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SUMMARY

The ability of matched sampling and linear regression adjustment to reduce the bias
of an estimate of the treatment effect in two sample observational studies is investigated for
a simple matching method and five simple estimates. Monte Carlo results are given for
moderately linear exponential response surfaces and analytic results are presented for
quadratic response surfaces. The conclusions are (1) in general both matched sampling and
regression adjustment can be expected to reduce bias, (2) in some cases when the variance
of the matching variable differs in the two populations both matching and regression adjust-
ment can increase bias, (3) when the variance of the matching variable is the same in the two
populations and the distributions of the matching variable are symmetric the usual co-
variance adjusted estimate based on random samples is almost unbiased, and (4) the
combination of regression adjustment in matched samples generally produces the least
biased estimate.

1. INTRODUCTION

This paper is an extension of Rubin [1973] to include regression adjusted
estimates and parallel nonlinear response surfaces. The reader is referred
to sections 1 and 2 of that paper for the statement of the general problem
and an introduction to the notation.

After presenting the estimates of the treatment effect to be considered
in the remainder of section 1, we go on in section 2 to present Monte Carlo
results for the expected bias of the estimates assuming four exponential
response surfaces, normally distributed X, and the random order, nearest
available matching method. Section 3 is an attempt to understand the Monte
Carlo results in a more general context by examining the bias of the estimates
for quadratic response surfaces. Section 4 is a summary of the results.

1.1 The five estimates of r to be considered here

We assume that the objective is to estimate the constant difference, r,
between parallel univariate response surfaces in two populations P; and P, :

T = R,(x) — Ry(x) for all z,

1 Present Address: Educational Testing Service, Princeton, New Jersey 08540
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where R, (x) is the conditional expectation in P, of the dependent variable ¥
given the matching variable X = z. Equivalently, we can write

R =a +V(x) 2=1,2 (1.1.1)
where V(0) = 0and oy — @y = 7.

We often refer to the function V(z) as ‘“the response surface’.

We assume @, is a random sample from P, of size N and &, is a random
sample from P, of size N, r > 1. r will be estimated from @; and G.. , an
N size subsample of G, “matched” to @, . For the jth matched pair of subjects
in G, and G,« with scores y,; and z;; on ¥ and X we write

Yii = o + vy + ey (1.1.2)

where v;; = V(z;;), E.(e;;) = 0,7 = 1, 2, and E, is the expectation condi-
tionally given the z;; .

The simplest estimate of 7 is average ¥ difference in G; and G,.

To = Y. — Ja. -

The other four estimates of + we will consider here use an adjustment based
on the assumption of a linear model, V(z) = Bz for a regression ceefficient 8,
which we will temporarily assume to be correct. It is simple to show that the
bias of #, under this model is 8(Z,. — &..), and hence if we knew 8, the estimate
1. — Fa. — B(@.. — Z,.) would be unbiased. We can obtain an estimate of 3,
say B, that is conditionally unbiased, E,(8) = B, by fitting a regression model.
Thus the estimate 7,. — 7., — B(Z1. — &,.) would be an unbiased estimate of r
under the linear model whether we have matched or not.

Probably the most common estimate of 8, at least when dealing with
random samples, comes from fitting the parallel linear response surface

model by least squares. After fitting the means to each group the data are
pooled and a pooled estimate of 8, 3, is found. The estimate of 7 is then

fp = (Gr. — F2.) — By(Fr. — £a.).

This method is the standard approach of the analysis of covariance for two
groups, and the estimate is of course unbiased under this model of parallel
linear response surfaces.

