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ABSTRACT. In this work we find a sequence of functions fn at which
the integral

v(t,x) =
∫

∞

−∞

eiλx−λ 2t/2−λ 4/4dλ(1)

is identically zero for all t ≥ 0, that is

v(t, fn(t)) = 0 ∀t ≥ 0.

The function v, after proper change of variables and rotation of the path
of integration, is known as the Pearcey integral or Pearcey function, in-
distinctly. We also show that each fn is expressed in terms of a sec-
ond order non-linear ODE, which turns out to be of the Rayleigh-type.
Furthermore the initial conditions, which uniquely determine each fn,
depend on the zeros of an Airy function of order 4 defined as

φ(x) =
∫

∞

−∞

eiλx−λ 4/4dλ .

As a byproduct of these facts, we develop a methodology to find a
class of functions which solve the moving boundary problem of the heat
equation. To this end, we make use of generalized Airy functions, which
in some particular cases fall within the category of functions with infin-
itely many real zeros, studied by Pólya.
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1. INTRODUCTION

The Pearcey integral was first evaluated numerically by Pearcey [11] in
his investigation of the electromagnetic field near a cusp. The integral ap-
pears also in optics [1], in the asymptotics of special functions [6], in prob-
ability theory [15], as the generating function of heat (and hence Hermite)
polynomials of order 4k for k ∈ N [13]. It also falls into the category of
functions considered by Pólya [12], that is functions with countably many
zeros. For the numerical evaluation of the zeros of the Pearcey integral see
for instance [6], this will be important since this zeros will correspond to
the initial value of each function fn(0).

The main motivation in finding the zeros of the Pearcey function, which
solves the heat equation

ht(t,x) =
1
2

hxx(t,x),(2)

is due to the fact that the main building block used to construct the density
of the first time that a Wiener process hits a boundary f , is to find a function
f such that

h(t, f (t)) = 0 ∀t ≥ 0.

For example, suppose there is a financial contract which will be activated
if ever the price of an asset S (modelled as Brownian motion) reaches a
prescribed boundary f . For instance, in Figure 1 the blue line represents
the evolution of the price of St , for t ∈ [0,10], in turn the red line represents
a boundary which activates a contract if it is ever reached. In particular, the
barrier option is a contract of this type. For a more detailed exposition see
for instance [5].

Next, we note that for some constant b ∈ R, the function

h(t,x) =
x√

2πt3
exp
{
−x2

2t

}
+b

1√
2πt

exp
{
−x2

2t

}
,(3)

with (t,x) ∈ R+×R, solves the heat equation (2). This is true since h in
(3) is a linear combination of the fundamental solution of (2) and its first
derivative with respect to the space variable x. It is clear that the function
(3) equals zero at x =−bt. Hence, for any a ∈ R, and setting x = a−bt in
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FIGURE 1. The dotted line represents the price of some as-
set S, in turn, the solid line represents a boundary which will
activate a contract the first time it is reached. In this exam-
ple the contract was activated approximately at time t = 5.
This is a random time, since it would have been impossible
to foresee the outcome.

(3) we obtain

h(t,a−bt) =
a√

2πt3
exp
{
−(a−bt)2

2t

}
, (t,x) ∈ R+×R.

We note that the right-hand side of this identity is in fact the density of the
first time that a Brownian motion hits a linear boundary [7, p. 196]. In
practice these results are used for instance in (a) the valuation problem of
financial assets, in particular in the valuation of barrier options [see Björk
(2009)], (b) in the quantificaction of counterparty risk [see Davis and Pisto-
rious (2010)], and in general in physical problems.

The main contributions of this work are, on the one hand, finding the ze-
ros of the Pearcey integral. On the other, advancing in the direction of de-
veloping a rather simple and straightforward methodology to find explicit
solutions of the time-varying boundary problem for the heat equation. In
this regard we note that there exist techniques to study the latter aforemen-
tioned problem in terms of solutions to integral equations [4]. We recall
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that solutions in terms of integral equations, in general can only be evalu-
ated numerically. In turn, our approach leads to solutions in terms of ODEs.

