− 1

2

∫ t
0
(f ′(u))2du.
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Then the terminal condition B̃T = a, and conditioning with respect to

T under P̃ completes the proof of the proposition. �

In view of (10), our study now focuses on the following expectation:

Ẽ

[

e
∫ s
0
f ′′(u)B̃udu

∣

∣

∣

∣

∣

T = s

]

.

Thus, our next task is to understand the dynamics of the process B̃u

(for 0 ≤ u ≤ s), which is conditioned to hit the fixed level a for the

first time at time s.

3. Three dimensional Bessel bridge

The first idea that comes to mind is that the conditioned process B̃u

(for 0 ≤ u ≤ s) is a Brownian bridge, since at t = 0, B̃0 = 0 and at

time s, B̃s = a. However, this argument is flawed because, in contrast

to a Brownian bridge, the process B̃ can never be above level a before

time s.

Elaborating on the heuristics, let us for the moment write the con-

ditioned process as: B̂u. Alternatively, setting

X̃u := a− B̂u, 0 ≤ u ≤ s

we shall analyze the dynamics of the process X̃ :

X̃0 = a; X̃u > 0 for 0 < u < s; X̃s = 0.(12)



HITTING TIMES, BRIDGES, AND SCHRÖDINGER’S EQUATION 9

That is, X̃ is strictly positive (Bessel part), except at time s, when it

is pinned down at zero (bridge part). It may be formally proved that

the process just described is in fact the following.

Definition 3.1. A 3-dimensional Bessel bridge is a stochastic process

which has the following dynamics:

dX̃t :=

[

1

X̃ t

− X̃t

(s− t)

]

dt+ dWt, X̃0 = a ≥ 0,(13)

0 ≤ t ≤ s, and W is a one-dimensional standard Brownian motion.

Furthermore, letting

k(σ, κ) :=
1√
2πσ

exp

{

−κ2

2σ

}

, σ > 0, κ ∈ R(14)

also known as the source solution of the heat equation [see for instance

Rosenbloom and Widder (1959)], the transition probability of the pro-

cess X̃ is:

G(t, x; τ, y) := P
t,x(X̃τ ∈ dy)

=
y

x

s− t

s− τ

k(s− τ, y)

k(s− t, x)
[k (τ − t, y − x)− k (τ − t, x+ y)](15)

for 0 ≤ t < τ ≤ s, and x, y ≥ 0.

3.1. Verification of the 3-dimensional Bessel bridge (sketch). In

order to verify that (12) and (13) are equivalent, we will make use of

ideas described in for instance: Imhof (1984) or Chapter XI in Revuz
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and Yor (2005). First, one derives the finite-dimensional distribution

of the conditional process (Yt, 0 ≤ t ≤ s|Ta = s) with Yt = a − B̃t.

[A similar analysis, is carried out for the Brownian bridge in Problems

5.6.11 and 5.6.13, Karatzas and Shreve (1991).] Later, one may verify

that Y is a version of the process X̃ , introduced in Definition 3.1.

To this end, let us first recall the following

Remark. (Brownian motion absorbed at y). Consider the transition

density of Brownian motion

G(s, x; t, y) := k(t− s, y − x)

where k is as in (14) and y < a. It follows—from the reflection

principle—that the distribution of a Brownian motion, started at x

at time s and absorbed at level a is given by:

P
s,x (Bt < y, Ta > t) = P

s,x(Bt < y)− P
s,x(Bt < y, Ta < t)

= P
s,x(Bt < y)− P

s,x(Bt > 2a− y)

= P(Bt −Bs < y − x)

−P(Bt −Bs > 2a− y − x).
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Or, equivalently:

P
s,x (Bt ∈ dy, Ta > t) = G(s, x; t, y)−G(s, x; t, 2a− y)

= k(t− s, y − x)− k(t− x, 2a− y − x).(16)

Constructing the finite dimensional distribution of Y . Next, given 0 =

t0 < t1 < · · · < tn < tn+1 = s, and a positive sequence of values

x1, . . . , xn where x0 = a and xn+1 = 0, compute:

P̃ (Yt1 ∈ dx1, . . . , Ytn ∈ dxn, Ta ∈ ds)

= P̃ (Yti ∈ dxi, 1 ≤ i ≤ n, Ta ∈ ds)