Two more estimates of the regression coefficient are easily found. Assuming
that the parallel linear response surface model is correct, the least squares
estimate of 8 found from the G, sample, 3, is an unbiased estimate of 8, as
is the estimate found from the G, sample, 3, . Hence, we have two more
unbiased estimates of the regression coefficient, one estimated from the G,
data and the other estimated from the G,. data, and so two regression adjusted
estimates of 7,

7= (1171. - ?72.) - Bl(ﬂ-?l. - 113—2.)
Fy = (171. - ?72.) - 32(:1'71, - 152.)-
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These estimates of = using within group estimates of 8 are most appropriate
when the response surfaces are thought to be non-parallel and an avcrage
difference over the G, or G, sample is desired. See Cochran [1969] and Belsen
[1956]. If the response surfaces are parallel and linear, these estimates will
have larger variances than the pooled estimate, 7, , because one is not using
half of the data relevant to estimating 8.

The last estimate of 8 to be considered is in some sense the most natural
one when dealing with pair-matched data. Forming matched pair differences
Yai = Y1; — Ya; and Ty; = T1; — Tg; , Pa is the estimate of B found from the
regression of y,; on ; . Equivalently 3, is the estimate of 8 found from a
two-way analysis of covariance, groups by matched pairs. It is easy to show
that B, is an unbiased estimate of 8 under the linear response surface model.
The associated estimate of 7,

74 = (?71. - ?;’2.) - Bd(fh. - 552.)7

is the constant in the linear regression on matched pair differences.
We have considered five estimates of the difference between parallel
response surfaces, 7, all of the form

? = (G — o) — B@. — &2.). ] (1.1.3)

The differences between the estimates are thus confined to estimating the
regression coefficient and are summarized below in Table 1. Note that #;
is the only estimate that requires G, — G, pairs assigned in the final samples.

TABLE 1
ESTIMATES OF THE RESPONSE SURFACE DIFFERENCE: 7 = 1, — §a2. — B(a?l, — &s.)
Estimate of T: T Estimate of B: §
%o Bo =0
A~ -~ S —
1 Bl =85 Sy = § (le'xl') Y13
A S —
T B,=gr 38 =1 (x,,-Xp,)
2 275y P tm T L 27 Y3
" N S 2 N =
» Bp = B * T T E jfl Gy i) Wiy
“ “ S 2 XN ( )
T Bg=gX ;8= 2 I (%% -F 4% ) w
a a Sxx Xu ooy 3=1 1) i “:.J
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1.2 The percent reduction in bias due to matched sampling and regression
adjustment

We now find the bias of the five estimates presented above. By Table 1

and (1.1.2) we have
SZH SIG
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and from (1.1.3)

A - - - - - - S - -
f=a —a+ 0, — 0 +8& —& — S (&1, — ) — S (&1, — T2).
T Tz

Thus the conditional bias of # given the z;; is

Ec($ - T) =0, — 0y, — gn (3_71. - jz.)-

If the response surface is linear (5, — #,.) = B(ZF. — &) and S,,/8S.. = 8
for all estimates except #, for which 8,,/8S,. = 0. Hence given parallel linear
response surfaces, all estimates except 7, are unbiased and #, will be unbiased
if ., = %, . However, if the response surface is nonlinear all estimates
are in general biased even if £,, = Z,. . Thus a mean-matching method or
a procedure that concludes unbiased estimates will result if Z,, = Z,. is not
necessarily appropriate if the response surface is non-linear. See Cochran
[1970] and Rubin [1973] for examples of such procedures.

The expected bias of # over the matched sampling plan is E{§,, — @, —
S../8..(£;. — Z».)} where E is the expectation over the distributions of X
in matched samples. Given r = 1 (random samples), the expected bias of #,
is E,(9,.) — E,(0,.) where E;( ) is the expectation over the distribution of X
in P, . It follows that the percent reduction in expected bias due to matching
and/or regression adjustment is

E[@L — Ty, — g (&, — @.)]
B\@0) — Ea(@) '

If the matches were exact, x;; = %3;,7 = 1, - -+, N implying that &,, =
Z,. and 7,, = 7, ; hence, the percent reduction in expected bias would be
1009, for any response surface. In section 2 we present Monte Carlo values
of the percent reduction in bias due to matching and/or regression adjustment
for the estimates 7, , #, , %3, %, , and 7; for some moderately non-linear response
surfaces and imperfectly matched samples.

