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Abstract. We study the density of the first time that a Bessel bridge of

dimension δ ∈ R hits a constant boundary. We do so by first writing the
stochastic differential equations to analyze the Bessel process for every δ ∈ R.
Then, we make use of a change of measure using a Doob’s h-transform. The
technique covers processes which are solutions of a certain class of stochastic

differential equations. Another example we present is for the 3–dimensional
Bessel process with drift.

1. Introduction

This paper concerns δ–dimensional Bessel processes and δ–dimensional Bessel
bridges for δ ∈ R. When δ is a positive integer, recall that the Bessel process
describes the dynamics of the Euclidean norm of a δ–dimensional Brownian mo-
tion (BM). On the other hand, a Bessel bridge is described as a Bessel process
conditioned to reach a specific point at some time T > 0. The paper has two main
objectives. The first one is to describe a recipe for calculating the density of the
first time that a δ–dimensional Bessel bridge hits a given level b ∈ R. The second
objective is to identify a class of diffusion processes for which first hitting–time
densities can be calculated in a similar fashion as for the Bessel bridges.

The problem of finding the first hitting–time density of diffusions may be traced
back at least to Schrödinger [28]. Exact densities of hitting times for Brownian
motion have been found in the case of reaching a linear boundary [6, 7], a square
root boundary [3, 4, 29, 5, 30], and a parabolic boundary [10, 26, 17]. Consult
also [23, 19] to see integral equations coming from the first passage time problem.
In this context, one very well studied diffusion is the Bessel process [2, 11, 15,
16, 27]; in particular, for Bessel bridges see [8, 12]. Some applications in financial
mathematics are mentioned in the internal report [13].

The main contribution of this paper is to advance in the direction of produc-
ing a technique (to study hitting-time densities) using tools which are somewhat
classical, such as: space transformations, Doob’s h-transform, and the optional
sampling theorem. We also extend the idea for a broader class of diffusions.

The paper is organized as follows. In Section 2 we recall what a Bessel bridge
is and give the necessary results to characterize it using stochastic differential
equations up to the time it hits zero. In Section 3 we use an h-transform in a
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class of diffusions in order to study the hitting–time problem, and we apply the
results to the Bessel bridge. In Sections 4 we additionally carry out particular
space transformations to take a new point of view of the original problem, which
helps to adapt the ideas of Section 3 to another class of diffusions; here the Bessel
process with negative dimension comes into scene. In Section 5 we mention how
the idea carries on to the 3–dimensional Bessel process with positive linear drift.
We end up in Section 6 with some comments and conclusions.

2. Preliminaries

• In this paper we consider a probability space over Ω := C([0,∞)) endowed
with a filtration {Ft}t≥0, that satisfies the usual hypotheses, and that supports a
Brownian motion W . As done in Definition 3 in [9], we define the squared Bessel
process Z with dimension δ ∈ R and starting at Z0 := a ∈ R as the unique strong
solution of

dZt = δdt+ 2
√
|Zt|dWt, Z0 = a.

Now, let us define the δ ∈ R-dimensional Bessel process by

Yt := sgn(Zt)
√
|Zt|,

starting at Y0 = sgn(a)
√
|a|. It is also said that Y has index ν := δ

2 − 1.

• If δ > 0 one can deduce from the Apendix A.1 in [9] that Y satisfies the following
stochastic differential equation (SDE) up to time τ0 := inf{s > 0 : Ys = 0}:

dYt =
δ − 1

2

1

Yt
dt+ dWt, Y0 := a > 0, t ∈ [0, τ0). (2.1)

It is known that for δ ≥ 2, τ0 = ∞ almost surely. Moreover, from Section 3 in [9],
it turns out that when δ < 0 and a > 0, the Bessel process Y is solution of

dYt =
−δ − 1

2

1

Yt
dt+ dWt, Y0 := a > 0, (2.2)

whenever t ∈ [0, τ0), see also Remark 4.1 below. And for δ ∈ R and a < 0, the
squared Bessel process can be seen as the negative of a squared Bessel process
starting at −a > 0 with the same dimension δ. Thus, in this case, the Bessel pro-
cess Y is such that −Y is solution of (2.1) starting at −a. All these considerations
allows us to use equation (2.1) to analyze Y for general δ, a ∈ R, at least up to the
time it hits zero.

