DISCUSSION

of locating a paper on ‘corrosion of aircraft’ while looking for interconnexions between
g a pap g

acronautics and chemistry. Did he not assume at least an elementary subject
categorization in recognizing that ‘corrosion’ is a part of ‘chemistry’? Either it is
necessary for the index to make this recognition and thus choose ‘chemistry’ as one
of the descriptors, or else it is necessary for the retriever to realize that when he wants
all papers on chemistry he must also look under ‘corrosion’. It would seem that some
sort of categorization, either explicit or implicit, cannot be avoided. It might be well
to get away from the limitations of the categorical tree structure by allowing multiple
lines to be drawn upwards as well as downwards in the hierarchal schemes (i
allowing one descriptor or subject to belong to more than one parent category).

C. N. MooEgs in reply: Exceedingly simple information retrieval machines can
and do perform their function at high speeds and come out directly with abstracts, as

" for example the card sorting system of reference 1. Tt wag the point of my paper

to examine, through a study of syntax and coding, how far the capabilities of such
machines (or simple ones like them) could be extended into retrieval of structured
information. The Minicard? is not a simple machine at all. It comprises about half
a dozen different compiex machines, not all of which have yet beer built and tested.
Its semantics and syntax are still hypothetical. Its sorting speed of 1,800 items per
minute is modest for a machine of its complexity, being only about twice that of the
simple machine mentioned above. From reports, it appears that it will be an excellent
specialized machine for the storage of items on film snippets and their high speed
selective photographic copying. For collections of greater than one million items,the
Minicard searching time of about nine hours is rather long, thus limiting its applica-
bility to information retrieval, ) : .

The matter of ‘subject categories” for descriptors is very important and it would
take several full papers to treat3, The use of any hierarchal classification tree like the
Universal Decimal Classification. hinders, rather than aids, information retrieval. It
restricts one’s retrieval questions to only those entries that fit in the classification tree.
The scheme for using ‘multiple lines drawn upwards and downwards’ seems to be
close to Perry’s ‘abstraction ladders’, and as such is a sort of super classification tree.
The list of all these ladders must be set down before you can begin any coding by the
scheme, and there is a fantastic number of possible ladders. There is the interesting
question of what to do where the lines cross (as they do almost everywhere), and this
has never been discussed. My preferred solution to Mr. Irving’s question is to use a

' short written schedule of descriptors (a few hundred in any discipline}, and to have the

retriever use this schedule as a check list in formulating his search, In the schedule he
will find both “chemistry’ and ‘corrosion’. His decision of how to use the concepts
would then come from the explanation written for each of the descriptors in a list of
‘scope notes’. On rare occasions descriptors are actually related by an inclusion
relation, but when they are, only two levels of hierarchy are allowed, and only a small
fraction of the descriptors are so limited.,
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ON THE LANGUAGE OF TAXONOMY:
AN OUTLINE OF A ‘THERMOSTATISTICAL’
THEORY OF SYSTEMS OF CATEGORIES
WITH WILLIS (NATURAL) STRUCTURE*

Benofr MANDELBROT
University of Geneva

Ture NUMBERs of species within genera in natural systems of categories
appear frequently to be ruled by a probability distribution first observed by
J. C. WiLwisl, This distribution can be considered to be an approximation
to an exceptional stadle distribution of Cauchy-Paul Lévy. Its study then runs
quite parallel to that of the normal stable distribution of Laplace-Gauss that is
found in thermodynamics. However, specific properties of the distribution
are quite different and remarkable, and they can be a basis for a wealth of
models for the rules of formation of higher taxonomic categories, on natural
Linnaean classification systems. : :

THE PROBLEM

A Linnaean classification system, or taxonomic tree, is largely an arbitrary
method of identifying species, by successive dichotomies, irrespective of any
assumption about the existence or the values of species frequencies (however,

for comparison purposes, frequencies will sometimes be assumed to exist, in

the sequel, and to be equal). Besides, some, largely arbitrary, intermediate
steps of the identification are given special names, as ‘genera’, ‘families’,
‘orders’, or still higher ‘categories’.