1001 — (1.2.1)

2. MONTE CARLO PERCENT REDUCTIONS IN BIAS

When dealing with finite matched samples, the expectations required
to calculate the percent reductions in bias are usually analytically intractable.
Hence, we will turn to Monte Carlo methods in order to obtain numerical
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values for the percent reduction in bias of the different estimates in “typical”’
situations. These numerical values will be used to compare and evaluate
the different estimators of 7. After specifying the conditions for the Monte
Carlo investigations in section 2.1, we will present the Monte Carlo results
in sections 2.2, 2.3, and 2.4.

2.1 Conditions of the Monte Carlo tnvestigation

There are four conditions that must be specified in order to obtain Monte
Carlo percent reductions in bias for the five estimates of 7.

1. the distribution of X in P, and P,
2. the sample sizes N and rN

3. the matching method

4. the response surface V(z).

We will assume that in P; , X ~ Normal (7, , ¢?) 1 = 1, 2. Without loss
of generality we can assume 7, = —n, > 0 and (¢f + 03)/2 = 1. Then
B = 2y, is the number of standard deviations (v/(¢? + o2)/2) between the
means of X. The choice of X as normal is obvious but restrictive; generalizing
the Monte Carlo results to other distributions of X will be considered in
section 3. Some limited experience indicates that the values B = %, 3, 2, 1
and o7/0; = %, 1, 2 are representative of the range that might occur in practice
and so will be used.

With respect to sample sizes, we will assume N = 50 and r = 2, 3, 4.
Previous work on matching, Rubin [1973], and preliminary results indicated
very consistent trends for moderate and large N so that additional N’s
were judged unnecessary. Values of r were chosen to represent typical values
that might be used in practice.

The matching method must assign to each subject in G, a distinet subject
in G5 as a match so that there are N matched pairs. We will assume the
random order, nearest available pair-matching method investigated in
Rubin [1973]. First randomly order the G, subjects, then for each G, subject
choose in turn the closest match from those G, subjects not yet assigned as
matches. This method was chosen for two basic reasons: (1) previous results
indicate that it is a relatively intelligent pair-matching method that might
be used in practice; and (2) the matching procedure is very fast to perform
by computer. Since our study requires extensive Monte Carlo runs, the
second point was of practical importance.

Some basic results for this matching method are given in Table 2 and
Table 3, for the values of N and r and distribution of X specified above.
Table 2 gives Monte Carlo percent reductions in bias for #, assuming linear
response surfaces, and Table 3 gives Monte Carlo values of the ratio of the
expected variance of X in matched G,. samples, E(s2), to the expected variance
of X in random G, samples, ¢; . Note that E(s3) is for these conditions always
less than ¢} , although in “easy conditions’” (those in which the percent
reduction in the bias of X > 909,) E(s?) is close to ¢} .
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TABLE 2

PERCENT REDUCTION IN BIAS OF X FOR RANDOM ORDER, NEAREST AVAILABLE PAIR-MATCHING:
X NormAL, N = 50

032_/03 =3 ci/dg =1 gi/og =2

r = 2 3 L 2 3 k. 2 3 &

B=1/k 99 100 100 92 96 98 66 T9 86

1/2 98 99 100 87 95 97 59 75 8L

3/4 93 99 100 78 91 9k 53 69 75

1 8k 97 99 69 84 89 50 63 T1

TABLE 3

(E(s2)/02) X 100 FOR RANDOM ORDER, 1;\::A=RE55(’)1‘ AVAILABLE PAIR-MATCHING: X NORMAL,
o2/s2 = 2/o2 = 1 o2/o% = 2

r= 2 3 4 2 3 L4 2 3 L
B=1/k ko 48 L8 92 92 96 134 1k9 157
1/2 49 L9 L8 82 90 9k 116 132 1hg
3/h 48 18 L8 69 83 87 99 11k 125