• Let T > 0. The process X := {Xs, s ∈ [0, T ]} will denote the δ-Bessel bridge
with X0 := a ∈ R and XT = c ∈ R. Loosely speaking, X is the process Y
conditioned to take the value c at time T . Following [22, p.463], let us rigorously
define the process X. Let P denotes the probability measure on Ω that defines the
Bessel process. For u ∈ R and measurable subsets A ⊂ Ω, it is known (see [14], p.
107) that there exists a probability kernel u×A 7→ ηu(A) such that

P (A) =

∫
R
ηu(A)µ(du), (2.3)
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where µ is the distribution of YT . The following expression is an intuitive idea of
what ηu is,

ηu(A) = P (A|YT = u).

With u = c, the probability measure ηc on Ω, denoted Q, defines a stochastic
process called the Bessel bridge X of dimension δ starting at a and such that it
finishes at c at time T .

To introduce our first result, Theorem 2.2, we recall the following facts.

Remark 2.1. The density of the Bessel process with index ν := δ/2− 1 ≥ −1 and
initial state x > 0 [22, p.446] is given by

pt(x, y) :=
1

t

yν+1

xν
e−

x2+y2

2t Iν

(xy
t

)
, t > 0, (2.4)

where Iν(x) is the modified Bessel function (with index ν) of the first kind defined
as

Iν(x) :=

∞∑
k=1

(x/2)2k+ν

k!Γ(ν + x+ 1)
. (2.5)

In the next theorem, we apply Itô’s formula to Bessel processes Y of dimension
δ > 0. For δ ∈ (0, 1), Y is not semimartingale, except before the first time it
reaches zero. The following result characterizes the Bessel bridge with dimension
δ > 0; in the literature, this is usually done only for δ ≥ 2 (see e.g. [22, p.468]).
Moreover, from the discussion above, using the next theorem we can derive an
SDE to work with Bessel bridge with δ < 0.

Theorem 2.2. i) Fix δ > 0, a > 0, and c = 0, and let Zt := h(t, Yt)/h(0, a),
where

h(t, x) :=
T δ/2

(T − t)δ/2
e−

x2

2(T−t) . (2.6)

Then for t < T and A ∈ Ft

Q(A) =

∫
A

ZtdP.

ii) The process X satisfies the following SDE when t ∈ [0, τ0),

dXt =

(
δ − 1

2Xt
− Xt

T − t

)
dt+ dWt, X0 = a > 0, (2.7)

where τ0 := inf{s > 0 : Xs = 0}

To prove Theorem 2.2, we need the following lemma.

Lemma 2.3. Fix δ > 0 and c > 0. Let Y be the δ-Bessel process with measure
P , and X the Bessel bridge defined by measure Q in Theorem 2.2. Then, for
0 < t < T ,

dQ

dP
|Ft =

T

T − t

exp
{
− Y 2

t +c2

2(T−t)

}
exp

{
−a2+c2

2t

} aν

Y ν
t

Iν

(
cYt

T−t

)
Iν

(
ac
T

) , (2.8)

with Iν as in Remark 2.1.
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Proof. Let {I(n)k }nk=1, for n = 1, 2, . . ., be a sequence of disjoint partitions of R such

that limn→∞ I
(n)
k is a single point in R for each k. Then, appealing to equation

(2.3), we can write∫
R
ηu(A)µ(du) = P (A) =

n∑
k=1

P (A, YT ∈ I
(n)
k ).

Since this is valid for each n = 1, 2, . . ., we have that∫
R
ηu(A)µ(du) = lim

n→∞

n∑
k=1

P (A|YT ∈ I
(n)
k )P (YT ∈ I

(n)
k ).

We can then conclude that

ηu(A) = lim
n→∞

P (A|YT ∈ I
(n)
k ).