It is found that different genera in a family usually contain a very variable
number of species. Very small or very large genera are frequent, and there is
very little clustering around some median value, with superposed fluctuations,
which is ‘normal’ for physical quantities. This inequality is of very great
interest to the information theorist who, in the absence of any other data,
will be shown to be able to derive structural faws of the whole tree from laws
ruling the partition of species among genera. These laws somewhat reduce
the arbitrariness of taxonomy, and show that natural systems are in many
ways ‘random’ or ‘extremal’,

DATA
Wiwpisi, considering the accepted taxonomies of a few very large biclogical

‘families’, has observed that the number g(s) of genera, having each exactly

* The mathematical developments included in the paper presented. at the Svmposium
have been omitted from this version. It is hoped that they will soon appear in full detail in
Information and Gontrol, a quarterly journal.—Ep. , .
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s species (s'not too small), can consistently be represented by what we shall
call “Willis's relationship’
.N.ﬁhv = Hv...—.l.nﬁ..m.Hv

The ‘intensive’ parameter « is always 0 << « << 1, and is usually close to
0-5. ‘Examples are given in Figure 2, taken from Yurs?,

Willis’s relationship holds, with various values of «, for families taxono-
mized by ‘splitters’ as well as by ‘lumpers’; that is, by taxonomists favouring
‘rather small’ or ‘rather large’ genera. It seems therefore safe to conjecture
(though it needs to be checked) that a lumper’s and a splitter’s taxonomies
for the same family differ only by the value of «. Further, the lumper’s genera
would be called subfamilies by the splitter, It can be conjectured that the
numbers of the splitter’s genera within a lumper’s genus also can he
represented by Willis’s relationship {or ‘follow’ Willis’s law). .

This relationship is not limited to biology; it was found by Zip® to hold
for generic categories of business catalogue items, for generic names of
professions efe. It seems to be very widespread, but is not believed to hold for

any of the non-Linnaean systems of categories of mineralogy, meteorology ete.

Willis probability distribution

It is believed that, in order to understand Willis’s relationship, one should
consider that a random process is at the root of the choice of the taxonomic
trees, of genera (and even of species), and so also of the number of species in
a genus., We shall therefore conjecture that Willis’s relationship is the
frequency distribution of a sample drawn from a random population. The
probability distribution of this population should then be close to the ‘Willis
distribution®
pls) = Ps—@tl) — Hﬁ&nflﬁicﬁ <s < 00; Kl(a) = M_oun_ s—@+1)

Goodness-of fit was checked by Yuie2 [Notice that, before estimating o
one should apply ‘A. M. Turing’s correction’; that is, replace all s by
= (54 1) gls + 1}/g(s); see Goopt]} Since Willis’s relationship does
not hold for s small, P? £ K-Y(a) = X s+ and Pis an independent
parameter. We write P as K(a)a* in order to introduce a new (‘extensive’)
scale parameter 4, proportional to the median value § of s (that is, to the
value of s as likely as not to be exceeded, since this value is given by
K(a)ata%-* = }). However, if a << 1, the above formula introduces the
spurious possibility of void genera ($(0) > 0) and if ¢ > 1, the domain of
variation of s must be restricted to 1 <C k(4) < 5 < o0, .

The striking fact about g(s) is the slowness of its decrease with s~1; the
expected value of s{= EF s} is infinite, as well as the variance, so there
is no sense in speaking of ‘fluctuations around some mean value’.
These properties will induce quite unexpected behaviours. (These would
disappear if Willis’s distribution could be replaced by the distribution
p(s) = P’ exp (—bs)s—@tD), with b very small, which has some theoretical
justification. However, a system with such a structure would have none of
the deep homogeneity properties of a system following a Willis distribution.)

‘Willis systems’ of categories will either be families in which species within
genera follow Willis’s law, or hierarchies of categories in which items of each
level follow the law relative to the items of the level above it. T

. . 1ar ‘
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A modified Willis probability distribution
p'(s) is defined as the coefficient of #° in the series development of the
‘generating function’ (a kind of ‘spectral distribution’):

Glu) =X p'(shu? =1 — a*(1 —u)*
if 5 is large, p'(s) ~ a%s~@+D/T'(—a), which behaves exactly like the p(s) of
Willis’s probability distribution proper.