1 W5 Ls Lt 59 68 76 76 91 100

The last condition to be specified is the range of nonlinear response
surfaces, the functions V(x) to be used. Since we are investigating regression
adjusted estimates based on the model that the response surface V(z) is
linear, we will require the response surface to be moderately linear in the
range of interest on the assumption that an alert investigator should be
able to detect violent nonlinearity and thus use a more appropriate model
for adjusting the estimate (e.g. add a quadratic term).

In Figure 1 we have plotted V(z) = exp (z/2) and V(z) = exp (2),
for —3 < x < 3 corresponding roughly to the range of X to be used in the
Monte Carlo samples. Even when disguised by random error, it might
reasonably be argued that the nonlinear aspects of exp (x) often would be
quite apparent. For this range of X we consider the response surface exp (z)

2 Strictly by equation (1.1.1), V(0) = 0 so that we really should set V() = exp (z) — 1. Since the con-
stant has no effect on results it will be simpler to ignore it in discussion.
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to be an extreme example of what might be termed moderately nonlinear
and exp (x/2) a more reasonable example of a moderately nonlinear response
surface.
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F(X)
60C
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4.50

3.00
]
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FIGURE 1
TWwo EXPONENTIAL RESPONSE SURFACES

Since 7, = 75, the response surfaces exp (z) and exp (x/2) are ‘“‘unfavorable
to matching” because they are increasing most rapidly for large X which
is where close matches are difficult to find. The response surface exp (z) is,
in this sense, more unfavorable to matching than exp (z/2). Also, the response
surfaces exp (—z) and exp (—x/2) are ‘‘favorable to matching” because
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they are changing very slowly where the matches are poor. The four expo-
nential response surfaces exp (ax), & = =3, =1, were investigated in detail.
We consider these to be representative of a range of moderately nonlinear
response surfaces that are both favorable and unfavorable to matching,

Since an investigator when deciding whether or not to obtain matched
samples or when deciding which estimate of 8 to use generally has some
knowledge of the distribution of the matching variable in P; and P, , it
seems logical to present the results of the investigation classified by the
distribution of the matching variable. We first present the results when the
distribution of X is favorable to matching: ¢3/67 = %, then when only the
mean of X differs in P, and P, , ¢ = ¢} , and finally when the distribution
of X is unfavorable to matching, ¢? /02 = 2. “Favorable’ refers to the previous
work on ability to remove the bias of the matching variable X.

2.2 Case I-distribution of X favorable to matching—od?/c} = 3

The results for case I in which the distribution of X is favorable to match-
ing (¢2/02 = 1) are given in Table 4. First consider the results for 7, (no
regression adjustment). #, based on samples matched with r > 2 usually
removes most of the bias (909,-1109%,) of #, based on random samples.?
With the largest initial bias it may remove quite a bit less (e.g. B = 1,7 = 2,
769, for exp (x/2) and 699, for exp (z)). For practical purposes, the previous
results in Table 2 for linear response surfaces can be considered slightly
optimistic typical values (in general, optimistic by less than 59,) for mod-
erately nonlinear response surfaces) when o2/¢ = 1.

Regression adjusted estimates based on random samples seem quite
sensitive to even moderate departures from linearity. The extremely wild
values for percent reduction in bias (e.g. —288, 306) for exp (z) and exp (z/2)
when B = % and for exp (z) when B = % indicate that in these cases the
regression adjusted estimates based on random samples are substantially
more biased than #, based on random samples. Since exp (x) and especially
exp (z/2) are not violently nonlinear these results are somewhat surprising,.