Having this, we can now proceed as follows. Let A ∈ Ft, with t < T . Let In be
a sequence of intervals such that c ∈ In and limn→∞ In = {c}. Appealing to the
theory of derivatives of measures (see Chapter 7 of [25]) and using the Markov
property we have

Q(A) = lim
n→∞

P (A|YT ∈ In) = lim
n→∞

P (A, YT ∈ In)

P (YT ∈ In)

= lim
n→∞

E[P (A, YT ∈ In|Yt)]

P (YT ∈ In)

= lim
n→∞

∫
A

P (YT ∈ In|Yt)

P (YT ∈ In)
dP.

But

lim
n→∞

P (YT ∈ In|Yt)

P (YT ∈ In)
=

pT−t(Yt, c)

pT (a, c)
,

with pt(x, y) as in (2.4). Therefore, after appealling to theorem of bounded con-
vergence, we can confirm that the above limit is precisely (2.8). □

Proof. (of Theorem 2.2)
From Lemma 2.3, letting c → 0 in (2.8), we obtain i). This is indeed true because,
by (2.5),

lim
c→0

aν

xν

Iν(xc/(T − t))

Iν(ac/T )
=

(
T

T − t

)ν

.

To prove ii), define Z as in i). It is known that Y is a semimartingale for δ ≥ 1.
And for δ ∈ (0, 1), as pointed out in [18], process Y is a semimartingale up to the
time it hits zero. This allows us to apply Itô’s formula to process Z, which gives
rise to the SDE

dZt = −Zt
Yt

T − t
dWt, Z0 = 1, t < τ0.

Finally, an application of Girsanov’s theorem yields the desired result. □

At this point, since in the literature there is available statistical knowledge
on the stopping time inf{s > 0 : Ys = b}, one might use Theorem 2.2 to find
information about inf{s > 0 : Xs = b}, which is precisely what we are going to do
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below. However, we want to take a more general perspective in order to cover a
larger class of diffusion processes.

It should be remembered that the hitting time is in direct connection with the
so-called running maximum of the stochastic process. Thus, one could see that
when dealing with the distributions of the former we are also dealing with the
distributions of the later. Refer to [20] to see distributions of running maximum
of Bessel bridges.

3. First Hitting Time of Bessel Bridges I

The function h in (2.6) is a solution of a specific partial differential equation
(PDE). In fact one can see that h is the so-called Doob’s h-transform to go from
the process Y to the process X (see [24] for an introduction to h-transforms).

The idea now is to work with a class of processes satisfying certain SDEs. It
is known that harmonic functions with respect to some Markov process might be
used to construct an h-transform of the process. We do so in the following result.

Theorem 3.1. Let S ⊂ R be an interval and let α : S → R be a function such
that the following SDE has a unique strong solution,

dYt = α(Yt)dt+ dWt, Y0 = a ∈ S, t ∈ [0, τ0), (3.1)

where τ0 ≤ ∞ is a stopping time with respect to Y , and which can take any value
in [0,∞] with positive probability. Also, let T > 0 be fixed, and assume that there
exists a positive solution h : [0, T ]× S → R of the PDE

−ht(s, y) =
1

2
hxx(s, y) + α(y)hx(s, y), y ∈ S, s ∈ [0, T ].

Then, for Zt := h(t, Yt)/h(0, a) with t < τ0, the following defines a probability
measure

Q(A) := E[ZtIA] for all A ∈ Fτ0 . (3.2)

And under Q the process Y is solution of the SDE

dXt =

[
α(Xt) +

hx(t,Xt)

h(t,Xt)

]
dt+ dWt, X0 = a, t ∈ [0, τ0). (3.3)

To be more explicit, under Q in (3.2), the process Y is denoted X. We will write
EP or EQ to emphasize under which measure one is calculating an expectation.
Below we will give an example that fits into this theorem.

Proof. By Itô’s formula and the hypotheses (the constant h(0, a) can be dismissed
for a moment)

dZt = hx(t, Yt)dYt + ht(t, Yt)dt+
1

2
hxx(t, Yt)(dYt)

2

= hx(t, Yt)α(Yt)dt+ hx(t, Yt)dWt + ht(t, Yt)dt+
1

2
hxx(t, Yt)dt

= Zt
hx(t, Yt)

h(t, Yt)
dWt,
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with t ∈ [0, τ0) and Z0 = 1. This means that Z is a positive martingale for t < τ0
and with Z0 = 1. Thus, Q is well defined and (3.2) holds. Furthermore, Z satisfies

the SDE Zt = 1 +
∫ t

0
ZsdMs for t < τ0, and where

Mt :=

∫ t

0

hx(s, Ys)

h(s, Ys)
dWs.