The paper is organized as follows. In Section 2 we introduce the Airy
function of order 4. Next in Section 3 we define the Pearcey integral and
describe its connection with the Airy function of order 4. In Section 4 we
derive a Rayleigh-type equation, whose solution kills the Pearcey function.
The techniques described in Section 4 are illustrated with examples in Sec-
tion 5. In Section 6 we derive a function which asymptotically solves the
moving boundary problem for the Pearcey integral. This approximation can
be helpful in the numerical solution of the Rayleigh equation. We conclude
in Section 8, with some final remarks.

2. GENERALIZED AIRY FUNCTION OF ORDER 4

With respect to the zeros of Fourier integrals, Pólya proved [12] that all
the zeros of ∫

∞

−∞

e−u2m+izudu, for m = 1,2,3 . . .(4)

are real and infinitely many for m> 1. In turn, the generalized Airy function
φ of order 4 can be expressed as a solution of the following ODE

φ
(3) = xφ ,(5)

φ
( j) = ( j−3)φ ( j−4)+ xφ

( j−3) for j > 3.

One can prove, for instance applying the Fourier transform to (5) and solv-
ing the resulting equation, that φ is a particular case of (4) when m = 2,
namely

φ(x) =
1

2π

∫
∞

−∞

exp
{

ixy− y4

4

}
dy.(6)

Furthermore function φ is symmetric, with countably many zeros in the real
line—hence oscillatory—and tends to zero as it increases to±∞, see Figure
2. Regarding the zeros of (6), there exist asymptotic estimates which are
derived by means of the method of steepest descent [14].
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FIGURE 2. We plot function φ , defined in (6). We observe
the function is even and its first zero is at ±2.44197.

3. THE PEARCEY INTEGRAL

Paris [9, 10] analyzed the asymptotic behavior of

P′n(X ,Y ) =
∫

∞

−∞

ei(u2n+Xun+Yu)du, n ∈ N, n≥ 2,

which by rotation of the path of integration (u = te
πi
4n ) and use of Jordan’s

lemma (see [14]) can be expressed as

P′n(X ,Y ) = Pn(x,y) = e
πi
4n

∫
∞

−∞

e−t2n−xtn+iytdt,

with x = Xe−
πi
4 and y = Ye

πi
4n . In particular, the Pearcey integral, which

solves (2), is the case P2. More explicitly, we have the following.

Definition 3.1. [11]The Pearcey integral is defined as

P′2(X ,Y ) =
∫

∞

−∞

ei(u4+Xu2+Yu)du.(7)

In this work we study instead the following Fourier integral

v(t,x) :=
1

2π

∫
∞

−∞

exp
{

iλx− 1
2

λ
2t− λ 4

4

}
dλ ,(8)
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because the zeros of v, for (t,x) ∈ R+×R, are expressed in terms of a
continuously differentiable function f , as opposed to (7). See [14].

Remark 3.2. We observe that the function v in (8) is the convolution be-
tween the kernel of standard Brownian motion and the generalized Airy
function of order 4, in equation (5).

4. ZEROS OF THE PEARCEY FUNCTION

Remark 4.1. Throughout this work, the n-th partial differentiation with
respect to the space variable x of any given function v(t,x) is denoted as
v(n).

In this section we find the function f for which the Pearcey function is
zero for every t ≥ 0. The idea is to exploit, on the one hand, the differential
form of the Airy function of order 4, defined in (5), and on the other to use
the fact that the Pearcey function solves the heat equation (2).

The main result is the following.

Theorem 4.2. Suppose that v is as in (8), φ solves (5), ξ is such that φ(ξ ) =

0, and f is a solution to the following Rayleigh-type ODE

f ′′(t) = 2
[

f ′(t)
]3− 1

2
t f ′(t)− 1

4
f (t),(9)

with f (0) = ξ and f ′(0) =−φ (2)(ξ )/[2φ (1)(ξ )]. Then, for every t ≥ 0, we
have

v(t, f (t)) = 0.

Proof. Given that φ is as in (6), its Fourier transform equals

φ̃(λ ) = exp
{
−λ 4

4

}
.

