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Abstract 

 

The propensity score method is frequently used to deal with bias from standard 

regression in observational studies. The propensity score method involves calculating the 

conditional probability (propensity) of being in the treated group (of the exposure) given 

a set of covariates, weighting (or sampling) the data based on these propensity scores, and 

then analyzing the outcome using the weighted data.  I first review methods of allocation 

of weights for propensity score analysis and then introduce weighting within strata and 

proportional weighting within strata as alternative weighting methods. These new 

methods are compared to existing ones using empirical analysis and a data set on whether 

sending patients to a respite unit prevents readmission or death within ninety days. 

Simulations are then described and discussed to compare the existing and new methods. 

 

 

 

INTRODUCTION 

 

Research often involves determining the effect of an intervention or treatment on 

an outcome of interest.  Randomized controlled trials (RCTs) are the gold standard in 



scientific research.  RCTs involve randomizing subjects to a treatment arm with the goal 

of eliminating biases by theoretically placing even distributions of subjects by all 

variables, both measured and unmeasured, in each group.  Through this design, they 

provide strong internal validity.  In some situations, however, RCTs are not feasible, 

ethical, or readily available and observational studies take their place.  In some situations, 

the randomization may fail (eg. patients do not adhere to study protocols).  Observational 

studies provide an alternative to randomized controlled trial.  They have strong external 

validity and allow for generalizability to an entire population, rather than the subset of 

participants in a trial.  Observational studies can be performed in situations when RCTs 

are unfeasible or unethical as well (parachute article).  In addition, RCTs often take years 

of time and cost millions of dollars to complete, while observational studies are cheaper 

and faster.  So why aren’t observational studies more frequently utilized as research 

tools?  Because they are susceptible to bias when models are misspecified and covariates 

are not evenly distributed across treatment groups (Posner & Ash, in progress). 

The propensity score method is frequently used to deal with bias from standard 

regression in observational studies. The propensity score method involves calculating the 

conditional probability (propensity) of being in the treated group (of the exposure) given 

a set of covariates, weighting (or sampling) the data based on these propensity scores, and 

then analyzing the outcome using the weighted data.  [add lots of citations] 

NEED LOTS MORE ON PROPENSITY SCORES 

This article focuses on the crucial step of determining weights.  First, we review 

methods of allocation of weights for propensity score analysis and then introduce 

weighting within strata and proportional weighting within strata as alternative weighting 

methods.  We then compare these new methods to existing ones using empirical analysis 

and a data set on whether sending patients to a respite unit prevents readmission or death 

within ninety days.  Simulations are then described and discussed to compare the existing 

and new methods.  There is also a summary and discussion. 

 

BACKGROUND – METHODS OF SUB-SAMPLING 



 

The propensity score has a number of properties.  It is a balancing score, meaning 

that assignment to treatment is independent of the covariates conditional on the 

propensity score.  Under the assumption of strong ignorability (define this), the outcome 

is independent of the treatment conditioned on the covariates.  Thus, the expected value 

of the average treatment effect, the difference between the treated and the control data, is 

the expected value of the average treatment effect conditioned on the propensity score. 

Once the propensity scores are calculated, the analyst has a number of options of 

how to sample or weight the data in order to determine the average treatment effect.  The 

method of selecting an appropriate set of data that is similarly distributed on covariates is 

a crucial step in the propensity score method.  There are four commonly used methods for 

selecting the sample or weighting the data: random selection within strata, matching, 

regression adjustment, and weighting based on the inverse of the propensity score.  We 

introduce another method of weighting that provides an alternative to weighting by the 

inverse propensity score that is less susceptible to extreme weights and has a higher 

coverage probability of the true value, according to simulations. 

 

 

RANDOM SELECTION (OR SAMPLING) WITHIN STRATA 

 

Random selection within strata was proposed by Rosenbaum and Rubin (1983) in 

their paper that introduced propensity scores.  In this paper, they presented the propensity 

score as a way to summarize numerous variables into a scalar balancing score  – the 

propensity of being in the treated group.  This score could much more readily be used 

instead of the vector of variables, including being used to stratify the data in quintiles.  

Cochran (1968) had calculated that stratification based on five strata on a covariate 

eliminates 90% of bias in observational studies and Rosenbaum and Rubin followed his 

logic and argument by suggesting splitting the propensity score into quintiles in order to 

reduce bias. 



As in all the methods, the probability of being in the treated group, conditioned on 

the covariates, is first calculated.  This is typically accomplished with a logistic or 

multinomial model using all covariates.  In random sampling within strata, all 

observations are ranked on their propensity score, and the data are then divided into 

quantiles of the propensity score.  Within each stratum, equal sample sizes in the 

treatment and control groups are selected.  Thus, if the treatment group is larger, a subset 

of treated observations in that stratum is randomly chosen so that the sample size equals 

that of the control group, and vice-versa if the control group is larger.  Inferences will 

therefore be made only in the space where the distributions of the two groups overlap.  If 

the distributions do not overlap in a region of the space, the data should be excluded. 

 In the context of weighting, this method assigns weights of 1 or 0 to each 

observation.  If a given observation is in the selected sample, it gets a weight of 1, while 

if it is not, a weight of 0 is assigned to it.  A weighted least square regression will result 

in the same estimates as if reduced sample size ordinary least square regression had been 

applied. 

Random selection within strata has the advantage of simplicity in application, but 

poses some limitations.  First, it can exclude a substantial amount of data if there are 

strata that have particularly small numbers of observations in one group or the other, 

which may create power problems.  For example, if you have 100 people in the lowest 

quintile based on propensity score, and 3 in the treated group while 97 are in the control 

group, this method would select the 3 treated observations as well as a random sample of 

3 out of the 97 in the control group, eliminating 94 observations (or 94% of the sample 

from this quintile).  Clearly, this would reduce the power and precision of the analysis.  

Second, since it is based on random selection, two researchers using this method may 

identify different analytic samples via randomization and thus obtain different results, 

violating the scientific principle of replicability. 

There is an added benefit that many researchers have employed from this method.  

The effect size of exposure on outcome within strata can be examined to determine 



whether there is a differing effect across groups who are differing in their propensity of 

being in the treated group. 

Stratification methods as described here have been used by many researchers 

(Rosenbaum and Rubin, 1984, Fiebach, et. al., 1990, Czajka, et. al., 1992, Hoffer, 

Greeley, and Coleman, 1985, Lavori, Keller, and Endicott, 1988, Stone, et. al., 1995, 

Lieberman, et. al., 1996, Gum, et. al., 2001 to list a few). 

 

 

MATCHING 

 

There are several propensity score approaches that use matching, three of which 

are considered here – a greedy algorithm, nearest neighbor matching, and nearest 

neighbor matching within calipers.  These methods call for matching one treated 

observation for each control observation (or vice-versa, depending on which group has 

the smaller number of observations).  For each treated observation, an algorithm is used 

to identify a control that has a similar propensity score.  Rosenbaum (2002, section 10.3) 

discusses optimal matching techniques that expands on the 1:1 matching by involving k:1 

matching, either for a pre-specified value of k and for varying values of k. 

Rosenbaum and Rubin (1985) suggest that the logit of the propensity score is 

better to use for matching than the propensity score itself.  This method linearizes 

distances from the 0-1 interval.  This suggestion incorporates the fact that differences in 

probabilities of a fixed size are more important when the probabilities are close to 0 or 1.  