The explanations seem to be as follows. Since exp (az) (¢ > 0) is mono-
tonically increasing (implying that generally 8 > 0) and 5, > 7, the adjust-
ment —B(n, — 7,) is usually negative in this case. But if ¢ < (62 — 2B/a)
we have E, {exp (az)} < E, {exp (ax)}, so that a positive adjustment is
needed. Hence fora = 1, o} = 2, ¢ = &, and B = %, the regression adjust-
ment often greatly increases the original bias. Further, fora = 1, B = %
as well as for ¢ = 1, B = 1, the regression adjustment is a gross over-adjust-
ment, since the expected bias of 7, based on random samples is much less
than suggested by the difference in means and the “average slope” of exp (z/2).
There is no one regression adjusted estimate based on random samples which
is always best, although #; appears to be more consistent than any other
estimate. Also, #, is always very poor, which is not surprising since the

3 Values greater than 1009 indicate that the expected value of V() in matched Gg, samples is greater
than the expected value of V(z) in Py, while values less than 09, indicate that the expected value of V(z) in
matched Gge samples is less than the expected value of V(z) in Pg.
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TABLE 4
PERCENT REDUCTION IN BIAS, X NORMAL ,N = 50, case I: ¢2/6} =

r=1 r=2 r=3 =]
(rentcn) - @ ~ = -~ 8
’7‘0 00 00 .00 20 106 95 99 100 103 99 100 1060 102 99 100 100
’%l -288 306 Sk 32 101 100 100 100 102 99 100 100  I0L 100 100 100
B=i ?2 =313 29k 65 57 102 100 100 100 102 99 100 100 101 100 100 100
T -7k 208 62 48 101 100 100 100 102 99 100 100 101 100 100 100
T,-228 248 79 77 96 102 100 100 101 100 100 100 100 100 100 100
?o 00 00 00 00 95 96 99 99 9% 98 100 100 97 99 100 100
‘T‘l 326 163 63 38 101 100 100 100 96 99 100 100 98 100 100 100
B=% ’T‘E 216 138 88 88 101 100 100 100 95 99 100 100 98 100 100 100
’T‘P 292 146 & 72 101 100 100 100 96 99 100 100 98 100 100 100
'T‘d 226 125 96 10k 108 101 100 100  10L 100 100 100 100 100 100 100
’T‘o 00 00 00 00 8 8 96 98 9k 97 100 100 97 99 100 100
’T‘l 220 148 65 38 102 100 101 101 97 99 100 100 98 100 100 100
B =5 '%2 45 111 102 113 103 100 101 10L 96 99 100 100 98 100 100 100
’,T‘p 170 125 90 88 103 100 101 101 97 99 100 100 98 100 100 100
’T‘d 137 109 103 11k 113 103 99 100 102 1000 100 100 101 100 100 100
?o 00 00 00 00 69 T6 91 96 %0 94t 98 99 9k 97 99 100
’-Fl 206 147 63 36 106 101 101 101 98 99 101 101 97 99 100 100
B=1 '%2 106 97 113 136 102 100 10L 102 97 99 101 101 97 99 100 100
?P 139 113 96 102 105 101 101 101 98 101 101 101 97 99 100 100
?d 118 103 108 126 118 105 99 99 105 99 99 100 102 101 100 100

range of X in G, is limited compared to the range in random G, and @, samples,
implying that #; may give a poor linear approximation to the response
surface.

Regression adjusted estimates based on samples matched with » > 2
are far superior to those based on random samples, the difference being more
striking when the bias in X is small. In all conditions all of the regression
adjusted estimates based on matched samples (r > 2) can be expected
to remove all of the bias (989,-1029%,). However, there is some tendency
for #; to be inferior if the response surface is very unfavorable to matching
(i.e. exp (z)). Except for #, given the response surface exp (z), there is almost
no improvement in using greater than a 2:1 ratio of sample sizes.
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2.3 Case II—d} = o

The percent reductions in bias for case II (¢} = o2) are given in Table 5.
First consider #, . Given the response surface, B, and r > 1, #, is more biased