PROPERTIES OF WILLIS SYSTEMS OF CATEGORIES

It can be shown that, from the fact that the expected value of the number of
species in a genus is infinite, it follows that Willis systems have quite excep-
tional properties relative to operations of addition, division and multiplica-
tion, as defined below. Besides, if the number of species in a family be S,
the expected number of genera will be G = sin am$*/Pn = R(«)$™ (FELLERS).
It is seen that the number of genera per species varies like $*~%, and tends to
zero as the size of the family tends to infinity, §— co. ,

Addition: Lumping together of independent Willis categories (LEvy®7)

The sum of very many, J, Willis variables of same « does not tend to (is not
attracted by) the usual ‘normal’ stable Laplace-Gauss random variable. But
this sum if divided by I¥/#, instead of the usual +/I, tends to an ‘exceptional’
stable Cauchy-Paul Lévy random variable, for which the distribution
F(x) is not known in closed form (except if « = 0-5) but one knows the
‘characteristic function’ (another kind of ‘spectral distribution’)

o) = .ﬁs% dF(x) — mii“ 14+ Aﬁ mmv__ \ | n_“ | i

Clearly, if #, and x, are independent and stable, so is their sum. The
Willis distribution itself is already a good approximation to a stable distribu-
tion, especially for o~ 0-5. (However, it presents the opposite defect
that, whereas one knows p{s), one does not have any closed formula for its
characteristic function ¢@(f) {or its generating function G(x) = [ju® dF(x)
= @(—ilogu)). A further approximation, having closed forms for both
distribution and spectrum, is provided by the Modified Willis distribution.)
From the approximate stability of the Willis distribution, it follows that,
if the number of species in a category is the sum of I independent random
numbers x, following Willis («) distributions with parameters a—except
for the frequencies of small values of the variable—then the total number in
the category follows a Willis (a) distribution with ¢ = (2 af)Y*—except for
the frequencies of small values of the number: this exceptional zone
increases with the exceptional zones of the addends, and with their number.
If the g, are equal, a = o "%, therefore the median number of species,
which is proportional to a, increases like IV*. For example, if a family
contains G genera, the median number of species in it varies like G%, so that
the median number of species per genus tends to infinity with G, like G1*~3,

Division: Splitting of Willis categories: Microcanonical componenis of a genus

Suppose that one wishes to splif each genus of a Willis system, through some

additional “feature’. The presence or absence of such a feature may be ruled
o . .
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by some deterministic process (e.g. equal splitting, or splitting into a fixed
{smail) number of species and the rest). It may also be ruled by a random
process, independent or not from that which determined the number of
species in the category. Suppose that the distribution of the random number
of genera can be considered as a sum of any number of independent com-
ponents. Then it would seem possible to consider the numbers of speciesin the
subgenera as random variables adding to the observed number of species,
This can be done with Willis variables because of their approximate stability,
The problem is then, conceptually, like that of the partition of the energy of

3
f
3
@ § ,.m ®)
. T
2 t ._.|.n 0 } %
: Expected value Expected value 1

~ Figure 1, Probability distribution of the size of a microcanonical component.
(@) Gaussian distribution; () Willis distribution & ~ (-5,

a large thermodynamical system between two large components; ‘energy’ is
replaced by ‘number of species’, which changes nothing. It is well known
that this partition is ‘normally’ proportional, with superposed ‘fluctuations’;
but when the normal distribution is replaced by an exceptional stable one, it
follows that there is an overwhelming probability that, if for example, two
components are expected to be equal, one is in fact very much the larger.
Thus Willis’s law formalizes the link between inequality of splitting (hence
inefficiency of coding) and-inequality of sizes of genera.

Graphically, let £, f5, /> and sy, 54, 5, be the probability distribution a priori,
and the sizes of a component of a genus, of its complement and of the whole.
The distribution of s, is then, e posteriori, if 5 is known:

S0 fals — s If(s) = filsfals — s/ [ Aalsidfols — 1) dsy
If £ (5) is the Gaussian, or respectively some Willis distribution, one has the
graphs of Figure 1, which clearly show the results quoted.

First consequence of the preservation of Willis's law in lumping together of independent
Willis categories and in splitiing of Willis catsgories

Conjecture that the fact that a species present in area X is, or is not, present
in area Y introduces a random splitting of the number of species in X into
two independent Willis (&) variables. Then the numbers of species present in
one only of the two areas, or in beth simultaneously, are Willis (&) variables;
the number of species in both areas is the sum of three independent variables,
and the numbers in each area are sums of two variables, Thus Willis’s
law can be satisfied whichever the area considered: this is in fact the case,
but it was thought to be a proof either of the absurdity of this law or even of
the existence of any law. In fact, it is a characteristic stability property of
this particular law.. Moreover the theory explains the experimental finding
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that most ofien one will have one of the following three situations:

