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Abstract. In this work we derive the density of the first time
that a 3-D Bessel bridge started at y > 0, reaches a linear level
a + b · t for t ≥ 0 from above, y > a. As well as from below y < a.
The reason as to why a distinction has to be made will be clarified.

Next, a sort of equivalence relationship between the 3-D Bessel
bridge, the 3-D Bessel process, and the Brownian bridge is derived.
In order to do so, we first introduce a new classification of SDEs
in terms of solutions of Burgers’ equation. For instance, these
processes fall within the same class. This follows since one can
show that the local drift of each is a solution to Burgers’ equation.
However, the local drift of the 3-D Bessel bridge, is also the sum
of two solutions of Burgers’ equation.

In general, linear combinations of solutions of Burgers’ equation
are not solutions themselves.

1. Introduction

In Gikhman (1957) and Kiefer (1959) the authors derive the distri-
bution of the running maximum of a Bessel bridge Mk of integer order
k, which in turn is related to the Kolmogorov-Smirnov and Cramér-
von Mises tests. The distribution is expressed in terms of a series of
modified Bessel functions. In Pitman and Yor (1999) not only do they
provide several characterizations of the distribution of Mk, they also
show that Gikhman and Kiefer representation is valid for all real k > 0.
For recent applications of the 3-D Bessel bridge in credit risk see for
instance Davis and Pistorius (2010).

There are a number of recent papers on the closely related topic of
hitting times of Bessel process: e.g. Salminen and Yor (2011) or Alili
and Patie (2010).

Date: July 7, 2012.
2000 Mathematics Subject Classification. Primary: 37A50, 60G07, 60H30.
Key words and phrases. Doob’s h-transform, Bessel process, first hitting time,

credit risk.
The research of the author was partially supported by Algorithmic Trading Man-

agement LLC.
1



2 G. HERNANDEZ-DEL-VALLE

In this note we derive the density of the first time that a 3-D Bessel
bridge X started at y ≥ 0 reaches a fixed level a both from above as
well as from below. The case in which the process starts at zero and
reaches a fixed level a > 0 corresponds to the distribution derived by
Gikhman and Kiefer in the special case in which k = 3. However our
series expansions is in terms of the distribution of a one-dimensional
standard Brownian motion absorbed at zero and level a > 0. The
density is also derived in the case in which the process starts above a
linear barrier, which in turn remains strictly positive during the lifetime
of the process. To do so we make use of an h transform derived in
Hernandez-del-Valle (2011) [regarding the h-transform see for instance
Rogers and Williams (2000)].

Next we derive a sort of equivalence relationship between the 3-D
Bessel bridge, the 3-D Bessel process, and the Brownian bridge. In
order to so we classify processes whose local drift can be expressed
as linear combinations of solutions to Burgers’ equation. Under this
classification these processes are within the same class. This follows
since their local drift are all solutions to Burgers’ equation. However
in the case of the 3-D Bessel bridge its local drift is also a sum of two
solutions of Burgers’ equation. This property in general does not hold.

The paper is organized as follows in Section 2 an h-transform is
derived without proof [for more details see Hernandez-del-Valle (2011)
or Hernandez-del-Valle (2012)]. Next, in Section 3 the density of hitting
a fixed boundary a starting from above is derived, a concrete example
is provided. This result is extended, in Section 4, in the case in which
the barrier is linear. This result is a direct consequence of the fixed
boundary case, Girsanov’s theorem, and Appell’s transform. Next, in
Section 5, the problem of hitting the boundary from below is revisited.
However, as pointed out above our representation involves the density
of a Brownian motion absorbed at zero and level a. In Section 6 we
develop a relationship class between the 3-D Bessel bridge, the 3-D
Bessel process, and the Brownian bridge. We conclude in Section 7
with some final comments and remarks.

2. An h-transform

Remark 2.1. (On notation.) In our results below we consider real
valued differentiable functions h, u, v, and w, depending on variables
(t, x; s, y) ∈ R+ × R × R+ × R. As in the analysis of diffusion pro-
cesses, PDEs with derivatives with respect to (t, x) are called backward
equations, whereas PDEs with derivatives in (s, y) are called forward
equations.
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Furthermore, through out this work (i) B = {Bt,Ft}t≥0 stands for
one-dimensional standard Brownian motion. (ii) For a given function,
say w, partial differentiation with respect to a given variable, say x,
will be denoted as wx.