So, Z is the Doléans-Dade exponential

exp

{∫ t

0

hx(s, Ys)

h(s, Ys)
dWs −

1

2

∫ t

0

h2
x(s, Ys)

h2(s, Ys)
ds

}
.

Hence the new dynamics (3.3) comes from a change of measures (see e.g. [24] pag.
177 or [21] pag. 134). □

Example 3.2. We can corroborate that the Bessel bridge fits into the context of
Theorem 3.1. Indeed if

α(x) :=
δ − 1

2x
,

then the function

h(x, t) :=
T

(T − t)δ/2
exp

{
− x2

2(T − t)

}
(3.4)

is the desired solution to the parabolic PDE

−ht(t, x) =
1

2
hxx(t, x) + α(x)hx(t, x), x ∈ [0,∞), t ∈ [0, T ].

Moreover, one can check that the Bessel bridge X is recovered from the Bessel
process Y ; in symbols:

(P ) dYt = α (Yt) dt+ dWt,

(Q) dXt =

(
α (Xt) +

hx(t,Xt)

h(t,Xt)

)
dt+ dWt,

Q =
h(t, Yt)

h(0, a)
P on Ft.

In this case hx/h simplifies considerably.

As a consequence of Theorem 3.1, we may find the distribution of inf{s > 0 :
Xs = b} by knowing the distribution of inf{s > 0 : Ys = b}.

Corollary 3.3. Under the conditions of Theorem 3.1, for any a ∈ S, let τ be a
stopping time with respect to X such that τ ≤ τ0 a.s. Then

Q(τ < t) = EP

[
ZtI{τ<t}

]
, t < T. (3.5)

Proof. One can see that {τ < t} ∈ Fτ0 . □

We can now continue with our program of finding the distribution of τ :=
inf{s > 0 : Xs = b}. There are expressions for the distribution of τ under P , that
is for the distribution of inf{s > 0 : Ys = b}; we wish to use those expressions to
find Q(τ < t).
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Theorem 3.4. Under the conditions of Theorem 3.1. Define τ := inf{s > 0 :
Xs = b} and suppose that this is such that the condition of Corollary 3.3 holds.
Then

Q(τ < t) =

∫ t

0

h(s, b)

h(0, a)
P (τ ∈ ds), t < T. (3.6)

Proof. Using Corollary 3.3, we have that

Q(τ < t) = EQ

[
I{τ<t}

]
= EP

[
h(t, Yt)

h(0, a)
I{τ<t}

]
=

∫ ∞

0

EP

[
h(t, Yt)

h(0, a)
I{τ<t}|τ = s

]
P (τ ∈ ds)

(applying the optional sampling theorem)

=

∫ t

0

h(s, b)

h(0, a)
P (τ ∈ ds),

where we have used the fact that τ = u implies Yu = b. □

Example 3.5. We can now join pieces to find the first hitting–time density. Let
X be the δ-Bessel bridge with δ ∈ {1, 3}, and such that X0 = a > 0 and XT = 0.
If 0 < b < a, using formula (3.6) above and (3.7) below, we have for τ := inf{s >
0 : Xs = b} that

Q(τ ∈ dt) =
h(t, b)

h(0, a)

(
b

a

)ν+|ν|
a− b√
2πt3

e−
(a−b)2

2t , t ≤ T,

where h is given in (3.4) and ν := δ/2− 1.