(1) very few common species, a large number of local species;

(2) very many common species, 2 small number of local species;

(3) average number of common species, very many species special to X

(resp. Y), very few species special to ¥ (resp. X). )

Second consequence of the preservation of Willis's law in lumping together of independent
Willis categories and in splitting of Willis categories
Small changes uptwards or downwards of the definition of the genera result in
lumpings or splittings involving small numbers of Willis categories, Hronnt
fore, the Willis property of a system is preserved, another kind of stability.
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Figure 2. Double logarithmic charts for the frequency distributions of sizes of genera.
(a) ¥amily—Cerambycinae; (b) family—Chrysomelidae.

_ (By courtesy. of the Royal Society; Yule®}

Multiplication: Distribution of species within families

The distribution of species within families can be considered as the ‘product’
of two distributions: that of genera within families (having the genera-
ting function G,(x)) and that of species within genera (having the genera-
ting function Gy(u)}. Then (FELLERS) the generating function of the
‘product’ is G(u) = G1(G,(u)). If both terms are Modified Willis, G(u) =
U —a%(1 — [I — a%(l — #)%])* = 1 — q*(1 — u)%%; that is, the product
is Modified Willis {a,a,). This is a kind of homogeneity property. The
relationship between $ and G can be iterated. The expected number of
families is F = R(a,)G% = R(ox,) 8% ¢ic. Consider now N equidistant
categories; all «; are identical. The order of magnitude of the number of
categories, N, required to exhaust § species, will then be such that

_ R(a¥)8<" =R
where R is the number of ‘reigns’, so that N ~ log log R.
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Generation of the modified Willis () systems :
Consider the trees, outcomes of a birth and death process with equal rates;
that is, such that at each dichotomization there are equal probabilities for the
number of species to be one or more than one. The probability that the
tree has s species is 2-4—%, the number of different trees with s species is
(s Am.q —2 ‘

W=1{,_,
the term in u° of the development of | — (1 — u)}; that is, it is given by the
modified Willis (3} distribution. :

The average (over all trees with s ends) of the average (over the species of
a tree) of the number of dichotomies required for identification of equi-
probable species is Vs (instead of log, 5 in identification through dichotomies
into equal parts). Therefore, the average redundancy tends to | as s — oo,

vml?w...(%.wlm.ﬁ ; the probability that a genus has s species is

WILLIS SYSTEMS AS EXCEPTIONAL THERMODYNAMICAL SYSTEMS

Any macroscopic study of systems of a large number of identical elements
hinges on some limit theorem of probability. In the case of thermodynamics
of matter, or of radiation, some special conditions insure convergence to
the ‘normal’ probability distribution (see Kumvcum®), The framework of
thermodynamics is directed towards this application, but is not limited by
the special conditions leading to ‘normality’, and one would think that it can
still be used in the study of non-trivial extensions, where geometrical peculi-
arities of the configuration space lead 'out of the domain of attraction of the
‘normal’ distribution. Paradoxically, however, known (and all unsuccessful)
generalizations of thermodynamics were not based upon a weakening of
any prior assumption, but on attempts to re-interpret some final results and
concepts of the normal case. We shall proceed otherwise, and show that,
because of deep geometric peculiarities, the study of taxonomy can be brought
into thermodynamics, but only at the early stage. The generalization will
be brought at the point where a fundamental limit procedure leads to
replace the normal Gauss distribution by an exceptional Cauchy-Paul Lévy
distribution. This will preserve ‘this fascinating feature of thermodynamics,
that quantities and functions, introduced primarily as mathematical
devices, almost invariably .acquire a fundamental physical meaning’
(ScrropmGER1®). The mathematics of the generalization recalls what js
found in gas theory at another stage: order-disorder problems (see
MAvER-MavEeri),

Some fundamental steps in the Khinchin approach

Let E be the energy of a physical system; let V{(E) be the volume of the phase
space, included inside the surface of the energy E. The derivative S(E) =
V’(E) is called the ‘structure function’ of the system, and is a kind of measure
~ of the ‘number of states’ of energy E. Let us sketch Khinchin’s approach to the
foundations of thermodynamics from the point where it is established that,
when the energy E of a whole is given, the probability that a component
contains energy E; has the distribution S8(E)S,(E — E)/S(E), where
$3(£), S5(E) are the structure functions of the component studied and of its
complement, and where one clearly has S(E) = [E Sy {(E,)Sy(E — E,) dE,.
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The point of a statistical theory of physical objects is to derive properties of