For example, a 0.01 difference between 0.01 and 0.02 represents doubling the likelihood 

for an individual, while the same difference between 0.50 and 0.51 is only a 2% increase. 

The matching method originally proposed was nearest neighbor matching.  In this 

strategy, all possible pairs of treated and control observations are considered and the pairs 

that produce the minimal distance in their propensity scores is used.  Either Euclidean or 

Mahalanobis distance are typically employed for this.  Euclidean distance is the 

geometric distance between two observations ( )2
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2

12 )x-(x)y-(y + .  Mahalanobis 



distance scales the distance to the variance in each observation based on the covariance 

matrix.  [(X1-X2)
TC-1(X1-X2), where C is the covariance matrix of covariates X1 and X2].  

Thus, the metric is weighted by the variance in each direction.  If, for example, the 

variance of X2 is twice the variance of X1, then an observation needs to be twice as far in 

order to be equidistant in the Mahalanobis distance.  One way to think about this is to 

imagine a car that has flat terrain east and west of it, and rocky terrain north and south of 

it.  The distance that the car can travel in one hour is different depending on which 

direction it goes.  A one hour trip north will not get you as far as a one hour trip west.  In 

this example, Mahalanobis distance is analogous to the time it takes to get there – you 

have not traveled as far north, but it took an hour to get there, so it is considered 

equidistant to a one hour trip west.  Note that if the data are standardized, Mahalanobis 

and Euclidean distance are identical. 

The simplest, least efficient of these matching protocols is the “greedy 

algorithm”.  This method was implemented by Parsons (2001) and discussed in 

Rosenbaum (2002).  For each observation in the smaller of the two groups, treatment or 

control, identify the observation from the other group whose propensity score (or logit 

thereof) is closest.  After matching this pair, remove these observations from the pool of 

observations and move on to the next one, repeating this process until there are no more 

observations to match.  Programming this algorithm is simpler, but can result in matching 

sub-optimal pairs together which are quite distant from each other.  In addition, since the 

matches are chosen sequentially, the order of the data matters since you exclude each pair 

once you have matched them.  Rearranging the data can result in dramatically different 

sets of matched pairs.  This is not a desirable property. 

Lastly, matching within calipers was proposed to protect against a treated and 

control observation that are not similar to each other in their propensity score being 

matched solely due to no other observation being a closer match (this may occur even 

when the greedy algorithm is not used).  In particular, extreme observations which are 

different in covariates from all observations in the other treatment group should be 

excluded from the analysis.  In this method, a limit is set, and if there are no observations 



in the other group within that range, the observation is dropped from analysis.  

Rosenbaum and Rubin (1985) suggested using a quarter standard deviation of the logit of 

the propensity score as the caliper width.  Matching within calipers is one of the more 

frequently used methods for propensity score matching. 

Matching has three benefits, according to Rosenbaum and Rubin (1983): 

1. Matched treated and control pairs provide a simple representation of the data 

for researchers, 

2. The variance of the estimate of the average treatment effect will be lower in 

matched samples than in random samples.  This is due to more similar 

distributions of the observed covariates, and 

3. Model-based methods are more robust to departures from underlying model 

assumptions. 

 

 

 



REGRESSION ADJUSTMENT USING THE PROPENSITY SCORE 

 

A third method is regression adjustment, also proposed in the initial paper by 

Rosenbaum and Rubin (1983).  In this method the propensity score is calculated, as 

before, and is simply used as an additional covariate in the outcome model.  Roseman 

(1994) shows that this method reduces bias in a manner similar to those previously 

discussed.   Regression adjustment methods were used by Berk and Newton (1985), Berk, 

Newton, and Berk (1986) and Muller, et. al. (1986). 

It is unclear, however, how this method really fixes the problem of bias from 

standard regression.  The effect of adding a propensity score covariate in the outcome 

model is essentially to allow the treatment effect to vary with the propensity of being in 

the treated group.  In the following example, let X be a covariate (or covariates), βT be 

the constant treatment effect, T be an indicator of treatment (1 if treatment, 0 if control), 

β0 and β1 be the intercept and slope, respectively, p(Z) be the propensity score (which is 

dependent on the vector Z, which may or may not contain some of X), Y be the outcome, 

and βPS be the slope for the propensity score term.  In addition, D’Agostino (1998) states 

that this method fails when the discriminant is a non-monotone function of the propensity 

score, or if the variance between treatment groups is unequal. 

A typical regression model will be: 

 Y = β0 + β1X + βTT + ε 

while the model including the propensity score will be: 

 Y = β0 + β1X + βTT + βPS p(Z) + ε 

 In the second model, the effect of βT will be diluted by the presence of p(Z) in the 

model.  In particular, p(Z) will likely be high when T=1, so the effect of βT will be much 

less than in the first model.  Thus, if βT is used as an estimate of the effect of being in the 

treated group, this effect will be underestimated. 
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WEIGHTING BY THE INVERSE PROPENSITY SCORE 

 

A fourth method of quasi-randomization was proposed by Imbens (2000) and 

further discussed by Hirano and Imbens (2001) and is similar to one proposed 

independently by Robins and Rotnitzky (1995) in the context of marginal structure 

models for time-dependent treatment.  Here, the inverse of the propensity score is used to 

weight each observation in the treated group, and one minus the inverse of the propensity 

score (i.e., the propensity of NOT being in the treated group) in the controls.  Weighting 

has the nice property of including all the data (unless weights are set to 0) and does not 

depend on random sampling, thus providing for replicability. 

Imbens has shown that weighting based in the inverse of the propensity score 

produces unbiased estimates by the following:  We wish to estimate the average 

treatment effect, E[YT-YC] where YT is the outcome for the treated observations and YC 

is the outcome for the control observations.  This can be separated to E[YT] –E[YC].  We 

actually want to examine the effects conditional on their observed covariates, so E[YT|X] 

–E[YC|X] is what we wish to estimate.  The following equation is a modification of 

Imbens’ equation and shows that weighting by the inverse of the propensity score, 

(p(x,T)), where T is an indicator of treatment (1=treatment, 0=control), X is the vector of 

independent variables, and Y is the outcome,  produces an unbiased estimate of the true 

treatment effect.  The same result holds for the controls as well. 
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While this method can be shown to have nice mathematical properties, it does not 

work well in practice.  Consider a lone treated observation that happens to have a very 

low probability of being treated (see figure 1 – the treated observation, “T”, in the lower 

left hand corner of the graph).  The value of the inverse of the propensity score will be 

extremely high, asymptotically infinity.  The effect size obtained will be dominated by 



this single value, and any fluctuations in it will produce wildly varied results, which is an 

undesirable property. 

 



FIGURE 1: EXAMPLE OF EXTREMELY INFLUENTIAL OBSERVATION 

IN INVERSE PROPENSITY WEIGHTING SCHEME 
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WEIGHTING WITHIN STRATA AND PROPORTIONAL WEIGHTING 

WITHIN STRATA 

 

The methods that I propose for propensity score weighting are weighting within 

strata and proportional weighting within strata.  The latter is only useful in the presence 

of polychotomous exposure groups.  There are five steps to calculate the weights: 1) 

Calculate a propensity score for each observation, 2) Sort data into quantiles of the 

propensity score, 3) Calculate the number of treated and control observations in each 

quantile, then 4) Assign a weight to each observation within each group (treated or 

control) of each quantile that is the reciprocal of the proportion of observations in that 

quantile group (treated or control) relative to the total number of observations in that 

quantile, and 5) Multiplied by the number of groups (to scale appropriately).  An example 

of this is presentedlater.  Once this has been accomplished, perform a weighted least 

squares regression of the outcome of interest using the calculated weights. 