TABLE 5
PERCENT REDUCTION IN BIAS, X NORMAL,N = 50, CASE 1I: /el =1
r=1 r=2 r=3 r=15
(randol}l —~ — —
'T‘O 00 00 00 00 70 8% 99 106 79 90 101 10k 87 9% 101 103
'T‘l 113 106 9% 88 8 91 107 112 8+ 9k 103 106 90 97 102 10k
B=1i ?2 88 94 106 113 77 91 107 113 82 9ok 104k 107 90 96 102 105
?p 101 100 100 101 79 91 107 113 83 9k 10k 107 8 96 102 105
’T‘d 109 101 107 125 100 99 .103 108 100 100 101 103 100 100 101 102
'T‘O 00 00 00 00 60 & o4 98 75 87 98 100 8t 92 99 100
?l lzr 113 88 77 8 91 105 108 83 94 103 104 88- 96 102 102
B=1% ?2 77 88 113 127 74+ 89 107 110 8L 95 103 1ok 87 96 102 103
'r‘p 102 101 101 102 77 90 106 109 82 9% 103 104 88 96 102 103
?d 109 102 105 116 106 102 100 101 102 100 100 10L 101 100 100 101
?0 00 00 00 00 k7 62 87 ok 68 8L 96 99 76 87 98 100
?l W2 120 82 67 85 92 106 109 88 93 104 105 86 95 102 103
B=1 '7‘2 67 82 120 1k2 71 87 109 112 78 91 105 106 83 94 103 104
?p 10k 101 101 104 79 90 107 110 81 92 10k 105 8k 9k 103 103
'T‘d 111 102 10k 11k 110 103 99 100 105 102 99 100 103 101 100 100
7, 0 00 00 00 39 5 8 91 55 70 92 9 6 79 96 9
’T‘l 18 121 77 58 88 9% 106 109 82 92 105 106 82 93 103 104
B=1 '7‘2 58 77 127 158 68 85 110 11k 72 88 107 109 75 90 105 105
'?p 108 102 102 108 81 90 107 111 79 91 105 107 79 92 10k 105
-“rd 112 102 106 120 113 104 99 99 109 103 100 100 106 102 100 99

in case II (¢} = o}) than in case I (¢} = o}/2). This result is expected since
in case IT the distribution of X is less favorable to matching than in case I.
The values given in Table 2 for linear response surfaces can be considered
mildly optimistic typical values (optimistic by 5%-10%) for these non-
linear response surfaces when ¢ = o7 .

The results for the regression adjusted estimates in case II are surprising
when compared with the results in case I. First, the regression adjusted
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estimates based on random samples are much better in all conditions in
case II than in case I. In fact, #, based on random samples generally removes
almost all of the bias (989,-1029,). A possible explanation for this result is
that since the variances and higher moments of X about the mean are equal
in random samples from the two populations, all of the bias of #, is due to
the difference in the means of X which linear regression should be good at
removing., This comment implies that regression adjusted estimates should
be approximately unbiased for nonlinear response surfaces (that can be
approximated by a polynomial) whenever the distributions of X in G, and
G, are the same except for a difference in means. In section 3 we will see
that this comment is not completely accurate and that the results we are
discussing are somewhat dependent upon the symmetry of the normal
distribution.

In samples matched with r > 2 7, is the best estimate, in general removing
most of the bias (999,~1059%). The other regression adjusted estimates
based on samples matched with » > 2 often have values outside the range
90%-1109,. #, is especially poor for matched samples possibly because of
the small range of X in G,. on which to base the regression (see Table 2).
7, and 7, are somewhat better when based on matched samples than when
based on random samples. Surprisingly, 7, is often worse when r > 2 than
when r = 1.

As would be expected, the estimates generally become slightly less biased
as r increases from two to four.