Remark 3.6. According to Theorem 2.2 of [11] , for δ = 1 or δ = 3, and if 0 < b < a,
the distribution of the first time that a δ-Bessel process Y starting at a hits b is
given by

P (τ ≤ t) =

(
b

a

)ν+|ν| ∫ t

0

a− b√
2πs3

e−
(a−b)2

2s ds. (3.7)

Also, if ν − 1/2 is an integer but |ν| ̸= 1/2 and again 0 < b < a, then

P (τ ≤ t) =

(
b

a

)ν+|ν| ∫ t

0

a− b√
2πs3

e−
(a−b)2

2s ds

−
(
b

a

)ν Nν∑
j=1

Kν(azj/b)

zjKν+1(zj)

∫ t

0

a− b√
2πs3

e
− (a−b)2

2s +
zj(a−b)

√
t

b
√

s ds, (3.8)

where Kν is the modified Bessel function of the second kind, Nν is the number of
zeros of the function Kν , and {zj , j = 1, . . . , Nν} are the zeros of Kν (which are
different from each other).

Example 3.7. Here we give a formula for the first time that a Bessel bridge hits
a line with positive slope. Let Y be a δ-Bessel process with δ > 0 starting at
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Y0 := a > 0, and let τ := inf{s > 0 : Ys = b + cs} with b, c > 0. Following
Theorem 5.1 of [1],

P (τ ∈ dt) :=
e(c/2b)(b

2−a2)+tc2/2

(1 + tc/b)ν+2

∞∑
j=1

a−νzjJν(zja/b)

b2−νJν(zj)
e−z2

j
t

2b(b+ct) , (3.9)

for t ≥ 0. Now, let X be the δ-Bessel bridge such that X0 := a and XT := 0.
Following the reasoning to Example 3.5, that is, taking into account Example 3.2
and Theorem 3.4, we arrive to an expresion for the density of

inf{s > 0 : Xs = b+ cs},
given by

Q(τ ∈ dt) =
h(t, b)

h(0, a)
P (τ ∈ dt), t ∈ [0, T ],

where P (τ ∈ dt) is precisely (3.9).

4. First Hitting Time of Bessel Bridges II

When dealing with a Bessel bridge, we find relevant to modify the hitting–
time problem by making space-transformations of the SDEs that yield probably
better-behaved equations, and this is precisely the content of this section. We also
realized that with these transformations one can connect the original problem of
Bessel bridges with one of Bessel processes with negative dimension δ < 0.

Let us explain the idea. Let X be the Bessel bridge with dimension δ > 0, and
let Y be the Bessel process with dimension 4− δ < 4, both starting at a ∈ R and
such that XT = 0. Let us apply Itô’s formula (up to the time the processes hit
zero) to the transformations Xδ−2 and Y δ−2. Then

dXδ−2
t = (δ − 2)Xδ−3

t dXt

+
1

2
(δ − 2)(δ − 3)Xδ−4

t (dXt)
2

=

(
(δ − 2)2Xδ−4

t − δ − 2

T − t
Xδ−2

t

)
dt

+(δ − 2)Xδ−3
t dWt.

Hence, if U := Xδ−2, then X = U
1

δ−2 and

dUt =

(
(δ − 2)2U

δ−4
δ−2

t − δ − 2

T − t
Ut

)
dt (4.1)

+(δ − 2)U
δ−3
δ−2

t dWt.

Similarly, V := Y δ−2, i.e. V is the (4 − δ)-Bessel process raised to the power
δ − 2, satisfies the SDE

dVt = (δ − 2)V
δ−3
δ−2

t dWt. (4.2)

Notice that if inf{s > 0 : Us = d} and inf{s > 0 : Vs = d} are related somehow,
then so are inf{s > 0 : Xs = b} and inf{s > 0 : Ys = b}. This is indeed the case
due to the Theorem 4.2 below, whose proof follows the same line of reasoning of
Theorem 3.1. First we note the following.
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Remark 4.1. To study Bessel bridges of dimension δ > 4 we are using Bessel
processes of dimension δ − 4. It is shown in [9, section 3], see pages 329 and
330, that if a δ-Bessel process, with δ < 0, starts above zero, then it will become
negative in finite time; however, prior to this moment it behaves as a 4− δ Bessel
process.