Proportional weighting within strata follows the same five steps as weighting 

within strata and adds a sixth step.  The last step is to rescale the weights so that the sum 

of weights given to each treatment group is equal to the original sample size in that 

group.  As an example, if there are 100 observations in group 1, 100 in group 2, and 400 

in group 3, all weights for groups 1 and 2 are decreased by multiplying by 100/200 and 

all control observations weights are inflated by multiplying by 400/200. The value 200 is 

obtained from assigning equal weights to each group (600 observations divided by 3 

groups), and is the total of the weights assigned within each group by weighting within 

strata.  The advantage of this is that it reflects the actual amount of information present 

from the treatment and the control groups. 

An illustration of these methods is given in the following two sections.  These 

methods share the virtues of all weighting methods in that they do not involve random 

selection and include all data in analyses (unless, as in the sampling schemes you assign 

weights of 0 to some observations).  Evaluation of these methods is accomplished 

through simulations and through a data set on whether sending patients to a respite unit 



prevents readmission or death within ninety days followed by simulations to compare 

various methods of sample selection or weighting in propensity score analysis. 

 

 

COMPARING WEIGHTING SCHEMES – EMPIRICAL RESULTS 

 

The following examples demonstrate results obtained by the different methods 

under varying assumptions.  Subjects are members of one of three covariate groups, 

called low, moderate, and high, and either receive a treatment or serve as a control.  The 

numbers were selected so that those in the high covariate group have a high chance of 

being in the treatment group, while those in the low covariate group have a small chance 

of being in the treatment group.  For example, in table 1a, the probability of being in the 

treated group is 25% (30/120) for the low group, 67% (200/300) for the moderate group, 

and 94% (170/180) in the high group.  Propensity score analysis is performed in four 

ways – random selection within strata, weighting within strata, proportional weighting 

within strata, and inverse propensity weighting. The percents effectiveness are different 

for each cell of the table, and given in the next part of table 1, listed as “true trt” and “true 

control”.  The results are presented in tables 1a – 1c to illustrate the differences between 

the weighting schemes.  The different tables present different treatment effect sizes and 

covariate distributions. 

For example, in table 1a, there is a 10% treatment effect in the low group, a 5% 

effect in the moderate group, and a 0% treatment effect in the high group.  Typically, a 

single treatment effect estimate is made (whether or not this is an appropriate decision is 

left to the analysts and evaluators of each study and is intentionally omitted here).  If this 

were the case, the true treatment effect, should be 4.5%, which is an average of the three 

effect sizes, weighted to the sample size in the group.  The naïve estimate, which does not 

separate by the covariate groups, would estimate a –0.5% effect size.  This is an example 

of Simpson’s paradox, where summarizing over a variable masks the actual effect. 



The randomization within strata produces an estimate of 5.7%, which has a 1.2% 

bias from the true effect.  In addition, note that if there were numerous covariates, the 

randomization process would produce different results in different instances of the 

randomization.  The weighting within strata, proportional weighting within strata, and 

inverse probability weighting all estimate the true effect (4.5%).  In this example, with 

only one covariate, weighting within strata and inverse probability weighting wind up 

with the same results. 

The proportional weighting within strata rescales the results by matching the 

sample size for treatment and control groups.  This has the important feature of not 

artificially deflating the variances.  It is clear that if you have N observations, with equal 

variances (or unknown variances, as in most situations), the minimal standard error will 

be obtained by allocating N/2 observations to each treatment group.  From this, we note 

that the weighting within strata and inverse probability weighting may have artificially 

deflated variance estimates.  Hirano and Imbens (2001) discuss this problem in their 

paper. 

In addition, note that the inverse probability weighting produces weights that vary 

within strata, while these two methods do not.  Recall the problem of one extreme 

observation having a large influence on the results, as shown in figure 2.  These two 

methods protect against this more than the inverse probability weighting does, since the 

effect of one extreme observation would be no larger than any other observation in the 

same quantile group based on the propensity score. 

 

TABLE 1a. DIFFERENCE IN ESTIMATED EFFECTS FROM 

NEWLY PROPOSED WEIGHTING SCHEMES 

 

Raw Data Low Mod High    

Treatment 30 200 170 400  56.5% 

Control 90 100 10 200  57.0% 

 120 300 180 600 Crude Diff -0.5% 

       



True Trt 70% 60% 50%    

True 

Control 

60% 55% 50%  True Diff 4.5% 

Diff 10% 5% 0%    

       

       

Random 30 100 10 140  61.4% 

w/in Strata 30 100 10 140  55.7% 

 60 200 20 280 Difference 5.7% 

       

Weight w/in 60 150 90 300  59.0% 

Strata 60 150 90 300  54.5% 

 120 300 180 600 Difference 4.5% 

       

Proportional 80 200 120 400  59.0% 

w/in Strata 40 100 60 200  54.5% 

 120 300 180 600 Difference 4.5% 

       

Inverse 60 150 90 300  59.0% 

Probability 60 150 90 300  54.5% 

 120 300 180 600 Difference 4.5% 

 



TABLE 1b. DIFFERENCE IN ESTIMATED EFFECTS FROM 

NEWLY PROPOSED WEIGHTING SCHEMES 

 

Raw Data Low Mod High    

Treatment 30 200 170 400  63.3% 

Control 90 100 10 200  57.0% 

 120 300 180 600 Crude Diff 6.3% 

       

True Trt 70% 65% 60%    

True 

Control 

60% 55% 50%  True Diff 10.0% 

Diff 10% 10% 10%    

       

       

Random 30 100 10 140  65.7% 

w/in Strata 30 100 10 140  55.7% 

 60 200 20 280 Difference 10.0% 

       

Weight w/in 60 150 90 300  64.5% 

Strata 60 150 90 300  54.5% 

 120 300 180 600 Difference 10.0% 

       

Proportional 80 200 120 400  64.5% 

w/in Strata 40 100 60 200  54.5% 

 120 300 180 600 Difference 10.0% 

       

Inverse 60 150 90 300  64.5% 

Probability 60 150 90 300  54.5% 

 120 300 180 600 Difference 10.0% 

 

In table 1b, the treatment effect is changed to 10% for each group.  This still 

results in a biased crude estimate, but all the methods of propensity score adjustment lead 

to same conclusion – an unbiased estimate of a 10% treatment effect. 