= P̃

(

B̃ti ∈ d(a− xi), 1 ≤ i ≤ n, Ta ∈ ds
)

= P̃

(

B̃ti − B̃ti−1
∈ d(xi−1 − xi), 1 ≤ i ≤ n, Ta ∈ ds

)
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where the second equality follows from Yt = a− B̃t and the third from

the independence of increments. In turn, this implies that

P̃ (Yt1 ∈ dx1, . . . , Ytn ∈ dxn|Ta = s)

=
P̃ (Yt1 ∈ dx1, . . . , Ytn ∈ dxn, Ta ∈ ds)

P(Ta ∈ ds)

=
P (Txn ∈ d(s− tn))

P (Ta ∈ ds)

n
∏

j=1

P
tj−1,a−xj−1

(

Btj ∈ d(a− xj), Ta > tj

)

=
P (Txn ∈ d(s− tn))

P (Ta ∈ ds)

n
∏

j=1

[

G (tj−1, a− xj−1; tj , a− xj)

−G(tj−1, a− xj−1; tj , a+ xj)
]

the last equality follows from equation (16) (absorbed Brownian motion

at y),

=
P (Txn ∈ d(s− tn))

P (Ta ∈ ds)

n
∏

j=1

[

k(tj − tj−1, xj − xj−1)

−k(tj − tj−1, xj + xj−1)
]

=
xn

a

s

s− tn

k(s− tn, xn)

k(s, a)

n
∏

j=1

[

k(tj − tj−1, xj − xj−1)

−k(tj − tj−1, xj + xj−1)
]

=

n
∏

j=1

xi

xi−1

s− ti−1

s− ti

k(s− ti, xi)

k(s− ti−1, xi−1)

× [k(tj − tj−1, xj − xj−1)− k(tj − tj−1, xj + xj−1)] .
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By inspection one observes that the transition probability of the con-

ditioned process Y is of the form (15). For the remaining technical

details the reader may consult Chapter XI at Revuz and Yor (2005).

3.2. Hitting problems and 3-dimensional Bessel bridges. From

Proposition 2.2 and Definition 3.1, we are now able to represent a

class of first-hitting time problems in terms of a 3-dimensional Bessel

process, namely:

Theorem 3.2. Given that h is as in (5), the process X̃ is a 3-dimensional

Bessel bridge, Definition 3.1. Then, the distribution of T equals

P(T < t) =

∫ t

0

Ẽ

[

exp

{

−
∫ s

0

f ′′(u)X̃udu

}]

× exp

{

−1

2

∫ s

0

(f ′(u))2du− f ′(0)a

}

h(s, a)ds(17)

Proof. Directly verified from Proposition 2.2 and Definition 3.1. �

4. Feynman-Kac and 3-dimensional Bessel bridge

In this section, we will provide a Feynman-Kac representation [see

for instance: Theorem 4.4.2 in Karatzas and Shreve (1991)] of

v(t, a) = Ẽ

[

exp

{

−
∫ s

t

f ′′(u)X̃udu

}

∣

∣

∣
Xt = a

]

,
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where X̃ is the 3-dimensional Bessel bridge, equation (13), introduced

in Definition 3.1. The idea is to apply Ito’s rule to the process

v(y,Xy) exp

{

−
∫ t

y

f ′′(u)X̃udu

}

, y ∈ [t, s],

given the following growth and/or boundary condition

0 ≤ v(t, a) ≤ 1, 0 ≤ t < s, a ≥ 0.

We will also make use of the fact that f ′′(u)X̃u ≥ 0 for 0 ≤ u < s; that

the process X̃ is continuous and strictly positive on u ∈ [0, s), and that

the moments of the running maximum of the process X̃ are known and

finite.

Theorem 4.1. Suppose that v(t, a) : [0, s] × R+ → R+ is continuous,

of class C1,2([0, s)× R+),and satisfies the Cauchy problem

− ∂v

∂t
+ f ′′(t)av =

1

2

∂2v

∂a2
+

(

1

a
− a

s− t

)

∂v

∂a
[0, s)× R

+,(18)

v(s, a) = 1, a ∈ R
+,

as well as

0 ≤ v(t, a) ≤ 1 ∀ t, a ∈ R
+.