Theorem 4.2. Let S ⊂ R be an interval and σ : [0,∞)×S → [0,∞) be a function
such that the following SDE has a unique strong solution,

dVt =
√
σ(t, Vt)dWt, V0 = a ∈ S, t ∈ [0, τ0), (4.3)

with τ0 ≤ ∞ allowed to be a r.v. Assume as well that there exits a positive solution
h : [0, T ]× S → R of the following PDE

−ht(s, y) =
1

2
σ(s, y)hxx(s, y), y ∈ S, s ∈ [0, T ].

Then Zt := h(t, Vt)/h(0, a) defines a new probability measure

Q(A) := E[ZtIA] for all A ∈ Fτ0 , (4.4)

under which the process V is solution of the SDE

dUt = σ(t, Ut)
hx(t, Ut)

h(t, Ut)
dt+

√
σ(t, Ut)dWt, U0 = a, t ∈ [0, τ0). (4.5)

Under Q the process V will be denoted by U .

Example 4.3. Let us put in action Theorem 4.2 to deal with equations (4.1) and
(4.2), with τ0 := inf{s > 0 : Vs = 0}.

For the solution V of (4.2), the associated PDE is

−ht(t, x) =
1

2
(δ − 2)2x2 δ−3

δ−2hxx(t, x), (4.6)

and the solution we are interested in is

h(t, x) = x(T − t)−
δ
2 exp

{
− x

2
δ−2

2(T − t)

}
. (4.7)

Then

hx(t, x)

h(t, x)
=

1

x
− x

2
δ−2−1

(δ − 2)(T − t)
.

We also have that

σ(x) = (δ − 2)2x2 δ−3
δ−2 , (4.8)

and so

σ(x)
hx(t, x)

h(t, x)
= (δ − 2)2x

δ−4
δ−2 − δ − 2

T − t
x.

It follows that the dynamics of U in equation (4.1) can be expressed as

dUt = σ(Ut)
hx(t, Ut)

h(t, Ut)
dt+

√
σ(Ut)dWt,

which is the new dynamics under Q.
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Remark 4.4. One can see that under the hypotheses of Theorem 4.2 the conclusions
in Corollary 3.3 and Theorem 3.4 remain valid, and the proofs are actually the
same. That is, if τ := inf{s > 0 : Us = b} for some b ∈ S with τ ≤ τ0 a.s., then

Q(τ < t) = EP

[
ZtI{τ<t}

]
.

Moreover,

Q(τ < t) =

∫ t

0

h(s, b)

h(0, a)
P (τ ∈ ds), (4.9)

when t ≤ T . Here, P (τ ∈ ds) is the law of τ under P , which ends up being
inf{s > 0 : Vs = b}.

We are now in position to find the distribution of inf{s > 0 : Xs = b} for δ ̸= 2,
which is carried out by finding the distribution of inf{s > 0 : Us = bδ−2}. Since U
is related to V by means of Theorem 4.2, we can then use formula (4.9). At the
end, we can use the fact that

inf{s > 0 : Vs = bδ−2} = inf{s > 0 : Ys = b}

together with the first hitting–time distribution of the Bessel process Y (which is
found in the literature; see [2, 16, 11]). Let us present two examples of this idea
in the coming proposition and example.

Remark 4.5. According to [15] (see also equation (2.5) in [11]), for δ ∈ R and
0 < b < a, the Laplace transform of the first time that a δ-Bessel process Y
starting at a hits b is given by

E
[
e−θτ

]
=

a−ν

b−ν

Kν

(
a
√
2θ
)

Kν

(
b
√
2θ
) , (4.10)

whereKν(x) is the the modified Bessel function of the second kind and ν := δ/2−1.

Proposition 4.6. Let V be the solution of (4.2) with V0 = a > 0, and let τV :=
inf{s > 0 : Vs = d} with 0 < d < a. Then its Laplace transform is

EQ

[
e−θτV

]
=

√
a

d

K 2−δ
2

(√
2θy

1
δ−2

)
K 2−δ

2

(√
2θd

1
δ−2

) , (4.11)

for θ > 0.

Proof. The result follows from formula (4.10) due to the equality

τV = inf{s > 0 : Ys = d1/(δ−2)}.