In this section we relate, in Propositions 2.2 and 2.3, systems of
coupled backward and forward Kolmogorov equations, through a pair
of backward equations. This in turn allows us, in Theorem 2.4, to
transform problems of diffusions with drift (or convective mass transfer)
into problems of diffusions without drift (or with potential), under a
suitable change of measure.

For the proof of the following statements, which have been omit-
ted for ease of exposition, the reader may consult Hernandez-del-Valle
(2011).

Proposition 2.2. For σ : R+ × R → R, and h, v, and w be of class
C1,2. Suppose that v, w, and h satisfy the following identity

v(τ, y) = w(τ, y) · h(τ, y).(1)

If h and v satisfy respectively (a) and (b)
wτ = 1

2
σ2wyy + σ2

ywy + 1
2
σ2
yyw (a)

hτ = −1
2
σ2hyy (b)

vτ = 1
2
∂2

∂y2

[
σ2v
]
− ∂

∂y

[
hy
h
σ2v
]

(c)

(2)

then (c) holds.

Proposition 2.3. Let σ : R+ × R → R, and h, v, and w be of class
C1,2. Suppose that v, w, and h satisfy the following identity

v(t, x) =
w(t, x)

h(t, x)
(3)

and h(t, x) 6= 0 for some strip in R+×R. If w and h satisfy respectively
(a) and (b) satisfy the following system of partial differential equations

−wt = 1
2
σ2wxx (a)

−ht = 1
2
σ2hxx (b)

−vt = 1
2
σ2vxx + σ2 hx

h
vx (c)

(4)

then (c) holds.

The following theorem follows from the previous propositions.

Theorem 2.4. Let h be of class C1,2(R+ × R) as well as a solution
to the backward heat equation (2). Furthermore, consider processes
X, and Y which respectively satisfy (at least in the weak sense), the
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following equations (each under their corresponding measures P, and
Q),

(P) dXt =
hx(t,Xt)

h(t,Xt)
σ2(t,Xt)dt+ σ(t,Xt)dBt(5)

(Q) dYt = σ(t, Yt)dBt.(6)

Moreover, suppose that f and σ are real valued and integrable. Then
the following identity holds

EP
t,x[f(Xτ )] = EQ

t,x

[
h(τ, Yτ )

h(t, x)
f(Yτ )

]
.(7)

3. Hitting a fixed ball from outside

Throughout the remainder of this work X denotes a 3-D Bessel
bridge, which has the following dynamics:

dXt =

{
1

Xt

− Xt

s− t

}
dt+ dBt, X0 = y > 0.(8)

Furthermore let

T = inf
{
t ≥ 0|Xt = a}, a > 0,(9)

be the first passage time of X to level a (unless otherwise stated).
Making use of Theorem 2.4 and assuming that X starts outside a

ball of radius a, that is 0 < a ≤ y. The probability that a 3-D Bessel
bridge process, absorbed at zero at time s, hits for the first time a ball
of radius a is the following.

Theorem 3.1. Let X be a process with P-dynamics as in (8). Then
for 0 ≤ t ≤ s and 0 < a ≤ y

Py(T < t) = e
y2

2s

∫ t

0

s3/2 · a
(s− u)3/2 · y

e−
a2

2(s−u)
y − a√
2πu3

e−
(a−y)2

2u du.

Proof. For t ≤ s, x ∈ R, the function

h(t, x) =
x√

2π(s− t)3
exp

{
− x2

2(s− t)

}
is a solution to the backward heat equation. Alternatively since

hx
h

=

{
1

x
− x

(s− t)

}
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then the dynamics of the 3-D Bessel bridge (8), for 0 ≤ t ≤ s, may be
written in terms of h as follows

dXt =

{
1

Xt

− Xt

(s− t)

}
dt+ dBt

=
hx(t,Xt)

h(t,Xt)
dt+ dBt, X0 = y.

Given T as in (9), and a process Y , with dynamics

dYt = dBt, Y0 = y, t ≥ 0(10)

it follows, as a consequence of Theorem 2.4 that

Py(T < t) = Ey

[
I(T<t)

]
= EQ

y

[
h(t, Yt)

h(0, Y0)
I(T<t)

]
= e

y2

2s EQ
y

[
s3/2 · Yt

(s− t)3/2 · y
exp

{
− Y 2

t

2(s− t)

}
I(T<t)

]
.

From the following two facts: (i) h is a solution to the backward heat
equation then process h(·, Y·) is a Q martingale, and (ii) T ∧ t is a
bounded stopping time w.r.t to the filtration generated by Ỹ . Then,
from the optional sampling theorem

= e
y2

2s EQ
y

[
s3/2 · a

(s− T )3/2 · y
exp

{
− a2

2(s− T )

}
I(T<t)

]
= e

y2

2s

∫ t

0

s3/2 · a
(s− u)3/2 · y

e−
a2

2(s−u)
y − a√
2πu3

e−
(a−y)2

2u du.