Then v(t, a) admits the stochastic representation:

v(t, a) = E
t,a

[

exp

{

−
∫ s

t

f ′′(u)X̃udu

}]

.
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Proof. We proceed as in the proof of Theorem 5.7.6, pp. 366–367,

Karatzas & Shreve (1991). Applying Ito’s rule to the process

v(y,Xy) exp

{

−
∫ t

y

f ′′(u)X̃udu

}

,

y ∈ [t, s], we obtain, with τn := inf{t ≤ y ≤ s|X̃y ≥ n},

v(t, a) = Ẽ
t,a

[

exp

{

−
∫ s

t

f ′′(u)X̃udu

}

I(τn>s)

]

+Ẽ
t,a

[

v(τn, Xτn) exp

{

−
∫ τn

t

f ′′(u)X̃udu

}

I(τn≤s)

]

The second term converges to zero as n → ∞, since

Ẽ
t,a

[

v(τn, Xτn) exp

{

−
∫ τn

t

f ′′(u)X̃udu

}

I(τn≤s)

]

≤ Ẽ
t,x

[

v(τn, X̃τn)I(τn≤s)

]

≤ P̃
t,x(τn ≤ s)

= P̃
t,x

(

max
t≤θ≤s

X̃θ ≥ n

)

≤
Ẽt,x

[

max
t≤θ≤s

X̃2m
θ

]

n2m

[see Pitman and Yor (1998) for the moments of the running maximum

of X̃]. Finally, the first term converges to

Ẽ
t,a

[

exp

{

−
∫ s

t

f ′′(u)X̃udu

}]

either by the dominated or by the monotone convergence theorem. �



16 GERARDO HERNÁNDEZ-DEL-VALLE

Our next step is to relate Theorem 4.1 to two alternative, better

known problems. Namely, that of Schrödinger’s equation with linear

potential. To this end, we first have:

Proposition 4.2. Solutions to (18) may be of the following form:

v(t, a) =
w(t, a)

h(s− t, a)
(19)

where

− wt(t, a) + f ′′(t)aw(t, a) =
1

2
waa(t, a), [0, s)× R

+(20)

and h(s, a) is as in (5).

Proof. Setting

u(t, a) = 1/h(s− t, a)

and

v(t, a) := u(t, a)w(t, a),(21)

we have that

ut(t, a) =

[

a2

2(s− t)2
− 3

2(s− t)

]

u(t, a)

ua(t, a) = −
[

1

a
− a

s− t

]

u(t, a)

uaa(t, a) =

[

2

a2
+

a2

(s− t)2
− 1

s− t

]

u(t, a).
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Alternatively, from (21) it follows

vt = utw + uwt va = uaw + uwa

vaa = uaaw + 2uxww + uwaa.

Hence from (18) and (20) we conclude that

[

−ut −
1

2
uaa −

(

1

a
− a

s− t

)

ua

]

w =

[

ua +

(

1

a
− a

s− t

)

u

]

wa,

as claimed. �

The previous Proposition may be generalized by first noting that

(

1

x
− x

s− t

)

=
hx(s− t, x)

h(s− t, x)

for h as in (5). Second, recall that h is a solution to the heat equation

ht =
1

2
hxx.

This leads to

Proposition 4.3. If h, v, and w satisfy the following system of partial

differential equations



































− 1
σt

· ht =
1
2
hxx

−vτ + k(τ, x)v = 1
2
vxx +

hx

h
vx

−wτ + k(τ, x)w = 1
2
wxx

(22)
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where σt is only a function of t, then they satisfy the identity:

v(τ, x) =
w(τ, x)

h(τ, x)
,(23)

where

τ :=

∫ t

s

σudu.(24)

Proof. Given τ is as in (24):

∂h

∂t
=

∂τ

∂t

∂h

∂τ
.

Next, we use (23) to compute

vτ =
wτh− whτ

h2
, vx =

wxh− whx

h2

vxx =
(wxxh− whxx)h

2 − 2hhx(wxh− whx)

h4
.

Finally, substituting in the second equation in (22) we have:

−wτh− whτ

h2
+ k

w

h
=

1

2

wxx

h
− 1

2

hxxw

h2

−hx(wxh− whx)

h3
+

hx

h

[

wxh− whx

h2

]

which implies

−wτ

h
+ k

w

h
=

1

2

wxx

h

as claimed. �
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5. Schrödinger’s equation with linear potential

Equations (19) and (20), together with the growth condition

0 ≤ v(t, a) ≤ 1, 0 ≤ t ≤ s, a ∈ R
+(25)

will allow us to introduce a couple of Schrödinger-type problems.