TABLE 1c. DIFFERENCE IN ESTIMATED EFFECTS FROM 

NEWLY PROPOSED WEIGHTING SCHEMES 

 

Raw Data Low Mod High    

Treatment 48 150 108 306  58.0% 

Control 72 150 72 294  55.0% 

 120 300 180 600 Crude Diff 3.0% 

       

True Trt 70% 60% 50%    

True 

Control 

60% 55% 50%  True Diff 4.5% 

Diff 10% 5% 0%    

       

       

Random 48 150 72 270  59.1% 

w/in Strata 48 150 72 270  54.6% 

 96 300 144 540 Difference 4.6% 

       

Weight w/in 60 150 90 300  59.0% 

Strata 60 150 90 300  54.5% 

 120 300 180 600 Difference 4.5% 

       

Proportional 61 153 92 306  59.0% 

w/in Strata 59 147 88 294  54.5% 

 120 300 180 600 Difference 4.5% 

       

Inverse 60 150 90 300  59.0% 

Probability 60 150 90 300  54.5% 

 120 300 180 600 Difference 4.5% 

 

Table 1c illustrates that with a smaller difference in the distribution of the covariate (low, 

mod, high), the bias is still present, but is reduced.  Here, the percent difference between 

covariates is reduced from 25% low, 67% moderate, and 94% high to 40% low, 50% 



moderate, and 60% high.  From this, we see that greater covariate imbalance leads to 

more biased results for the crude analysis. 



SIMULATION METHODS 

 

 Simulations were performed to compare the different methods of sample selection 

or weighting.  The exposure (E) is a dichotomous variable, the outcome (O) is a 

continuous variable, and the confounder (C) is also continuous.  For example, consider an 

observational unit being a neighborhood around a hospital.  We could consider the 

exposure to be whether a hospital provides mammography services (yes/no), the outcome 

to be rate of early detection of breast cancer in the hospital’s potential patients (a 

continuous measure), and the covariate to be percentile of income by zip code (also 

continuous). 

The data were generated according to the following: 

 1) The covariate (C) was generated as a continuous uniform (0,1) variable. 

 2) Exposure (E) was generated using four different methods.  A graphical 

representation of these distributions can be found in figure 3.  The first is an even 

distribution, and assigns the probability of being in the exposed group to be 50%, 

regardless of the value of the covariate.  The second is a linear distribution that assumes 

that the probability of being exposed is equal to the covariate.  For example, if C=0.7, 

then the individual was given a 70% probability of being exposed.  Thus, those with high 

values of the covariate are very likely to be exposed, while those with low values are very 

unlikely to be unexposed.  While this forces a differing covariate distribution, the 

symmetric nature of it means that the residuals for users and non-users will both have a 

mean of 0 (this will be discussed further later).  The third method for generating exposure 

is a U-shaped curve where the likelihood of being exposed is high on the low and high 

range of the “U”, while an observation is given a low probability of being exposed in the 

middle range of the “U”.  Contextually, this may be seen in the situation where those of 

high income can afford assistance or are more educated and low income people are 

offered incentives to get mammography, while the middle income group is left out.  This 

type of relationship was seen in an investigation we conducted on mammography rates in 

Haitians in Boston (David, et. al., 2005).  The fourth method is a shifted distribution, that 



considers the situation where there are very few unexposed who exist on the low end of 

the covariate, while those in the exposed group are plenty and congregate more heavily 

on the high and middle values of income (Underrepresented).  This situation has arisen in 

research on gender bias in compensation (Ash, 1986).   



FIGURE 2. DIFFERING COVARIATE DISTRIBUTIONS USED IN THE 

SIMULATION STUDY 
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Figure 4.2.b - Linear
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Figure 4.2.C - U-Shaped
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Figure 4.2.d - Shifted
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 3) The outcome has one of two relationships with the covariate, either linear or 

non-linear (fourth root).  In the former case, the model is correctly specified, while in the 

latter case, the model is misspecified.  (Note that this should not be confused with the 

relationship between the exposure and the outcome – see #4 below) 

 4) The desired effect size (βue) is then added to the outcome for those in the 

exposed group (i.e. if the effect size states that those in the treated group are, on average, 

1 unit higher than the control units, then treatment groups had 1 unit added to their 

value). 

 5) Seven methods of sample selection/weighting are then applied to the data and 

bias (difference in estimated relationship between exposure and outcome and the actual 

relationship) is calculated.  The first two methods, crude analysis (no covariate 

adjustment) and standard regression, do not employ propensity score methods.  The latter 

five, random selection within strata, propensity score regression, weighting by the inverse 



propensity score, weighting within strata, and nearest neighbor matching via a greedy 

algorithm, use propensity score methods to address issues of bias from standard 

regression.  Weighting within strata is the new method presented in this article.  

Proportional weighting within strata, the other method introduced in the same section, is 

only helpful when doing polychotomous propensity score analysis, thus is it not included 

here.  The relationship between the covariate and the outcome is modeled linearly, to 

incorporate model misspecification when the actual distribution is non-linear. 

 7) Each scenario, with different parameter values, is replicated 500 times, so that 

a sampling distribution is obtained.  Note that for propensity score using random 

selection within strata (PSRSWS) and propensity score using a greedy matching 

algorithm (PSGrd), there were data anomalies where the randomly selected sample size 

was larger than original, so that observation was excluded.  Thus, some scenarios have 

fewer than 500 replicates. 

 The following summary measures were calculated: 

 Distshape = Linear (L) or Non-Linear (N) model between the covariate and 

outcome.   The linear model is correctly specified, while the non-linear (fourth root) 

model is misspecified, since a linear relationship is used to model it.  

Datadist = One of the four distributions for the covariate (C=Constant, L=linear, 

U=U-shaped, S=shifted), as described above 

 Nobser = # of observations, either 100 or 1,000 

 Seu = Standard deviation from the true model (taking values 0.01 or 5) 

 βue = Effect size for user (taking values 0, 0.1, or 2) 

Type = Crude, Standard Regression (SR), Random Selection Within Strata 

(PSRSWS), Propensity Score Regression (PSReg), Weighting by the 

Inverse Propensity Score (PSWIP), the new method of Weighting within 

Strata (PSWWS), and Nearest Neighbor Matching using a Greedy 

Algorithm (PSGrd) 



Minobs = smallest number of observations selected (relevant only for PSRSWS 

and PSGrd methods, since sample size reduction was done) 

Maxobs = largest number of observations selected (relevant for PSRSWS and 

PSGrd only) 

Meanbias = the average bias (estimated effect minus true effect) of the 500 

replicates 

RelBias = relative bias = (meanbias – βue) / βue 

StdBias = standard deviation of the bias of the 500 replicates 

MSE = mean square error = (bias)
2
 + variance 

p5bias = 5
th

 percentile of bias 

p95 bias = 95
th

 percentile of bias 

piwidth = prediction interval width = p95bias – p5 bias 

covprob = coverage probability = the percent of times the true value is within the 

95% confidence interval of the effect size estimate 

 

 Parameters are arbitrarily chosen in order to compare biases.  A sample of size 

larger than 1000 was considered, but rejected, due to processing time constraints (due to 

the greedy matching algorithm, which compares all possible pairs of data). 

 

 

SIMULATIONS RESULTS 

 

 The following table (2) presents a subset of the results for several scenarios which 

have been numerically labeled.  Figure 3 presents a comparison of the coverage 

probabilities graphically.  This output is for 1000 observations, se=0.01, and βue=0.1.  

The complete set of results can be found in appendix B.  Let us focus on the coverage 

probability (the chance that the 95% confidence interval contains the true estimate).  In 

theory, this value should be 95% for unbiased estimates.  For example, scenario 49, 



presents a correctly specified (distshape=L) model with constant probability of being in 

the treated group (datadist=C).  The coverage probabilities are all very close to 95%.  