- bulk bodies without too specific hypotheses on the elementary bodies. Here,

one wishes to study the S(Z) of sums of a large number of components,
without having to assume much about the §;(E) of each. The symbolic
calculus suggests forming the Laplace ‘structure generating function® (which
becomes identical to the G(u) defined above, if u = ¢~#)

G(f) = [¢7PES(E) dE
Then, the G(8) of the sum of two systems with g.f. Gy(8) and G,(f) is
G(B) = Gy(B)Ga(B)

For a large number N of components having the same structure generating
function Gy(8), G{(f) = [G,(B)]¥. To enable one to use the n_mmﬂn.ﬂ theorems
of probability, on limits of sums of independent random variables, one
arbitrarily forms the ‘conjugate probability distributions’

#(B,E) = e~PES(E)GL(f)

These distributions are precisely those also reached by Boltzmann’s method
of the most probable state, where S(E) is introduced as a weighting m:.:oﬂ.
Here, however, p(f,E) need not be the distribution of E in any specified
condition. It is simply § multiplied by G(#) and by exp {— BE), which both
cancel out of §,.5,/S, which is the only expression that matters.

The continuation of Khinchin’s argument relies upon ‘the fact that S(E) is
usually an analytic function which does not increase faster than a certain
power of E when E — co’. This is the crux of the matter, When it is so, one -
can roughly expand £—#ES{E) around its mean value, which is finite, as well
as its variance; there is a compromise between the increase of S(E} and the
decrease of exp (—SE). Most rigorously Khinchin applies a (local) law of
large numbers to his ‘conjugate distribution’. In all the ‘normal’ cases, one
obtains Khinchin’s form

! E— \:s“ small order HQ.E“_

&) = 6(p) exp p | = exp | - E P+

The validity of statistical thermodynamics hinges therefore on the conjec-

" ture, which could be made a part of “atomic theory’, that the hypotheses of

this purely mathematical limit theorem are satisfied by matter,

Generalization of Khinchin's approack to fast increasing S(E)
Suppose however that we dismiss any special assumptions. Then, in the
general case, G(f) is finite only il § is greater than some “critical value’ §*,
the abscissa of (all kinds of) convergence of the Laplace transform G(f).
Let 8, =sup (§*,0) (that is: g, = g%, if f*>0; f,=0,if f* << 0),
Both ‘entropy’, H = —[p(8,E) log p(B.E} dE, and ‘average energy’, E =
JEp(B,E)dE are finite and increasing if f > f,, and = 00 if 0 < 8 < fg.
The quantity G(f;) may be infinite e.g. when S{E) = exp (kE). Thisis
found in the case of the number of words of a given cost E, with ‘natural’
segmentation of languages into words (see ManpELBROTI2:15),
Let now G{fy) < 0. Boltzmann’s approach: maxijmation of entropy H
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at a given average energy £ may then be continued thus: after the maxima-
tion of H at given K is performed, maximize relative to all values of £,
"This leads one to choose for 1/f precisely the ‘critical temperature’ 1 1Be.
However to this temperature corresponds now a proper probability distribu-
tion of £; whereas in the normal case, or if G(f) = c0, the maximation of H,
without fixing E, leads to the improper distribution for which all states are
empty.

For example, it was seen in the generation of Willis () systems
that the number of configurations S§(s) of given energy (number
of species) increases like 4° ¢3%2, so that Bolizmann’s formula
p(x) = S(x) exp (—Bx)G1(B) can be defined for § >> log 4 only. At the
limit temperature one has Willis (}) systems, and the sum of a large number
of such systems does not follow the usual normal distribution, but a stable
distribution of index }.

Altogether, one part of Khinchin’s hypotheses amounted to g, = 0;
even if this requirement is dropped most of Khinchin’s argument remains
valid when g > . (Some special considerations which are brought by the
finiteness of §, were given by the author in the study of the thermodynamics
of the rank frequency relationship for words—MAaNDELBROT!2,12,)

One cannot have f < fi;, except when a cut-off of E can be introduced, |

so that the really new phenomenon can occur only if § = §,. This is the
object of the present study, and introduces an apparently new kind of
‘thermodynamic fine structure at a given temperature’, of a seemingly
exceptional type, but which in fact applies to taxonomic categories.