�

Example 3.2. In Figures 1 and 2, we have the true and empirical
densities and distributions of the first time that a 3-D Bessel bridge
process started at y = 3 and absorbed at time s = 4, reaches level
a = 1.

4. Hitting a moving ball from outside

In this section we find the probability of the first time that a 3-
D Bessel bridge absorbed at zero at time s, hits a ball from outside.
However, now the inner ball is expanding or contracting at a linear
speed. That is for a < y let

T := inf {0 ≤ t ≤ s|Xt = a+ bt}(11)

be the first passage time of X to a linear moving boundary. Further-
more we assume that the linear boundary is strictly positive on [0, s].
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Theorem 4.1. Choose 0 < a ≤ y and let f be the linear boundary

f(t) := a+ bt, b ∈ R, t ∈ R+.

If we assume that f remains strictly positive on [0, s] then for t < s

Py(T < t) = e
y2

2s

∫ t

0

s3/2 · (a+ bu)

(s− u)3/2 · y
e−

(a+bu)2

2(s−u)
y − a√
2πu3

e−
(y−a+bt)2

2u du.

Proof. We follow the proof of Theorem 3.1. Let T be as in (11)

Py(T < t) = Ey

[
I(T<t)

]
= EQ

y

[
h(t, Yt)

h(0, Y0)
I(T<t)

]
.

Next observe that under Q, and given process Y with dynamics as in
(10), the stopping time T becomes

T = inf{0 ≤ t ≤ s|Yt = a+ bt}
= inf{0 ≤ t ≤ s|Yt − bt = a}
= inf{0 ≤ t ≤ s|Ỹt = a}.

That is process process Ỹ has the following Q-dynamics

dỸt = −bdt+ dBt, Ỹ0 = y.

As a direct consequence of Girsanov’s theorem we have

Py(T < t) = EQ̃
y

[
e−bỸt+by−

1
2
b2th(t, Ỹt + bt)

h(0, Ỹ0)
I(T<t)

]
.

From the following two facts: (i) given that h is a solution to the
backward heat equation, we know that

exp

{
−bx− 1

2
b2t

}
h(t, x+ bt), R+ × R

is also a solution to the backward heat equation as well (Appell’s trans-
form). This implies that process

exp

{
−bỸ· −

1

2
b2·
}
h(·, Y· + b ·)

is a Q̃-martingale, and (ii) T ∧ t is a bounded stopping time w.r.t. the
filtration generated by Ỹ . Then, from the optional sampling theorem

= EQ̃
y

[
e−b(a−y)−

1
2
b2T h(T, a+ bT )

h(0, Ỹ0)
I(T<t)

]
= e

y2

2s

∫ t

0

s3/2 · (a+ bu)

(s− u)3/2 · y
e−

(a+bu)2

2(s−u)
y − a√
2πu3

e−
(y−a+bt)2

2u du.
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�

5. Hitting a ball from inside

In this section we derive the density of the first time that a 3-D Bessel
process started at y hits a fixed level a, given that y < a. That is, we
find the probability of the first time that a ball with initial radius y.
Which will contract by time s, will ever hit a fixed outer ball of radius
a.

In order to do so, we will make use of the following. Given that
Y is a one-dimensional Wiener process started at y, let us define the
following two stopping times

T0 = inf {t ≥ 0|Yt = 0}
T = inf {t ≥ 0|Yt = a} , 0 < y < a.

Alternatively

Py(T ∧ T0 ∈ dt) :=
1√
2πt3

∞∑
n=−∞

[
(2na+ y) exp

{
−(2na+ y)2

2t

}

+(2na+ a− y) exp

{
−(2na+ a− y)2

2t

}]
dt(12)

Py(T0 ∈ dt) :=
y√
2πt3

exp

{
−y

2

2t

}
dt.(13)

See for instance Chapter 2, Section 8 in Karatzas and Shreve (1991).

Theorem 5.1. Let process X have dynamics as in (8) and T be as in
(9). We have for 0 ≤ t ≤ s and 0 < y ≤ a

Py(T < t) = e
y2

2s

∫ t

0

s3/2 · a
(s− u)3/2 · y

e−
a2

2(s−u)

× (Py(T ∧ T0 ∈ du)− Py(T0 ∈ du)) ,

where Py(T ∧ T0 ∈ dt), and Py(T0 ∈ dt) are as in (12), and (13)
respectively.