First Schrödinger problem. From (25) and recalling the definition of h

in (5):

h(t, x) =
|x|√
2πt3

exp

{

−x2

2t

}

,

we have that

0 ≤ w(t, a) ≤ h(s− t, a), ∀ 0 ≤ t ≤ s, a ∈ R
+.

Furthermore, note that

lim
t→s

h(s− t, a) = 0

lim
a→0

h(s− t, a) = δ(s).

The last statement should be interpreted in the following sense: Sup-

pose λ : R+ → R+ is a C1 function, then

lim
x→0

∫ s

0

h(s− t, x)λ(t)dt = λ(s), 0 ≤ t < s < ∞.

This leads to our first representation:
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Remark 5.1. Let v be as in Theorem 4.1 and h as in (5). Then the

following relationship holds

v(t, a) =
w(t, a)

h(s− t, a)
, t ∈ [0, s]× R

+.

Furthermore w is a solution to the Schrödinger equation with linear

potential

−∂w

∂t
(t, a) + f ′′(t)aw(t, a)(26)

=
1

2

∂2w

∂a2
(t, a), t ∈ [0, s], a ∈ R

+

satisfying the following boundary conditions

lim
t→s

w(t, a) = 0

lim
a→0

w(t, a) = δ(s),

as well as the compatibility condition

lim
t→s

w(t, a)

h(s− t, a)
= 1.

For our second problem, we will make use of the following:
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Proposition 5.2. If h, k, v, and w satisfy the following system of

partial differential equations























































− 1
σt

· ht =
1
2
hxx

−kτ = 1
2
kxx

−vτ + σ(τ, x)v = 1
2
vxx +

kx
k
vx

−wτ +
[

σ(τ, x) +
(

kx
k
− hx

h

)

hx

h

]

w = 1
2
wxx + wx

(

kx
k
− hx

k

)

where σt is only a function of t, then they satisfy the identity:

v(τ, x) =
w(τ, x)

h(τ, x)
,

where

τ :=

∫ t

s

σudu.(27)

Proof. We proceed as in the proof of Proposition 4.3 �

Second Schrödinger problem. Given the fundamental or source solution

of the heat equation k, equation (14), we may relate v to another

Schrödinger-type problem, by setting

v(t, a) =
u(t, a)

k(s− t, a)

and making use of Proposition 5.2:
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Remark 5.3. Let v be as in Theorem 4.1 and k as in equation (14),

then the following relationship holds:

v(t, a) =
u(t, a)

k(s− t, a)
, t ∈ [0, s]× R

+.

Furthermore, it follows from Proposition 5.2, that u is a solution to the

Schrödinger equation with linear potential:

−∂u

∂t
(t, a) +

[

− 1

(s− t)
+ f ′′(t)a

]

u(t, a)(28)

=
1

2

∂2u

∂a2
(t, a) +

1

a

∂u

∂a
(t, a), t ∈ [0, s], a ∈ R

+

satisfying the following boundary conditions:

lim
t→s

u(t, a) = δ(a)

lim
a→0

u(t, a) = 0,

as well as the compatibility condition

lim
t→s

u(t, a)

k(s− t, a)
= 1.

The boundary conditions of this second problem follow, once more,

by using the growth condition in Theorem 4.1, i.e.

0 ≤ u(t, a) ≤ k(s− t, a) ∀ t ∈ [0, s], a ∈ R.
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We conclude this section by making a few remarks. First, note that

the problem described in Remark 5.3 is a Cauchy problem, the one

appearing in Remark 5.1 is not.

We have introduced the consistency conditions in Remarks 5.1 and

5.3 in order to make them compatible with Theorem 4.1. Boundary

conditions for the density of T will be derived in the following section.

The next observation is that for the equations (26) and (28) one

may construct particular solutions. There is in fact one solution of

(26) which may be used to find a new set of solutions of (28). To do

so, one may use a technique introduced in Bluman and Shtelen (1996).

However, solutions to the problems described in Remarks 5.1 and 5.3,

for arbitrary bounds f—which do not involve integral equations—have

yet to be found.