What other behaviour for ${E) could be encountered 4 priori in natural
systems? Thermodynamics assumes that it is adequate to describe a bulk
body byasingle probability distribution; this can only mean that, if and when
the body is large, variations of its size do not change the form of the distribu-
tion, but only a few scaling factors. Practically, non-linear scaling cannot
be considered in this paper, because few theorems are available about
limit tendency of non-linear functions of random variables; but theorems of
Paul Lévy and I, A. Khinchin, and of B. V. GNEDENKO solve the linear case.
They state that, in order that a distribution function F(x) be a limit distribu-

- tion for sums y, = B, L% x, — A, where the x, are independent identically
distributed addends, it is necessary and sufficient that F(x) be ‘stable’, that
B, = n~1% and that the distribution of x, behave at infinity like < (this
last hypothesis is much stricter than those sufficient for tendency to the
normal).

We have exhibited one family of stable distributions. There is also another
family, since our formula for ¢(f) remains meaningful for 1 < a < 2;
but that is all. Thus, besides Willis systems, the only systems with possible
non-normal thermodynamic structure will correspond to stable distributions
of index 1 <C a <C 2 (which occur in econometry, as is shown elsewhere by
the author) for which probability still behaves like Px—®+1) for x large.

‘Though no counterpart seems to be in view for ergodic theorems, the study
of systems with Willis structure seems to be a more natural and less trivial

use of thermodynamic thinking in information theory than in the study of

‘analogies between information and entropy’.
"The probability distributions such as Px={*+1 were believed by Zirs to be
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as central to random phenomena in social sciences as the m_oﬂ.am_ H.memon..
Gauss distribution is to random phenomena in physical sciences. ,Hgm has
led him to conjecture the existence of some commuon principle of ‘least
effort’, a variational principle of behaviour. In H..mor the ﬂrooﬁnm of the
various Zipf’s laws have to be based on very a.qmﬁmd_o assumptions, as mo
what is the appropriate random population, s..rwnvr Bm.wa. the existence of &
single principle very problematic. However, Zipf’s __unr.om in the Epm.cimbnnw
of these probability distributions may very well be vindicated by severa
distinct theories, One other was given in g.rzumrww@iu.s. for the case of the
observed word frequencies; still other models are given elsewhere.

MODELS FOR WILLIS SYSTEMS

It is only fit and appropriate that a model for the Willis distribution has the
deep homogeneity properties of the law itself. A number “om. such models are
found in the counterparts of a few approaches to ‘normal’ thermodynamics.
They may be classified in various ways: . .

(a) in any case {and unless one is ready to consider Embm.ms.m names as
part of the outside world), any property of a result of observation may be
considered as due, either to the thing observed, to the observer, or to the
language used to describe the observation, so that the model m.mﬁrnm mu_::u. to
the items taxonomized, to the taxonomist, or the taxonomy itself; in other
words is biological, psychological or linguistic. ‘

(b} the models may consider the observed _m.s:. either as necessary, or as
due to a choice not involving chance, or as involving a random mechanism,
without or with the use of a limit theorem. The limit may refer to an actual
limiting procedure taken with respect 1o time; . such models are called |
diachronic, models not involving time being synchronic.

(c) a model can consider the system in bulk (normalized form) or as a
composition of elementary systems (extensive form).

Synchronic ‘normalized® psychological models involving chance, but no limit %RS&.E
In order to choose at random a whole taxonomic tree for a family of § species,
one needs a probability measure on the set of all trees with § nw&cha. and
with a transversal line of genera. If all such trees are na.:%uovmgn the
relationship between s and g in the average taxonomies is bound ﬁc.vn
Willis (}). Willis’s law therefore expresses dumoan% of natural taxonomies,
This is closer to normal thermodynamics than is the search for order.
in the dichotomies into equal parts of optimal information mraoﬁ.

One may also use the continued Boltzmann maximation om. entropy,
and one finds that Willis (}) is the most probable taxonomy. (This provides
a criterion of ‘equilibrium’ without balancing of forces or definition of
potential; or else an actual variational principle of vmvmﬁof..v o

Other values of o would result from other rules of discernibility for
taxonomic trees. .