Scenario 52 represents a correctly specified model (distshape=L) but differing 

distribution of the covariate between treatment groups (datadist=S).  Here, notice that the 

crude estimate is quite biased (coverage probability of 0% and mean bias of 0.4).  The 

other methods seem to capture the correct coverage value, though PSWWS is lower than 

others.  In scenario 93, the model is incorrectly specified (distshape=N), but the data 

distribution is constant (datadist=C).  Under this scenario, the coverage probabilities are 

all close to 95%, except for nearest neighbor matching, which falls to 55%.  In scenario 

96, there are both model misspecification (distshape=N) and uneven covariate 

distribution between treatment groups (datadist=S), the two conditions requiring 

propensity score analysis.  Here, note that the crude coverage probability is 0%, as seen 

before, but the standard regression coverage probability is also 0%, meaning that standard 

regression techniques do not appropriately deal with the bias in these situations.  PSRWS, 

PSReg, and PSWWS result in estimates of effect that are the least biased among all the 

methods.  Figure 4 presents the mean bias from each result, analogous to the coverage 

probabilities shown in figure 3.  From this, we see that the primary reason for the 

coverage probabilities to be low is a large mean bias.  Results were similar in comparing 

other scenarios. 

 



TABLE 2. COMPARING METHODS OF SAMPLE WEIGHTING/SELECTION 

FOR PROPENSITY SCORE METHODS VIA SIMULATION 

Dist 

Shape 

Data 

Dist 

Min 

Obs 

Max 

Obs 

Type of 

Analysis MSE 

Mean 

Bias 

St.Dev. 

Bias 

Coverage 

Probability 

Linear Constant 1000 1000 0-Crude 0.000 -0.002 0.019 93% 

Linear Constant 1000 1000 1-SR 0.000 0.000 0.001 96% 

Linear Constant 894 990 2-PSRSWS 0.000 0.000 0.001 96% 

Linear Constant 1000 1000 3-PSReg 0.000 0.000 0.001 96% 

Linear Constant 1000 1000 4-PSWIP 0.000 0.000 0.001 96% 

Linear Constant 1000 1000 5-PSWWS 0.000 0.000 0.001 96% 

Linear Constant 906 1000 6-PSGrd 0.000 0.000 0.001 96% 

Linear Shifted 1000 1000 0-Crude 0.158 0.397 0.017 0% 

Linear Shifted 1000 1000 1-SR 0.000 0.000 0.001 95% 

Linear Shifted 82 192 2-PSRSWS 0.000 0.000 0.002 94% 

Linear Shifted 1000 1000 3-PSReg 0.000 0.000 0.001 95% 

Linear Shifted 1000 1000 4-PSWIP 0.000 0.000 0.001 88% 

Linear Shifted 1000 1000 5-PSWWS 0.000 0.000 0.001 62% 

Linear Shifted 360 522 6-PSGrd 0.000 0.000 0.001 95% 

Non-Linear Constant 1000 1000 0-Crude 0.000 0.000 0.011 94% 

Non-Linear Constant 1000 1000 1-SR 0.000 0.000 0.004 94% 

Non-Linear Constant 874 986 2-PSRSWS 0.000 0.000 0.003 99% 

Non-Linear Constant 1000 1000 3-PSReg 0.000 0.000 0.003 94% 

Non-Linear Constant 1000 1000 4-PSWIP 0.000 0.000 0.004 94% 

Non-Linear Constant 1000 1000 5-PSWWS 0.000 0.000 0.003 99% 

Non-Linear Constant 906 1000 6-PSGrd 0.000 0.001 0.008 55% 

Non-Linear Shifted 1000 1000 0-Crude 0.069 0.263 0.012 0% 

Non-Linear Shifted 1000 1000 1-SR 0.006 0.076 0.006 0% 

Non-Linear Shifted 88 198 2-PSRSWS 0.000 0.005 0.010 92% 

Non-Linear Shifted 1000 1000 3-PSReg 0.000 0.000 0.005 86% 

Non-Linear Shifted 1000 1000 4-PSWIP 0.006 0.074 0.010 0% 

Non-Linear Shifted 1000 1000 5-PSWWS 0.000 0.003 0.005 72% 

Non-Linear Shifted 364 530 6-PSGrd 0.004 0.059 0.006 0% 

 

Comment [MAP1]: UPDATE THIS TABLE 

WITH CORRECT RESULTS 



FIGURE 3: COVERAGE PROBABILITIES FROM SELECT SIMULATION RESULTS (AS PRESENTED IN 

TABLE 2) 
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FIGURE 4: BIAS FROM SELECT SIMULATION RESULTS (AS PRESENTED IN TABLE 2) 
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DIFFERENCE IN WEIGHTING SCHEMES – RESPITE DATA SET 

 

RESPITE DATA SET 

 

I consider an example of an observational study where propensity scores can be 

effectively used to address issues of bias from standard regression.  The respite unit is a 

place where homeless patients can be discharged from the hospital and placed when 

going back on the streets puts them at higher risk of readmission.  This is viewed as a 

cost-saving measure to the hospital.  These data are presented in Kertesz, et. al. (2005). 

We used administrative data to identify a retrospective cohort of homeless 

persons 18 or older who survived a non-maternity, medical-surgical hospital admission to 

Boston Medical Center between July 1, 1998 and June 30, 2001.  We identified as 

homeless patients those who used the Boston Health Care for the Homeless Program 

(BHCHP) for at least one outpatient clinical encounter within 365 days of an inpatient 

admission to Boston Medical Center.  Administrative data provided by Boston Medical 

Center identified 1029 candidate patients with BHCHP as their possible primary care site. 

Review of BHCHP databases confirmed 858 subjects with record of a BHCHP outpatient 

visit within 365 days of the index admission.  We then obtained from Boston Medical 

Center’s Medical Information System (MIS) all hospital and hospital-based ambulatory 

encounters from 1/1/1998 (6 months prior to 7/1/1998) to 6/1/2002 (11 months after 

6/30/2001).  Of the 858 subjects, 14 were only hospitalized for childbirth, 35 did not 

survive their only hospitalization, and 3 could not be matched (likely due to changes in 

MIS data system, or to miscoding), leaving 806 to be assessed for discharge disposition.  

We assessed each subject for readmission occurring within 90 days of hospital discharge. 

Death was ascertained from BHCHP’s internal Homeless Death Database and the 

Massachusetts Registry of Vital Records and Statistics (1998-2001).  We captured ICD-9 

diagnoses from all Boston Medical Center encounters occurring during the index 

admission and the 6 preceding months, including those at the BHCHP hospital-based 

clinic, the emergency department, other outpatient services (e.g. specialty clinics) and 



 

inpatient admissions.  We combined the MIS-derived data and information from 

BHCHP’s Respite program to assign each subject to one of four mutually exclusive 

discharge dispositions.  The respite group was defined as all patients who were admitted 

to respite within one day of hospital discharge.  Non-respite homeless patients identified 

in the MIS data set as discharged to their own care were called “home.”   Non-respite 

patients with discharge status indicating supervised recuperative care, e.g. skilled nursing 

facilities, chronic care hospitals, or home health care, were called “other.”  Those who 

left against medical advice (AMA) were called “AMA”. 