This last remark will be clarified in the following section. The idea

stems from the following fact (yet to be shown): There is a particular

set of solutions of either (26) and/or (28) which transform our original

problem—that is, finding the density of hitting times—into that of

finding particular solutions to the heat equation killed at a moving

boundary! Unfortunately, in practice this is not very useful to us, since

the problem leads back to Volterra integral equations as described in

De Lillo and Fokas (2007).
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A final curious remark is that equation (26) may be transformed into

a non-homogeneous Burgers’ equation. The homogeneity is only time

dependent and it corresponds precisely to f ′′:

κt(t, a) + κ(t, a) · κa(t, a)−
1

2
κaa(t, a) = f ′′(t).(29)

Alternatively, κ and w—equation (26)—introduced in Remark 5.1, are

related through:

κ(t, a) = − ∂

∂a
logw(t, a).

From Proposition 4.3 it follows:

Proposition 5.4. If h, v, w and u satisfy the following system of

partial differential equations























































− 1
σt

· ht =
1
2
hxx

−vτ + k(τ, x)v = 1
2
vxx +

hx

h
vx

−wτ + k(τ, x)w = 1
2
wxx

−uτ + u · ux = 1
2
uxx + kx

where σt is only a function of t, then they satisfy the identities:

v(τ, x) =
w(τ, x)

h(τ, x)
, u = −wx

w
, w = e−

∫
udx,
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where

τ :=

∫ t

s

σudu.

Of course, at first sight, this is not so surprising since this relationship

is well known. The possibly “interesting” part lies in the fact that so

many probability–related papers have been written regarding Burgers’

equation (29), see for instance Barndorff-Nielsen and Leonenko (2005)

and references therein.

6. Particular solutions to Schrödinger’s equation with

linear potential (heat equation)

Particular solutions to Schrödinger’s equation with linear potential

have been obtained, for instance, by Feng (2001) an references therein.

The strategy employed in Feng (2001) is not only interesting but it

is also useful. This follows since it ultimately leads to heat equation

problems. In this section, we propose yet another equivalent approach

using Fourier transforms:
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Theorem 6.1. Solutions to (20) are given by

(30)

w(t, a) = e
1

2

∫ s
t (f

′(u))2du+af ′(t) 1

2π

∫ ∞

−∞
Π(y)e−

1

2
y2(s−t)+iy(a+

∫ s
t f ′(u)du)dy

= e
1

2

∫ s
t (f

′(u))2du+af ′(t)ω

(

s− t, a+

∫ s

t

f ′(u)du

)

where ω is a solution to the heat equation and Π is an arbitrary func-

tion, as long as the integral is well defined.

Proof. Let

ŵ(t, λ) :=

∞
∫

−∞

e−iλaw(t, a)da.(31)

Applying the Fourier transform to (20) we have

−ŵt(t, λ) + if ′′(t)ŵλ(t, λ) +
1

2
λ2ŵ(t, λ) = 0 i :=

√
−1.

Next, set y = λ+ if ′(t) and ŵ(t, λ) = w̃(t, y), that is:

ŵt = w̃t + if ′′(t)w̃y, ŵλ = w̃y

which after substitution in (31) leads to

− w̃t(t, y) +
1

2
(y − if ′(t))2w̃(t, y) = 0.(32)
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Consequently, setting Π(y) = w̃(0, y) it follows that

w̃(t, y) = Π(y) exp

{

−1

2

∫ s

t

(y − if ′(u))2du

}

= Π(y) exp

{

−1

2
y2(s− t) + iy

∫ s

t

f ′(u)du+
1

2

∫ s

t

(f ′(u))2du

}

.(33)

[Note that equation (33) will be a solution of (32) for arbitrary Π.]

Alternatively, this implies that

w(t, a) =
1

2π

∫ ∞

−∞
Π(y)e−

1

2
y2(s−t)+iy

∫ s
t
f ′(u)du+ 1

2

∫ s
t
(f ′(u))2dueiλadλ

=
1

2π

∫ ∞

−∞
Π(y)e−

1

2
y2(s−t)+iy

∫ s
t f ′(u)du+ 1

2

∫ s
t (f

′(u))2dueiya+af ′(t)dy

= e
1

2

∫ s
t (f

′(u))2du+af ′(t) 1

2π

∫ ∞

−∞
Π(y)e−

1

2
y2(s−t)+iy(a+

∫ s
t f ′(u)du)dy

as claimed. �

This leads to our already anticipated claim, that boundary crossing

probabilities, are equivalent to a set of heat equation problems.