These most probable or average taxonomies also rmﬁm ﬁro ﬁmﬂumﬁﬂow
being very inefficient (redundancy —1 as §-» o.ov. “This is a distinctive
property; any criterion of splitting of genera Hmwn.rsm 1o .nNﬂan€ mu:na_.pmw
parts requires genera having a probability distribution behaving like
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&7%(s), where f(s) decreases slower than any damped exponential, If this
property is to hold for the subgenera obtained by a few splittings, 5 must be
zero. . Further, suppose now that the distribution p(s) is to remain of the
same type after any number of splittings; thatis, the tree is to be homogeneous,
and it is to be impossible to decide, from p(s), at which ‘level’ of the tree one
finds oneself. Then f(s) must be a close approximation to a stable distribu-
tion, that is, to Willis’s distribution.

An extensive model involving chance, and a limit theorem: The biological diachronic
{phyiogenetic) model of Yule .

G. Upny YuLe? considers Willis’s law as a law due to the regularity of the
random process of ‘evolution. Genera and species are assumed to be fully
intrinsic and their evolution to be ruled by chance alone, and to be represent-
able by multiplications (splittings) with constant average rates y and o,
Let @ = yp/o. Then, after a very long time of evolution, one obtains:

po) =1 : ~ al(1 + a)s=C+D

Cwral )

which is another modified form of Willis’s probability distribution.

An extensive linguistic diachronic (phylogenetic) model

A system of signs is first established by some taxonomist; but then, it
follows a sort of ‘evolution’: as new speciesare found, other, earlier considered
as different, are found to be the same, new areas are discovered ete. In the
spirit of the theory of communication, Yule’s theory could be re-phrased by
denying all reality to either species or genera, but imagining that the words
that represent them follow an evolution, largely independent from the point
of departure. This may be considered as a reasonable theory for trade names
and business catalogue indexes where, clearly, an evolution has proceeded
within the history of language; but it is not so in the case of biological
taxonomies, often established by a single man, once for all.

Synchronic limit models

If Willis’s law were established for subcategories adding to a category (at
least approximately established), it would follow accurately for the total
category. However, such applications of limit theorems are less satisfactory
here than in gas theory, since observed samples are small in numbers, whereas
the ‘elementary cells’ are to have infinite expected number of items, which
are coniradictory conditions. (Note that in quantum statistics elementary
cells are also so small that the method of most probable state of Boltzmann
fails.) The limit procedure could also be applied to the iteration of the
multiplication of an increasing number of distributions with « close to 1.

Observational models

(2) Imagine that the stability, homogeneity ete properties of Willis's
systems are required of satisfactory taxonomies, and even preferred to small
redundancy. After the taxonomist has considered many alternatives he
would necessarily (but unconsciously) choose a Willis system.
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(b) A system is left alone when no further small change can ‘improve’ it;
that is, change its statistics appreciably. -

c) All observed category systems have the Willis structure, &mn.m_..an no
other structure could have been noticed, to start EFF.:H_.%H .Eo conditions of
observation (local and global floras et¢). Stable distributions mwm the only
ones, for which no difficulty can come from such naEE._mm as ‘we seek mo
measure what we want to measure; we omnﬁ.nu.m by Bmm.mWEEm.SﬁmH we can’,

(d) If one had to form subjective a prior m.wcw.mgr.ﬁ mu.mgvﬁﬁo%m_ a
principle of sufficient reason would lead to stable &59,.5555 (independence
from the area investigated efc).

Necessary models

These could be diachronic or synchronic. As an nﬁmEEo.Om the .uwumﬂ case,
imagine an evolutionary process not involving nrmb..unm it mﬁﬁ.rnm ﬂo.nrw
things taxonomized, Asan example of the second case, imagine strict logica
relationships between the items of the taxonomy. We .mmo not wn_-m<w ﬁrwm
Willis’s law could be derived in this way. However, in any case, local
biological or linguistic laws are bound to be HlQmsH to ,UEW properties of the
taxonomy, and there is a very real problem in explaining how they may
coexist with the Willis ‘bulk’ properties: a problem fully analogous to the
ergodic problem in physics.
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Nore appED IN PrOOF. A variant of Yule’s model for <,.mEm.m &mn.?nmmu has
recently been given in Biometrika 42 (1955) 425 by H. A, Simon ﬁsu&o credits the
distribution to Yule). However that author nowhere notes the approximats stability of
the distribution, which appears to us to be the crux of the maiter, irrespectively of any model.
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