The study’s key endpoint was readmission or death occurring within 90 days from 

hospital discharge. This endpoint, used previously, properly treats death as an adverse 

outcome. We allowed a one-day “window” to detect admissions to respite because 12 

patients were referred to respite one day after hospital discharge, typically by homeless-

experienced clinicians acting to correct what they may have considered inappropriate 

discharges to shelters or streets.  Subjects readmitted to Boston Medical Center on the 

day of or day after discharge (n=22) did not have this opportunity for post-discharge 

referral to respite. Because inclusion of 22 early-readmitted subjects (only 2 of whom 

went to respite) could bias results in favor of respite, we conducted our main analysis 

excluding this group (reducing the sample to n=784), but confirmed in sensitivity 

analysis that results were more favorable to respite when the 22 were included.  41 

patients who left the hospital against medical advice were also excluded from the analysis 

(n=743). 

 The reason why someone is sent to the respite unit is associated with patient 

characteristics including history of substance abuse and comorbidities, age, and race. 

Thus, analyses were done using propensity scores in order to protect against any model 

misspecification that may be present.  Finally our clinical experience at the source 

hospital was potentially reassuring because respite referrals generally reflected concern 

that discharge to streets/shelters would result in early readmission (e.g. respite patients 

were possibly a “bad prognosis” subgroup). We estimated that the respite group could be 

informatively compared to patients discharged to other settings, acknowledging at worst, 



 

a potential bias against finding the hypothesized reduction in early hospital readmission.  

Case-mix adjustment variables, drawn from the literature on readmission 

prediction, included age, sex, race/ethnicity, length of the index hospital admission, the 

presence of drug and alcohol abuse diagnostic codes during the admission or the 

preceding 6 months, and illness burden.   Illness burden was measured (and adjusted for) 

using the Diagnostic Cost Groups/Hierarchical Condition Categories (DCG/HCC) risk 

score, calculated from all diagnoses during the index admission and the prior 6 months of 

inpatient and outpatient care at Boston Medical Center, including onsite primary care 

services from BHCHP. The DCG/HCC method generates a numerical estimate for 

expected health service utilization, and has been applied to prediction of mortality, 

veterans’ service utilization, and Medicare costs. We implemented DCG/HCC scoring 

through DxCG™ 6.1 for Windows software, applying a model calibrated to 

Massachusetts Medicaid patients for the years 2000-2001. 

 These analyses were performed using respite group as both as a dichotomous 

(respite vs. home, excluding other) and polychotomous (respite vs. home vs. other) 

treatment variable. 

 

 

 

COMPARING WEIGHTING METHODS IN RESPITE DATA SET  

DICHOTOMOUS OUTCOME 

 

In weighting within strata, the weights are calculated based on the distribution of 

treated and control observations within each stratum.  Like other propensity score 

methods, the data are split into strata based on propensity scores.  Then a weight is 

assigned using the distribution of observations within the stratum.  In weighting within 

strata, the total weighted sample size for that stratum is split between the treated and the 

control groups. 



 

In the respite data set, the probability that the person was sent to the respite unit 

was calculated from a logistic regression model based on all covariates – age (young, 

middle, old), race (White, Black, Hispanic/Other), whether they had a history of alcohol 

abuse, whether they had a history of drug abuse, and a measure of their comorbidity 

burden (DCG score).  This propensity score was then used to calculate quintiles.  The 

following table presents the distribution of data from the respite data set: 

 

TABLE 3. QUINTILES OF PROPENSITY SCORES FOR 

RESPITE DATA SET 

 

Quintile Respite Home TOTAL 

1 8 104 112 

2 25 90 115 

3 27 85 112 

4 24 69 93 

5 52 85 137 

TOTAL 136 433 569 

 

Note that the uneven size of quintiles is due to categorical variables assigning 

similar probabilities to numerous people. 

We can see that those who were predicted not to be sent to respite (quintile 1, 

which is the lowest propensity score) are least likely to actually have been sent to the 

respite unit.  [8/112 = 7% in quintile 1 vs. 22% in quintile 2 vs. 24% in quintile 3 vs. 26% 

in quintile 4 vs. 38% in quintile 5]. 

In the first quintile, there are 8 in the respite group and 104 in the home group, for 

a total of 112 people.  Thus, we would assign weights to each observation so that there is 

a weighted total of 56 per group, evenly dividing the 112 observations.  This means that 

the weights for each respite observation is 56 / 8 = 7 and the weight for each home 

observation is 56 / 104 = 0.54.  Table 4 displays the weights for all strata. 



 

 Proportional weighting within strata follows a similar idea to weighting within 

strata except that rather than splitting the weights between the groups, they are assigned 

proportional to the overall sample size in the groups.  For example, using the data again 

from table 3, rather than assigning a weighted sample size of 56 to each group in the first 

strata, the respite group would get 136 / 569 = 23.9% of the weights and the home group 

would get 433 / 569 = 76.1% of the weights.  Thus, weights are chosen to produce 112 * 

.239 = 26.8 weighted observations in the respite, and 85.2 weighted observations in the 

home group in the first strata.  Note that these methods converge to the same result when 

you have equal total sample size in the groups. 

 Table 4 presents the sample sizes, weights within strata, proportional weights 

within strata, and inverse propensity weights for the respite data: 



 

TABLE 4. WEIGHTS FOR RESPITE DATA USING THREE METHODS – 

WEIGHTING WITHIN STRATA, PROPORTIONAL WEIGHTING WITHIN 

STRATA, AND INVERSE PROPENSITY SCORE WEIGHTING 

 

   Weights per Observation Total Weights 

Quintile Method Respite Home TOT Respite Home TOT 

1 n  8 104 112 8 104 112 

   Weighting w/in Strata 7.0 0.5 1.0 56 56 112 

   Prop’l Wtg w/in Strata 3.4 0.8 1.0 27 85 112 

   Inv. Propensity Wtg* 4.6 0.6 0.9 37 58 95 

2 n  25 90 115 25 90 115 

   Weighting w/in Strata 2.3 0.6 1.0 58 58 115 

   Prop’l Wtg w/in Strata 1.1 1.0 1.0 28 87 115 

   Inv. Propensity Wtg* 3.0 0.6 1.1 75 55 130 

3 n  27 85 112 27 85 112 

   Weighting w/in Strata 2.1 0.7 1.0 56 56 112 

   Prop’l Wtg w/in Strata 1.0 1.0 1.0 27 85 112 

   Inv. Propensity Wtg* 2.2 0.7 1.0 58 56 115 

4 n  24 69 93 24 69 93 

   Weighting w/in Strata 1.9 0.7 1.0 47 46 93 

   Prop’l Wtg w/in Strata 0.9 1.0 1.0 22 71 93 

   Inv. Propensity Wtg* 1.8 0.7 1.0 44 48 92 

5 n  52 85 137 52 85 137 

   Weighting w/in Strata 1.3 0.8 1.0 69 69 137 

   Prop’l Wtg w/in Strata 0.6 1.2 1.0 33 105 137 

   Inv. Propensity Wtg* 1.3 0.8 1.0 68 70 137 

TOTAL n  136 433 569 136 433 569 

   Weighting w/in Strata 2.1 0.7 1.0 284 286 569 

   Prop’l Wtg w/in Strata 1.0 1.0 1.0 136 433 569 

   Inv. Propensity Wtg* 2.1 0.7 1.0 282 286 569 

* Value for inverse propensity weighting are means, since each 



 

observation can have a different weight.  For example, in the first 

quintile, the weights range from 3.8 to 6.6. 