Furthermore, if we apply the Fourier transform directly to the ODE (5) we
have that

(iλ )3
φ̃ = i

d
dλ

φ̃ .
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Since this expression is already in Fourier domain, we convolve the previous
expression with the heat kernel as follows∫

eiλx− 1
2 λ 2t(iλ )3

φ̃dλ =
∫

ieiλx− 1
2 λ 2t d

dλ
φ̃dλ

=
∫

ieiλx− 1
2 λ 2tdφ̃ .

This in turn, and by direct application of the integration by parts formula,
yields

v(3) = −
∫

φ̃ i(ix−λ t)eiλx− 1
2 λ 2tdλ ,

= xv+ tv(1),(10)

as well as

v(4) = v+ xv(1)+ tv(2),(11)

after differentiation with respect to x.
Next given that there exists an f , see Pólya [12], such that the following

holds for all t

v(t, f (t)) = 0,

we differentiate (Leibniz integral rule) v with x = f (t), defined in (8), with
respect to t to obtain

1
2π

∫
∞

−∞

(iλ f ′(t)−1/2λ
2)exp

{
iλ f (t)− 1

2
λ

2t− λ 4

4

}
dλ = 0,

which is equivalent to

f ′(t)v(1)(t, f (t))+
1
2

v(2)(t, f (t)) = 0(12)

and

f ′′(t)v(1)+ f ′(t)( f ′(t)v(2)+ v(3))+
1
4

v(4) = 0(13)

after differentiation with respect to t twice. We note that equations (10) and
(11) obtained from the Airy differential equation (5) , as well as (12) and
(13) obtained from the heat equation, involve derivatives of v up to order
4. What remains is to obtain (9) from these expressions. To this end, from
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(10) and (11) we first have

v(3)(t, f (t))
v(1)(t, f (t))

= t

v(4)(t, f (t))
v(1)(t, f (t))

= f (t)+ t
v(2)(t, f (t))
v(1)(t, f (t))

.

Next from (12) and (13) it follows that

f ′(t)+
1
2

v(2)(t, f (t))
v(1)(t, f (t))

= 0

f ′′(t)+ f ′(t)

(
f ′(t)

v(2)(t, f (t))
v(1)(t, f (t))

+
v(3)(t, f (t)
v(1)(t, f (t))

)
=−1

4
v(4)(t, f (t))
v(1)(t, f (t))

.

These identities yield

f ′′(t)+ f ′(t)
(
−2( f ′(t))2 + t

)
=−1

4
( f (t)−2t f ′(t)).

This completes the proof of Theorem 4.2. �

5. EXAMPLES

To illustrate Theorem 4.2 we next present examples and numerical ex-
periments.

Numerical Example 5.1. One can show that at t = 0 the following two
identities hold for f : f (0) = ξ = 2.44197 and f ′(0) = 0.729925. Hence,
from Theorem 4.2, we may plot the solution of (9), see Figure 3, for t ∈ [0,4].
The ODE was solved numerically using Mathematica.

Airy4 [ x_ ] :=

1 / ( 2∗ Pi )∗ N I n t e g r a t e [ Exp [ I ∗x∗y − y ^ 4 / 4 ] , {y , − I n f i n i t y , I n f i n i t y } ]

Airy41 [ x_ ] :=

N I n t e g r a t e [ I Exp [ I x y − y ^ 4 / 4 ]∗ y , {y , − I n f i n i t y , I n f i n i t y } ] / (

2 \ [ P i ] )

Airy42 [ x_ ] :=

N I n t e g r a t e [−Exp [ I x y − y ^ 4 / 4 ]∗ y ^2 , {y , − I n f i n i t y , I n f i n i t y } ] / (

2 \ [ P i ] )

x1 = FindRoot [ Re [ Airy4 [ x ] ] , {x , 2 . 4 4 } ]

x1 = x / . x1

fp = −N[ Re [ Airy42 [N[ x1 ] ] ] ] / ( 2 ∗ Re [ Airy41 [N[ x1 ] ] ] )

s = NDSolve [ { g ’ ’ [ x ] == −(g [ x ] / 4 ) −



ON THE ZEROS OF THE PEARCEY INTEGRAL 9

1 2 3 4

3

4

5

6

FIGURE 3. Numerical solution of (9) with f (0) = ξ =
2.44197, and f ′(0) = 0.729925. The graph was plotted us-
ing Mathematica.