2.4 Case III—distribution of matching variable unfavorable to matching—

o2/o2 = 2

The results for case III in which the distribution of X is unfavorable to
matching (62/67 = 2) are given in Table 6. First consider the results for 7, .
As expected from the results for linear response surfaces, 7, based on matched
samples is more biased when ¢ > o2 than when ¢ < ¢2 . In fact, for exp (—z)
and B = 1, #, based on samples matched with 4 > r > 2 can be more biased
than 7, based on random samples. This strange result is due to the same cir-
cumstances as mentioned previously in case I when discussing regression
adjusted estimates based on random samples. Even though exp (—z) is
monotonically decreasing, in case III when B = %, E; {exp (—2)} >
E, {exp (—z)}. Matching with r < 4 decreases the difference in means in
G, and G, more than the difference in variances which tends to increase
the bias of 7, . In general, however, the values for percent reduction in bias
of #, for linear response surfaces given in Table 2 can be considered repre-
sentative optimistic values (optimistic by about 109,) for moderately non-
linear response surfaces when ¢?/63 = 2.

As already observed in case I, regression adjusted estimates based on
random samples are quite biased when ¢ 5% o3 even for moderately linear
response surfaces. Also, as in case I, given the response surface and B, regres-
sion adjusted estimates based on samples matched with r > 2 are less biased
than when based on random samples. However, the estimates are more
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TABLE 6
PERCENT REDUCTION IN BIAS, X NORMAL, N = 50, CASE I11: 65 /0% = 2

r = r=2 r=3 r=L

(rendom) - - ~

— [ —~ [ —~ q Eond N
Pz 3 3% 0z 3 ¥ oz 3 X3 oz 8ol
g & & [ - - g8 & g g & £
Estimate L @ Ll L [ Ul Q CH o Q [ L o o o o
T, 00 00 00 00 35 48 121 -50 5L 66 139 -h8 55 70 120 0L
T, 5T 65 29k -313 57 73 216 -1hl 6L 79 18k -85 67 82 164 ko
B=i t, 32 5V 306 -288 LT 68 227 -1h9 57T 76 192 -96 61 80 170 -5
%; 48 62 298 ~30b 53 71 220 -1k 6L 78 187 -89 65 8L 167 -k2
?d 84 83 2Lo -218 90 90 177 =99 92 93 1k9 -29 ok 95 1ho -05
?0 00 00 00 00 30 k5 81 123 43 60 89 118 L8 65 9k 126
T, 88 88 138 276 66 80 132 220 68 83 123 181 68 84 121 177
B=3% T, 38 63 165 326 4T 7 1o 237 55 77 128 191 58 79 12k 18k
%p T2 80 146 292 60 7T 135 226 63 8L 125 185 64 82 122 180
T, 108 98 126 240 107 100 111 171 105 100 108 147 10k 100 107 1L6
%0 00 00 00 OO0 23 38 T2 9 39 55 8 98 Y2 60 89 100
%l 113 102 111 145 76 85 121 152 72 85 116 138 71 8 11k 131
B=3% T, 38 65 148 220 ¥ 70 133 173 s§ 76 123 150 sh 78 119 1ko
-?p 88 90 123 170 66 80 125 159 66 82 119 12 65 83 116 109
Ty 123 106 106 132 120 106 102 115 111 103 102 112 111 103 101 97
T, 00 00 00 00 16 31 67 83 28 4 79 92 29 50 8k 9k
%l 136 113 97 106 88 90 114 132 78 87 114 129 ™ 86 113 124
B= 1 %2 36 63 147 208 4o 69 130 158 46 73 135 1L6 4% Th 121 138
%p 102 96 113 139 76 85 118 139 69 83 117 134 66 82 115 128
?d 133 111 101 11k 127 109 99 10k 119 106 100 104 119 105 99 102

biased in case III than in case I, presumably because the matching is poorer
than in case I. As might be expected 7, is generally the worst regression
adjusted estimate based on matched samples since the range of X in the
matched (. samples is small compared to the range of X over both samples.
74 is the best estimate in case III, with r > 2 generally removing most
(909,-1109%,) of the bias. In those conditions in which #; does poorly the
only better estimate is #, which in general is not very satisfactory. The
advantages of matching with r = 4 rather than with » = 2 are greater in
case IIT than in cases I or II but still are not substantial.

