Let C = (Cr, Cy) be the true creatinine and cystatin concentrations with G being the true GFR rate. Let C* = (Cr*, Cy*) and G* be the corresponding measured quantities. 

Assume that C* and G* depend on the true values by some sort of function that involves measurement error parameters . If this involves a calibration problem, then  may be a regression function relating the true and observed. If the measurement error is random, then  may just be a measurement error variance. We can assume a joint distribution for C* and G* or we could model them as conditionally independent given the true values. We also assume that the joint distribution of the true C and G depend on fixed regression covariates X with corresponding parameters . 

The posterior distribution of the regression parameters, measurement error parameters and true values is then 
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assuming that the measurement error on G and C are independent of each other conditional on   and X and that  and  are separable.

To expand on the model, let us formulate a specific physiologic model for the joint distribution of C and G. Assume that their mean E(C,G) = X and Var(C,G) = . To simplify matters, we can assume that on some scale (e.g., the log) a normal distribution holds so that (C,G) ~ N(X,The covariance matrix  involves the marginal variances of C and G as well as their correlation. It may be simpler to reexpress this joint distribution as the product of the conditional distribution of C given G and the marginal distribution of G. This would correspond to Tom’s physiologic model, e.g., 


[image: image2.wmf]0111

222

CGX

GX

bbe

be

=++

=+


with V(1) = 1 and V(2) = 2 . The correlation in  is a function of 1, 2 and 2. X1 and X2 are the sets of regression covariates involved in modelling C and G, respectively, with coefficients 1 and 2.

Likewise, we could assume normal measurement error models for C* and G* such that
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where 
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. Then, we can identify  = (0, 1, 2, 1, 2) and  = 0, 1, 0, 1, u, w).
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This could then be estimated by Markov chain Monte Carlo, depending on the distributions assumed for the different parts of the model. When predicting for a new measurement of cystatin or creatinine, the procedure is repeated except that there is no measured GFR so no 
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 term. Also, the data consist of a single C* rather than a vector of such measurements and data on X for a single individual. We are also estimating C and G for one individual rather than many. After running the MCMC simulation, we would be interested in the posterior mean and percentiles of G|C*, X.
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