1 / 2 x g ’ [ x ] + 2 ( g ’ [ x ] ) ^ 3 , g [ 0 ] == x1 ,

g ’ [ 0 ] == fp } , g , {x , 0 , 4} , AccuracyGoal −> 20 ,

P r e c i s i o n G o a l −> 10 , W o r k i n g P r e c i s i o n −> 33]

P l o t [ E v a l u a t e [ g [ x ] / . s ] , {x , 0 , 4} , P lo tRange −> A l l ]

Numerical Example 5.2. To test the accuracy of the solution in Example
5.1 we may use the following code in Mathematica in the interval t ∈ [0,4].

t e s t [ x_ ] := g [ x ] / . s

F0 [ t_ , x_ ] :=

1 / ( 2∗ Pi )∗ N I n t e g r a t e [

Exp [ I ∗x∗y − y^2∗ t / 2 − y ^ 4 / 4 ] , {y , − I n f i n i t y , I n f i n i t y } ]

Tab le [ Re [ F0 [ i / 1 0 0 , t e s t [ i / 1 0 0 ] [ [ 1 ] ] ] ] , { i , 0 , 400 , 1} ]

Next, we present some further examples of the methodology discussed in
the previous section.

Example 5.3. The Airy function of order 3 solves the following ODE

φ
(2)(x) = xφ(x).

Using the same argument as in the proof of Theorem 4.2 it follows that

v(2)(t,x) = xv(t,x)+ tv(1)(t,x).
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This last expression evaluated at f yields

v(2)

v(1)
(t, f (t)) = t.

Finally, from the previous expression and (12) it follows that

f ′(t) = −1
2

v(2)

v(1)
(t, f (t))

= −1
2

t.

Thus, for some constant C

f (t) =C− 1
4

t2.

See [16, p.126 ]. For applications of the Airy function in the first hitting
time problem of Brownian motion up to a quadratic function see [8].

Example 5.4. Given the following ODE

φ
(2)(x) = xφ(x)+φ

(1)(x),

and following the same line of reasoning as in the proof of Theorem 4.2 we
have

v(2)(t,x) = xv(t,x)+ tv(1)(t,x)+ v(1)(t,x).

From (12) we obtain

v(2)

v(1)
(t, f (t)) = t +1.

It follows that

f ′(t) =−t +1
2

or

f (t) =− t
2
− t2

4
+C

For example if C = −2.58811 the moving boundary problem of the heat
equation associated with φ is solved.
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Example 5.5. Given the following Bessel ODE

φ
′′(x) =−

(
5
2
− 1

4
x2
)

φ(x).

Similar calculations as in the previous examples yield

f (t) =±1
2

√
t2−4.

Example 5.6. The derivative of the Airy function Ai′(x) solves

xφ
′′(x) = φ

′(x)+ x2
φ(x),

which yields

−tv(3)(t,x)+(t2− x)v(2)(t,x)+(1+2xt)v(1)(t,x)+(x2 + t)v(t,x) = 0.

Alternatively, from Example 5.3 we also have that

v(3)(t,x)− tv(2)(t,x)− xv(1)(t,x)−2v(t,x) = 0.

Using the same arguments as those described in Section 4 leads to

2 f (t) f ′(t)+(1+ t f (t)) = 0.(14)

This is the Abel equation of the second kind and its solution can be ex-
pressed in terms of the Airy function of order 3 Ai, as follows:

1
2

tAi
(

t2

4
+ f (t)

)
+Ai′

(
t2

4
+ f (t)

)
= 0.

See Figure 4 for a numerical example with f (0) =−1.01879.

6. ZEROS OF THE PEARCEY FUNCTION. AN ASYMPTOTIC APPROACH

In this section we carry out an analysis in order to find an asymptotic solu-
tion to the moving boundary problem associated with the Pearcey integral.
This result is useful when finding the numerical solution of the Rayleigh
equation (9). The main result of this section is the following.