Find more details in [15]. □

Example 4.7. Take X to be the Bessel bridge of dimension δ = 5 with X0 = a.
Thus according to (4.1) the process U := X3 is solution of the SDE

dUt =

(
9U

1/3
t − 3Ut

T − t

)
dt+ 3U

2/3
t dWt, U0 = a3, t < T.
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On the other hand, we consider the process V defined in (4.2), which is the cube
of a Bessel process with dimension −1, solution of

dVt = 3V
2/3
t dWt, V0 = a3, t < T.

Using (4.9) and (4.7) we have that

Q(τ < t) = Q(inf{s > 0 : Us = b3} < t)

=

∫ t

0

h(s, b3)

h(0, a3)
P (inf{s > 0 : Vs = b3} ∈ ds)

=

∫ t

0

h(s, b3)

h(0, a3)
P (inf{s > 0 : Ys = b} ∈ ds)

=

∫ t

0

h(s, b3)

h(0, a3)
P (τ ∈ ds).

Since ν − 1/2 = −2, and if in addition 0 < b < a, we are then in the situation
of equation (3.8), and the density

P (inf{s > 0 : Ys = b} ∈ ds)

can be written explicitly; in this case it is known that Kν has only one zero
z1 = −1, so that Nν = 1.

Using Leibnitz’ rule, we can write down the explicit density by taking the
derivative of (3.8):

P (τ ∈ dt) =

(
b

a

)ν+|ν|
a− b√
2πt3

e−
(a−b)2

2t

−
(
b

a

)ν Nν∑
j=1

Kν(azj/b)

zjKν+1(zj)

a− b√
2πt3

e−
(a−b)2

2t +
zj(a−b)

b

−
(
b

a

)ν Nν∑
j=1

Kν(azj/b)

zjKν+1(zj)

∫ t

0

a− b√
2πs3

zj(a− b)

2b
√
st

e
− (a−b)2

2s +
zj(a−b)

√
t

b
√

s ds.

Therefore the density of the first time that the 5-Bessel bridge X hits level b
(with 0 < b < a) is given by (with h as in (4.7))

Q(τ ∈ dt) =
h(t, b3)

h(0, a3)
P (τ ∈ dt). (4.12)

5. Hitting Times of a Bessel Process With Drift

Consider now the case in Theorem 3.1 when α(x) := α > 0, which corresponds
to a BM with positive linear drift. Then the PDE we need to solve is

−ht =
1

2
hxx − αhx.

It turns out that a positive solution we can consider is

h(t, x) = x− αt.
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Hence we have
hx(t, x)

h(t, x)
=

1

x− αt
, (5.1)

which imposes a restriction on the pair of value (t, x).
Therefore, according to Theorem 3.1, with τ0 := ∞ a.s., after a change of

measure using (5.1), we can study the solution of the SDE

dXt =

[
α+

1

Xt − αt

]
dt+ dWt,

which takes values in the set {(t, x) ∈ [0,∞)× R : t ≥ 0, x > αt} .
The previous process is in fact a 3–dimensional Bessel {Yt} process with positive

linear drift, that is

Xt = Yt + αt.

This can be checked using Itô’s formula because Yt solves the equation

dYt =
dt

Yt
+ dWt.

Therefore, assuming that X0 := a > 0, if we want to obtain the first hitting
time probability Q(τ < t) that {Xt} hits a value b, we can call for Theorem 3.4,
which tells us that

Q(τ < t) =

∫ t

0

b− αs

a
I{b>αs}P (τ ∈ ds), t > 0,

where P (τ ∈ ds) is the first hitting density of point b of a BM starting at a and
with drift αt. The reader might consult [2, p. 223] to write down an expression
for P (τ ∈ ds).

6. Conclusions

In this paper we have given explicit expressions for the hitting–time densities
of a class of Bessel bridges with δ ∈ R. The main tools used have been Doob’s
h-transform, some space transformations, and the optional sampling theorem (as
has been done for the Brownian bridge). Our basic approach was described in
Section 3. To broaden the range of applications we have developed the technique
in such a way that one can recycle it for other processes, namely those that solve
specific SDEs.

Acknowledgment. The authors wish to thank Onésimo Hernández-Lerma for
helping to improve the writing of this paper.
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