 

 



 

Table 5 displays the distribution of covariates before and after propensity score 

methods have been imposed, as well as the odds ratios of early readmission or death for 

those in the respite group relative to those in the home group.  Age, race, and drug abuse 

(DA) all appear to be associated with assignment to respite (p<0.05).  However, all 

methods of propensity score matching and weighting (random selection within quintile, 

weighting within strata, proportional weighting within strata, and inverse propensity 

weighting) result in analytic samples that no longer have these associations present. 

The naïve estimate of the adjusted odds ratio is 0.72, or the odds of early 

readmission or death is 28% lower for someone in the respite group relative to someone 

in the home group, controlling for other factors in the model (all covariates).  The 

increase of the odds ratio in the random selection within strata method is potentially due 

to the exclusion of data.  The weighting methods all converge on a similar result of 0.65-

0.66.  Note that the variance in the weighting within strata and inverse probability 

weighting is smaller than that of the proportional weighting within strata, as described 

above. 

 As a test, we produced the unweighted results within each quintile of propensity 

score.  The adjusted odds ratios of early readmission or death for those in the respite 

group relative to those in the home group separately for each quintile are 0.54*, 0.35, 

0.75*, 0.69, and 0.79, respectively.  Note that the ones with an asterisk (*) produced 

unstable results due to small sample sizes in sub-groups.  The crude odds ratios by 

quintiles are 0.64, 0.35, 0.81, 0.72, 0.84.  From this, we see that the 0.87 odds ratio from 

the random selection within strata propensity score analysis appears to be over-estimated. 



 

TABLE 5. COMPARISON OF DATA DISTRIBUTION AND RESULTS FROM 

NAÏVE ANALYSIS AND FOUR METHODS OF PROPENSITY SCORE 

ANALYSIS – DICHOTOMOUS OUTCOME 

 

  Pre- 

Random Selection 

Within Strata 

Weighting Within 

Strata 

Proportional Weighting 

Within Strata 

Inverse Propensity 

Weighting 

  Resp Home Resp Home Resp Home Resp Home Resp Home 

n 136 433 136 136 284.5 284.5 136 433 281.8 287.2 

Age                   

  Young 19% 31% 19% 21% 26% 28% 26% 28% 26% 28% 

  Mid 55% 51% 55% 54% 52% 52% 52% 52% 54% 52% 

  Old 26% 19% 26% 24% 21% 20% 21% 20% 20% 20% 

  p-value 0.02 0.89 0.89 0.92 0.87 

Race                   

  White 56% 39% 56% 54% 43% 43% 43% 43% 43% 43% 

  Black 35% 44% 35% 32% 42% 42% 42% 42% 43% 42% 

  HispOth 10% 17% 10% 13% 15% 15% 15% 15% 14% 15% 

  p-value 0.001 0.63 0.99 0.996 0.91 

AA 34% 31% 34% 38% 32% 31% 32% 31% 31% 31% 

  p-value 0.50 0.53 0.84 0.87 0.87 

DA 8% 19% 8% 7% 17% 16% 17% 16% 15% 16% 

  p-value 0.002 0.82 0.90 0.92 0.58 

DCG                   

  Low 10% 17% 10% 7% 11% 16% 11% 16% 13% 16% 

  Mid 69% 65% 69% 74% 71% 66% 71% 66% 69% 66% 

  High 21% 18% 21% 19% 18% 18% 18% 18% 18% 18% 

  p-value 0.14 0.63 0.22 0.36 0.62 

Odds 

Ratio 

0.72 (0.43, 

1.20) 0.87 (0.47, 1.62) 

0.65 (0.42, 

0.997) 0.66 (0.39, 1.10) 0.65 (0.42, 0.998) 



 

COMPARING WEIGHTING METHODS IN RESPITE DATA SET 

POLYCHOTOMOUS OUTCOME 

 

The respite data set was then examined using polychotomous treatment groups – 

including the “other” group, so that we are comparing respite, home, and other.  The steps 

are similar to a dichotomous analysis.  First, a multinomial regression was done (instead 

of a logistic regression) to calculate the probability of being in each group.  Next, a cluster 

analysis was done to assign each observation to a cluster, analogous to splitting the data 

into quantiles.  Note that five clusters produced a group where there were no observations 

in the respite group, so four clusters were used.  This decision will be left for future 

examination.  Weighting the data was done based on the sample size in each treatment 

group within that stratum. 

Figure 5 presents the results of the clustering, where the numbers on the graph (1-

4) represent data points that are allocated to that numbered cluster.  The value on the plot 

represents the propensity of being in the home group (X axis) and other group (Y axis).  

Thus, the propensity of being in the respite group is 1 – x – y.  The solid line represents 

the sum of X and Y equal to one so the closer to the line the less likely they were to be 

sent to the respite unit.  So, for example, we see that cluster 4 is unlikely to go to the 

respite unit, while cluster 1 and 2 appear to be most likely.  Also, note that the odds ratios 

produced here are the odds or being readmitted or dying within 90 days for home or other 

group relative to respite group, the reverse of what we saw in the dichotomous analysis.



 

FIGURE 5: CLUSTERS BASED ON THE PROPENSITY SCORE 

Plot of Two-Dimensional Propensity Scores
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Tables 6 and 7 present summaries of the variables used in the analysis.  The 

original data were broken down by cluster and treatment group.  In addition, p-values for 

the chi-squared test demonstrate that the independent variables are associated with the 

treatment group, yet this association is no longer present in the matched data set (table 7).  

Notice that the confidence interval for the odds ratio in the proportional weight group is 

wider than the cluster weight or weighting by the inverse of the propensity score group.  

These results are similar to what was found in the dichotomous situation.



 

TABLE 6. COMPARISON OF WEIGHTS FOR FOUR METHODS OF PROPENSITY SCORE ANALYSIS 

 

   Weights per Observation Total Weights 

 Method Respite Home Other TOT Respite Home Other TOT 

1 n  56 193 72 321 56 193 72 321 

   Weighting w/in Strata 1.9 0.6 1.5 1.0 107 106 107 321 

   Prop’l Wtg w/in Strata 1.1 1.0 1.0 1.0 59 187 75 321 

   Inv. Propensity Wtg* 2.0 0.6 1.3 1.0 112 114 95 321 

2 n  55 95 66 216 55 95 66 216 

   Weighting w/in Strata 1.3 0.8 1.1 1.0 72 72 72 216 

   Prop’l Wtg w/in Strata 0.7 1.3 0.8 1.0 40 126 51 216 

   Inv. Propensity Wtg* 1.3 0.7 1.2 1.0 69 70 80 218 

3 n  20 89 32 141 20 89 32 141 

   Weighting w/in Strata 2.4 0.5 1.5 1.0 47 47 47 141 

   Prop’l Wtg w/in Strata 1.3 0.9 1.0 1.0 26 82 33 141 

   Inv. Propensity Wtg* 2.6 0.5 1.9 1.1 53 43 60 155 

4 n  5 56 4 65 5 56 4 65 

   Weighting w/in Strata 4.3 0.4 5.4 1.0 22 22 22 65 

   Prop’l Wtg w/in Strata 2.4 0.7 3.8 1.0 12 38 15 65 

   Inv. Propensity Wtg* 2.2 0.4 3.6 0.8 11 24 14 49 

TOTAL n  136 433 174 743 136 433 174 743 

  Weighting w/in Strata 1.8 0.6 1.4 1.0 248 247 247 743 



 

  Prop’l Wtg w/in Strata 1.0 1.0 1.0 1.0 136 433 174 743 

  Inv. Propensity Wtg* 1.8 0.6 1.4 1.0 245 251 249 743 

* Value for inverse propensity weighting are means, since each observation can have a 

   different weight.  For example, in the first quintile, the weights range from 1.5 to 3.6. 