Theorem 6.2. The density ϕ of the first passage time T defined in (1)

is related to a solution of the heat equation ω as follows

ϕ(s, a) = ω

(

s, a+

∫ s

0

f ′(u)du

)

,
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and it is bounded by

h(s, a)e−af ′(0)− 1

2

∫ s
0
(f ′(u))2du−

∫ s
0
f ′′(u)Ẽa(X̃u)du

≤ ω

(

s, a+

∫ s

0

f ′(u)du

)

≤ h(s, a)e−af ′(0)− 1

2

∫ s
0
(f ′(u))2du

where h is as in (5).

Proof. It follows from Jensen’s inequality,

exp

{

−
∫ s

0

f ′′(u)Ẽt,a(X̃u)du

}

≤ Ẽ
t,a

[

exp

{

−
∫ s

0

f ′′(u)X̃udu

}]

≤ 1,

equation (20), and (30). �

As a corollary we obtain the necessary boundary conditions for den-

sity ϕ:

Corollary 6.3. From the previous Theorem, the following boundary

conditions hold:

lim
a→0

ω

(

s, a+

∫ s

0

f ′(u)du

)

= δ(0),(34)

lim
s→0

ω

(

s, a+

∫ s

0

f ′(u)du

)

= 0.
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and

1√
2πs3

e−
1

2

∫ s
0
(f ′(u))2du−2

√
2

π

∫ s
0
f ′′(u)

√
s−u

√
u
s
du

≤ lim
a→0

ωa

(

s, a+

∫ s

0

f ′(u)du

)

≤ 1√
2πs3

e−
1

2

∫ s
0
(f ′(u))2du

or given the definition of Fractional Integral

Jαg(x) :=
1

Γ(α)

∫ x

0

(x− y)α−1g(y)dy, x > 0, α ∈ R
+

we have

1√
2πs3

e−
1

2

∫ s
0
(f ′(u))2du−s−1/2J3/2f ′′(s)

√
2s

≤ lim
a→0

ωa

(

s, a+

∫ s

0

f ′(u)du

)

≤ 1√
2πs3

e−
1

2

∫ s
0
(f ′(u))2du.

That is, Theorem 6.2 together with Corollary 6.3 uniquely charac-

terize the density of T . Alternatively, from Theorem 6.2, we have

obtained—for free—lower bounds for the problems described in Re-

marks 5.1 and 5.3.
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7. Concluding Remarks

As was already mentioned in the Introduction, the aim of this pa-

per is not to provide a new set of solutions to the problem of bound-

ary crossing. Our goal is instead conceptual, in that we first make

use of Girsanov’s theorem to connect hitting time problems to Bessel

bridges. We do so by use of the Optional Sampling Theorem. Next,

we relate exponential functionals of 3 dimensional Bessel bridges to

Schrödinger’s equation with linear potential. This is done by uniquely

relating both problems through a Feynman-Kac representation. We

conclude by characterizing the density of T in terms of a heat-equation

problem and/or two alternate Schrödinger-equation problems.

Girsanov’s link is useful since it suggests how to extend this idea to

higher dimensions or more general diffusions. Alternatively, the con-

struction of Bessel bridges points to the fact that the concept can be

extended. From the derivation of our Feynman-Kac representation we

have learned that in some particular cases, sufficient conditions can be

relaxed. Finally, Schrödinger’s equation with linear potential may be

the way in which boundary crossing probabilities of some “higher or-

der” processes can be described. For example, instead of having a para-

bolic equation—which describes the transition probability of Brownian
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motion—as in (26), it could be that a process with transition proba-

bility

∂θ

∂t
(t, x) = α

∂nθ

∂xn
(t, x), [0,∞)× R, n ≥ 2,

has a first passage time probability which might be described by a

Schrödinger type-problem:

∂w

∂t
(t, x) + xf ′′(t)w(t, x) = α

∂nw

∂xn
(t, x), [0,∞)× R.

In particular note that the techniques used in the proof of Theorem 6.2

still hold.
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