Proof. We follow the proofs of Theorems 3.1 and 4.1. However, we must
take into account the fact that the Q-Wiener process Y is absorbed at
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zero. Given that T is as in (9)

Py(T < t) = Ey

[
I(T<t)I(T0>t)

]
= EQ

y

[
h(t, Yt)

h(0, Y0)
I(T<t,T0>t)

]
= EQ

y

[
h(T, a)

h(0, Y0)
I(T<t,T0>t)

]
,

where the last line follows from the optional sampling theorem. Finally
we recall the identity

Py(T < t, T0 > t) = Py(T0 > t)− Py(T > t, T0 > t)

= Py(T0 > t)− Py(T ∧ T0 > t)

= Py(T ∧ T0 < t)− Py(T0 < t).

�

Alternatively, in the case in which the boundary is linear, but remains
strictly positive during the lifetime of the 3-D Bessel bridge, we have
the following result:

Theorem 5.2. Choose 0 ≤ y ≤ a and let f be the linear boundary

f(t) := a+ bt, b ∈ R, t ∈ R+.

If we assume that f remains strictly positive on [0, s] then for t < s

Py(T < t) =

∫ t

0

e−ab+by−
1
2
b2uh(u, a+ bu)

h(0, y)

× (P(T ∧ T0 ∈ du)− Py(T0 ∈ du)) ,

where Py(T ∧ T0 ∈ dt), and Py(T0 ∈ dt) are as in (12), and (13)
respectively.
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Proof. We follow the proof of Theorem 5.1 together with Girsanov’s
rule as used in the proof of Theorem 4.1

Py(T < t) = Ey

[
I(T<t)I(T0>t)

]
= EQ

y

[
h(t, Yt)

h(0, Y0)
I(T<t)I(T0>t)

]
= EQ̃

y

[
e−bỸt+by−

1
2
b2th(t, Ỹt + bt)

h(0, Ỹ0)
I(T<t)I(T0>t)

]

= EQ̃
y

[
e−ba+by−

1
2
b2T h(T, a+ bT )

h(0, y)
I(T<t)I(T0>t)

]
=

∫ t

0

e−ab+by−
1
2
b2uh(u, a+ bu)

h(0, y)

× (P(T ∧ T0 ∈ du)− Py(T0 ∈ du)) .

�

6. Equivalence of 3-D Bessel bridge, 3-D Bessel process,
and Brownian bridge

In this section we derive a sort of equivalence relationship between
the 3-D Bessel bridge, the 3-D Bessel process and the Brownian bridge.
To this end we will make use of a more general version of Theorem 2.4.

Theorem 6.1. Let g and k be of class C1,2(R+ × R) as well as solu-
tions to the backward heat equation (2.b) [or equivalently (4.b)]. Fur-
thermore, consider processes X, Y , and Z, which respectively satisfy
(at least in the weak sense), the following equations (each under their

corresponding measures P, Q̃, and Q),

(P) dXt =

[
kx(t,Xt)

k(t,Xt)
+
gx(t,Xt)

g(t,Xt)

]
dt+ dBt

(Q̃) dZt =

[
gx(t, Zt)

g(t, Zt)

]
dt+ dBt(14)

(Q) dYt = dBt.

Moreover, suppose that

u(σ, φ) :=
kx(σ, φ)

k(σ, φ)

gx(σ, φ)

g(σ, φ)
(15)
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and k(σ, φ) · g(σ, φ) 6= 0 for some strip in R+ × R. Then the following
identities hold

Pt,x(Xτ ∈ A)

= EQ̃
z

[
h(τ, Zτ )

h(t, z)
exp

{
−
∫ τ

t

u(σ, Zσ)dσ

}
I(Zτ∈A)

]
= EQ

y

[
k(τ, Yτ )

k(t, y)

h(τ, Yτ )

h(t, y)
exp

{
−
∫ τ

t

u(σ, Yσ)dσ

}
I(Yτ∈A)

]
.(16)

Proof. See the proof of Theorem 2.10 in Hernandez-del-Valle (2011).
�

We will also introduce the following class.

Definition 6.2. We will say that process X, which satisfies the follow-
ing equation

dXt = µ(t,Xt)dt+ dBt

is of class Bn if

µ(t, x) =
n∑
j=1

hjx(t, x)

hj(t, x)
.(17)

Where each hj is a solution of the backward heat equation (2.b) [or
equivalently (4.b)].