Theorem 6.1. Suppose that v is as in (8), ξ is any zero of the Airy function
of order 3, and

f (t) =−2(t/3)3/2 +ξ (3t)1/6, t ≥ 0.(15)



12 GERARDO HERNÁNDEZ-DEL-VALLE

1 2 3 4 5

-0.8

-0.6

-0.4

-0.2

FIGURE 4. The Numerical solution of f , defined in Exam-
ple 5.6, and such that f (0) = −1.01879 was plotted with
Mathematica.

Then

v(t, f (t))→ 0,

as t→ ∞.

Proof. For brevity let us just consider the term within the brackets in (8),
i.e.,

exp
{

iλy− 1
2

λ
2t− λ 4

4

}
.

Introduce a variable −α2t/2,

exp
{

λ (iy+αt)− 1
2
(λ +α)2t− λ 4

4

}
e

1
2 α2t .

Set u = λ +α and rearrange terms to obtain

exp
{

u(iy+αt)− 1
2

u2t− (u−α)4

4

}
e−

1
2 α2t−iαy

= exp
{

u(iy+αt +α
3)− 1

2
u2(t +3α

2)+αu3− u4

4

}
e−

α4
4 −

1
2 α2t−iαy.
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To get rid of the heat (or quadratic) term note that

t +3α
2 = 0, gives α± =±i

√
t
3
.(16)

That is,

exp
{

ui
[

y± 2
33/2 t3/2

]
± i

31/2 t1/2u3− u4

4

}
e−

α4
4 −

1
2 α2t−iαy.

Next, if we choose α+, as in (16),

exp
{

ui
[

y+
2

33/2 t3/2
]
+

i
31/2 t1/2u3− u4

4

}
e

5
36 t2+
√

t
3 y,

and thus, from (8),

v(t,y) = e
5
36 t2+
√

t
3 y 1

2π

∫
∞

−∞

e
ui
[
y+ 2

33/2 t3/2
]
+i
√

3t u3
3 −

u4
4 du.

Now, let z = u(3t)1/6, u = z(3t)−1/6, and (3t)−1/6dz = du, which yields

(3t)−1/6e
5

36 t2+
√

t
3 y 1

2π

∫
∞

−∞

e
iz

[
y+ 2

33/2 t3/2
]

(3t)1/6 +i z3
3 −

z4

4(3t)2/3 dz,

or equivalently

(3t)1/6e−
5

36 t2−
√

t
3 yv(t,y) =

1
2π

∫
∞

−∞

e
iz

[
y+ 2

33/2 t3/2
]

(3t)1/6 +i z3
3 −

z4

4(3t)2/3 dz.

Letting y =−2(t/3)3/2 +ξ (3t)1/6

(3t)1/6e
t2
12−ξ

t2/3

31/3 v
(

t,−2
[ t

3

]3/2
+ξ (3t)1/6

)
=

1
2π

∫
∞

−∞

e
izξ+i z3

3 −
z4

4(3t)2/3 dz.

Hence for arbitrary ξ

lim
t→∞

{
(3t)1/6e

t2
12−ξ

t2/3

31/3 v
(

t,−2
[ t

3

]3/2
+ξ (3t)1/6

)}
= Ai(ξ ).

In particular if ξ is a zero of the Airy function then

lim
t→∞

{
(3t)1/6e

t2
12−ξ

t2/3

31/3 v
(

t,−2
[ t

3

]3/2
+ξ (3t)1/6

)}
= Ai(ξ )

= 0.

�
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Numerical Example 6.2. For instance, if ξ = −2.33811 we have that
f (t) = 2(t/3)3/2 +2.33811(3t)1/6. See Figure 5.

Next, using the results of this Section and Section 4, we present an algo-
rithm which can be used to solve (9) in Theorem 4.2 .

Algorithm 6.3. For some root ξ of the Airy function Ai, let f̃ be defined as
in (15). Given an arbitrary time t ∈ R+ we may find a solution to equation
(9) in the interval [t− ε, t + ε] as follows.