 

TABLE 7. COMPARISON OF DATA DISTRIBUTION AND RESULTS FROM NAÏVE ANALYSIS AND 

FOUR METHODS OF PROPENSITY SCORE ANALYSIS – POLYCHOTOMOUS OUTCOME 

 

  Pre- Random Selection Within Strata Weighting Within StrataProportional Weighting Within StrataInverse Propensity Weighting

  Resp HomeOther Resp Home Other Resp Home Other Resp Home Other Resp Home Other 

n 136 433 174 135 135 135 247.7 247.7 247.7 136 433 174 245.0 249.1 248.8 

Age                      

  Young 19% 31% 21% 19% 19% 20% 26% 50% 42% 26% 27% 28% 24% 27% 27% 

  Mid 55% 51% 52% 56% 59% 56% 53% 39% 42% 53% 52% 48% 54% 52% 50% 

  Old 26% 19% 27% 26% 21% 24% 21% 11% 16% 21% 21% 23% 22% 22% 22% 

  p-value 0.01 0.94 0.86 0.91 0.93 

Race                      

  White 56% 39% 48% 56% 54% 50% 50% 44% 42% 50% 44% 42% 45% 44% 44% 

  Black 35% 44% 40% 35% 33% 37% 39% 41% 42% 39% 41% 42% 42% 42% 41% 

  HispOth 10% 17% 13% 10% 13% 13% 11% 15% 16% 11% 15% 16% 14% 15% 15% 

  p-value 0.006 0.86 0.24 0.50 0.996 

AA 34% 31% 34% 34% 31% 35% 32% 32% 34% 32% 32% 34% 32% 32% 32% 

  p-value 0.66 0.79 0.86 0.88 0.99 

DA 8% 19% 16% 8% 15% 14% 9% 17% 19% 9% 17% 19% 15% 16% 17% 

  p-value 0.009 0.19 0.003 0.03 0.77 

DCG                      

  Low 10% 17% 5% 10% 5% 4% 17% 13% 10% 17% 13% 10% 11% 13% 12% 

  Mid 69% 65% 72% 70% 74% 72% 65% 68% 69% 65% 68% 69% 70% 67% 67% 

  High 21% 18% 23% 21% 21% 24% 17% 19% 21% 17% 19% 21% 19% 20% 20% 

  p-value 0.002 0.43 0.20 0.44 0.94 



 

OR H 1.36 (0.82, 2.26) 1.20 (0.65, 2.20) 1.41 (0.89, 2.22) 1.41 (0.85, 2.35) 1.50 (0.95, 2.37) 

OR O 1.35 (0.77, 2.37) 1.06 (0.57, 1.96) 1.31 (0.83, 2.08) 1.31 (0.73, 2.35) 1.43 (0.90, 2.26) 



 

SUMMARY 

 

With the addition of weighting within strata and proportional weighting within 

strata, there are now eight methods for sample selection in propensity score analysis.  The 

two new methods share the desirable properties of inverse probability weighting in that 

they use all the data and do not require randomization techniques which results in non-

replicability of study results.  Weighting within strata also adds a nice conceptual 

understanding, similar to random weighting within strata, as well as greatly reducing the 

problem of very high weights on observations unlike all others in the same treatment 

group, which can be a problem in weighting by inverse propensity scores.  Proportional 

weighting provides standard errors are not artificially inflated by assuming equal sample 

sizes.   These conclusions are reinforced by examination of the raw results from the 

respite dataset. 

From the simulations, I demonstrated that propensity score regression, random 

selection within strata, and weighting within strata produce results that are the least 

biased, based on their coverage probabilities.  The greedy algorithm might not be a good 

estimate in some cases compared to the more optimal nearest neighbor matching. 

The eight methods can be summarized by the following table (8).  The following 

notation is used: 

p(Z) is the propensity score based on a matrix of data Z (which may or may not 

include some of X), 

Q(p) is the quantile of the propensity score, 

T is the treatment group (1 for treatment and 0 for control), 

nT(Q) and nC(Q), are the number of treated and control observations in the Qth 

quantile, respectively 

nT is the overall number of treated (the sum of nT(Q) over all Q), 

nC is the overall number of control observations, 

wi is the weight for observation i, 

YT(i) is the i
th

 treated observation, for i=1 to nT, and  



 

YC(j) is the j
th

 control observation, for j=1 to nC.  



 

TABLE 8: SUMMARY OF METHODS OF SAMPLE SELECTION METHODS 

Method Weighting Scheme Randomization 

Necessary? 

Comments 

Random Selection 

w/in Strata 

1 if T=1 and nT(Q)<nC(Q) or 

T=0 and nT(Q)>nC(Q) 

0 otherwise 

Y  

Greedy Algorithm 

Matching 

YT(i)=1 and YC(j)=1 if 

       YT(i) - YC(j) ≤ YT(i) - YC(k) 

for all k ≠ j 

     for i=1,…., nT 

0 otherwise 

N (but order 

matters) 

Sub-optimal but easy to program 

Nearest Neighbor 

Matching 

1 for all i,j such that  

     ][min )()( jCiT

i
j

YY −∑    

     is the minimum, and each j 

is used only once 

0 otherwise 

N  

Nearest Neighbor 

Matching w/in 

Caliper 

1 for all i,j such that  

     ][min )()( jCiT

i
j

YY −∑    

     such that YT(i) - YC(j) < ε , 

where ε is the caliper, is the 

N Suggested method by Rosenbaum and 

Rubin (1985) 



 

minimum, and each j is 

used only once 

0 otherwise 

Regression 

Adjustment 

None (use p(Z) in regression 

equation on outcome) 

N  

Inverse Propensity 

Weighting 

1/p(Z) if T=1 

1/(1-p(Z)) if T=0 

N Imbens (2000) 

Weighting w/in Strata (nT(Q)+nC(Q)) / 2 / nT(Q) if T=1 

(nT(Q)+nC(Q)) / 2 / nC(Q) if T=0 

N New method. 

Easily generalizable to k-group 

polychotomous situation (use  

Σni(Q) / (k * ni(Q)) instead, where ni is 

the sample size in quantile Q for 

treatment group T=i 

Proportional 

Weighting w/in Strata 

Multiply weight w/in strata 

weight by Σn(Q) / Σni(Q) where 

Σn(Q) is the overall sample size 

(n) and Σni(Q) is the sample 

size in treatment group T=I  

N New method. 

Easily generalizable to a k-group 

polychotomous situation, as above. 

 