Remark 6.3. Given that h is a solution to the backward heat equation
(2.b). Then function µ, defined in (17), is a solution to (the backwards)
Burgers’ equation

−µt =
1

2
µxx + µ · µx.

. Furthermore note that if µ1 and µ2 are solutions to Burgers’ equation,
in general, µ1 + µ2 is not.

Remark 6.4. Processes X1, X2, and X3 which respectively satisfy the
following equations

(P1) dX1(t) = 1
X1(t)

dt+ dBt

(P2) dX2(t) = −X2(t)
s−t dt+ dBt

(P3) dX3(t) =
[

1
X3(t)

− X3(t)
s−t

]
dt+ dBt.

(18)

are of class B1. That is, the 3-D Bessel process X1, the Brownian bridge
X2, and the 3-D Bessel bridge have a local drift which is a solution to
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Burgers’ equation. This statement is verified by using the following
solutions of the heat equation correspondingly

k(t, x) = x, g(t, x) = 1√
2π(s−t)

exp
{
− x2

2(s−t)

}
h(t, x) = x√

2π(s−t)3
exp

{
− x2

2(s−t)

}
.

(19)

However, the local drift of the 3-D Bessel bridge can also be written
as a sum of two solutions of burgers equations. That is.

Proposition 6.5. The 3-D Bessel bridge process X, which solves (8)
is B1 and B2.

Proof. it follows by verifying that for k, g, and h as in (19) the following
identity holds

hx
h

=
kx
k

+
gx
g
.

�

Example 6.6. The Bessel process of order 5 is B2 but not B1. See
Hernandez-del-Valle (2011).

In the previous Sections we have studied the 3-D Bessel bridge pro-
cess X making use of Theorem 2.4. However since X is also B2 we can
also use Theorem 6.1 to obtain the following.

Theorem 6.7. Let processes X1, X2, and X3 be as in (18). Further-
more, let functions k, g, and h be as in (19) and process Y be a solution
of (14.Q). For a real-valued function f the following identities hold

EP3
t,x3

[f(X3(t))] = EP1
t,x1

[
k(τ,X1(τ))

k(t, x1)
f(X1(τ))

s− t
s− τ

]
= EP2

t,x2

[
g(τ,X2(τ))

g(t, x2)
f(X2(τ))

s− t
s− τ

]
(20)

= EQ
t,y

[
g(τ, Y (τ))

g(t, y)

k(τ, Y (τ))

k(t, z)
f(Y (τ))

s− t
s− τ

]
.

Proof. For k, g, and h as in (19) the following identity holds

hx
h

=
kx
k

+
gx
g
.

It follows that the dynamics of X3, equation (18.P3), can be written as

(P3) dX3(t) =

[
kx(t,X3(t))

k(t,X3(t))
+
gx(t,X3(t))

g(t,X3(t))

]
dt+ dBt.
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Moreover from Theorem 6.1, (18) and (14.Q), we have

(P1) dX1(t) =

[
kx(t,X1(t))

k(t,X1(t))

]
dt+ dBt

(Q) dYt = dBt

and

u(σ, φ) :=
kx(σ, φ)

k(σ, φ)

gx(σ, φ)

g(σ, φ)

= − 1

s− σ

⇒ −
∫ τ

t

u(σ, z)dσ = ln

[
s− t
s− τ

]
which yield lines one and three in equation (20). The second line follows
by applying Theorem 6.1 first to process X2. �

7. Concluding remarks

In this work we derive the density of the first time that a 3-D Bessel
bridge: (i) hits a fixed level a from above, (ii) hits a fixed level a from
below, and (iii) and hits a linear boundary from above. Keeping in
mind applications of the 3-D Bessel process in Credit risk [see Davis
and Pistorius (2010)].

Next, a relationship between the 3-D Bessel bridge, the 3-D Bessel
process, and the Brownian bridge is introduced. General results of
processes in class B1 is work in progress.
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Figure 1. (Example 3.2). The graph is plotted in R.
The upper left graph is the histogram of the (simulated)
first time that a 3-D Bessel bridge started at y = 3, and
absorbed at s = 4, reaches level a = 1. In the upper
right frame we have the its theoretical density. In the
lower left we have the simulated distribution, and finally
on its right we have its theoretical counterpart.



FIRST TIME THAT A 3-D BESSEL BRIDGE HITS A BOUNDARY 15

0 1 2 3 4

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Theoretical vs. Sim.

time

P
ro

b
.

Figure 2. (Example 3.2). The graph is plotted in R.
The dotted line is the theoretical probability. The hard
line is a simulation with n = 4500.