Given t and ξ , find a root of function v , defined in (8), starting at f̃ (t).
Lef f (t) be the root obtained in the previous step,

then f ′(t) =−1/2 · v(2)(t, f (t))/v(1)(t, f (t)).
With f (t) and f ′(t) solve (9) in [t− ε, t + ε], for some ε > 0.

Numerical Example 6.4. Suppose we choose t = 10 and ε = 2. Then the
procedure is the following

F1 [ t_ , x_ ] :=

1 / ( 2∗ Pi )∗ N I n t e g r a t e [ ( I ∗y )∗
Exp [ I ∗x∗y − y ^ 2 / 2∗ t − y ^ 4 / 4 ] , { y , − I n f i n i t y , I n f i n i t y } ]

F2 [ t_ , x_ ] :=

1 / ( 2∗ Pi )∗ N I n t e g r a t e [ ( I ∗y ) ^2∗
Exp [ I ∗x∗y − y ^ 2 / 2∗ t − y ^ 4 / 4 ] , { y , − I n f i n i t y , I n f i n i t y } ]

asy [ t _ ] := 2∗ ( t / 3 ) ^ ( 3 / 2 ) − A i r y A i Z e r o [ 1 ]∗ ( 3∗ t ) ^ ( 1 / 6 )

x10 = FindRoot [ Re [ F0 [ 1 0 , t ] ] , { t , N[ asy [ 1 0 ] ] } ]

x10 = t / . x10

fp10 = −Re [ F2 [ 1 0 , x10 ] ] / ( 2 ∗ Re [ F1 [ 1 0 , x10 ] ] )

s10 = NDSolve [ { g ’ ’ [ x ] == −1/4∗g [ x ] + 2∗ ( g ’ [ x ] ) ^ 3 − 1 /2∗ x∗g ’ [ x ] ,

g [10] == x10 , g ’ [ 1 0 ] == fp10 } , g , { x , 8 , 12} , AccuracyGoal −> 20 ,

P r e c i s i o n G o a l −> 10 , W o r k i n g P r e c i s i o n −> 30]

7. POSSIBLE APPLICATIONS AND WORK IN PROGRESS

Due to the stochastic and periodic nature of several economic variables,
as for instance Mexico’s general CPI or the Fruit and Vegetable annual in-
flation and assuming W is a random walk, these processes can be modelled
as

Xt =
n

∑
j=1

β j sin(φ j +2πν jt)+Wt , t = 1,2, . . . ,(17)
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FIGURE 5. The red line is the real boundary f , the blue is
as in (15), with ξ = −2.33811. The graph was plotted with
Mathematica.

where the β j and φ j represent respectively the amplitude and phase at a time
given frequency ν j. In turn a continuous time approximation of (17) can be
expressed in terms of the solution of an SDE of the form since

dXt = µ(t,Xt)dt +σ(t,Xt)dWt ,(18)

∼

∆X j = µ( j,X j)∆ j+σ( j,X j)∆Wj, j = 0,1, . . . ,

where functions µ and σ are respectively:

µ(t,Xt) =
n

∑
j=1

2πν jβ j cos(φ j +2πν jt), and σ(t,Xt) = 1,

and W is a Wiener process. A reasonable set of questions that could be
asked could be for instance:

What is the probability that Fruit and Vegetable annual

inflation will reach 20 points before the end of 2016?

What is probability that the general CPI will remain

between 3 and 4 percent until the end of 2017?
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As it turns out, to answer the previous questions it is necessary to under-
stand the moving boundary problem of heat equation addressed in this work.
More specific examples is still work in progress.

8. CONCLUDING REMARKS

In this work we find the zeros of the Pearcey function, in terms of the
solution of a Rayleigh-type equation. This goal is achieved by exploiting,
on the one hand, the differential equation of an Airy function of order 4
and on the other by using the fact that the Pearcey function is a solution
of the heat equation. As a by-product we develop a methodology, using
straightforward techniques, to solve the moving boundary problem of the
heat equation in the case in which the convolving function is a generalized
Airy function. We expect that the techniques described within can be used
in the construction of densities of the first hitting time problem of Brownian
motion. The scope and applicability to the latter problem is still work in
progress.
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