3. LINEAR REGRESSION ADJUSTMENT AND QUADRATIC RESPONSE
SURFACES

Somewhat surprisingly there appears to be little literature on the use of
linear regression to remove bias when the response surfaces are not exactly
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linear. A theoretical study of this situation would be especially valuable
for interpreting results such as those presented in section 2. The following
discussion is an attempt to understand the preceding Monte Carlo results
within a more general framework than provided by normal distributions
and exponential response surfaces. It is not intended to be a complete study
of linear regression and nonlinear response surfaces. Assuming that the
response surface is actually quadratic, we derive expressions for the bias of
#,, 73 and 7, in section 3.1 and for the bias of 7; in section 3.2. Since exp (ax)
may be approximated by such a response surface in the range of conditions
considered, these expressions will be used to help interpret the Monte Carlo
results of section 2.

3.1 Bias of 74, 71, 7 and %,

Consider two samples of size N with means Z,, , 7 = 1, 2, sample variances
s} = Z(z;; — #:.)°/N, i = 1, 2 and sample skewness k; = Z(x;; — %..)%/N,
1 = 1, 2. We will assume that the true response surface can be accurately
approximated by a quadratic response surface: V(z) = Bz + 62°. Hence,
for the samples

Yii = o; + Bri; + 823 + ey (8.1.1)

where E,(e;;) = 0, and E,( ) is the expectation conditionally given the z;; .
Using the simple results

% Zx’f1 = Cl_l?. + S%
(8.1.2)
]ivEc Z[(xii — 2, )] = Bt + 02887 + k)

we can calculate the bias of 7, , %, , 7, and %, as follows.

B — 1) = B@&. — &) + 6@F. — &) + 861 — ),  (3.1.3)

(
Bt = 1) = 86 =) F @0 — &) — @1 — @) ’—;} (3.1.4)

where the — holds for #, and the <4 for 7, , and

B, — 1) = 6[(83 — )+ G — z2.>{<a:~1. + ) — &si*—‘ﬁ}

s+ 8

_ _j_l_: Ty, S T A .
. (k, 1u2)jl (3.1.5)
We now use expressions (3.1.4) and (3.1.5) to interpret the Monte Carlo
results of section 2. First consider random samples. For the results presented
E(z,) = B/2, E(&.) = —B/2, BE(s})) = i, =12 E(Sf + 5)/2 =1,
E(k,) = 0and E(k;) = 0 since the normal is symmetric. Thus for the random
samples considered in section 3 the expected bias of #; 2 = 1, 2 is approximately

§{(e? — o2) F B*}, (3.1.6)
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and for 7, the expected bias is approximately
8(e? — o2)(1 4+ B*/2). 3.1.7)

Hence in case I when ¢! = ¢ , #, should be approximately unbiased, while
both #; and #, should be biased by an amount 5 8B, This claim is substantiated
by the Monte Carlo results presented in section 3. In case I, ¢! = 2, ¢ = 4.
Since 1 > B > 0, from (3.1.6) and (3.1.7) the least biased estimate should
be #, followed by #, and then #, . The Monte Carlo results again substantiate
this claim. In case III ¢} = %, ¢ = % and the ordering implied by (3.1.6)
and (3.1.7) is 75, ¥, , #; , which is again in agreement with previous results.

Now consider case I and samples matched with » > 2: E(s?) = E(s}) = o¢
(see Table 3). For #, the expected bias is approximately

5{_M E(k, + kz)}, 3.1.8)

2
20’1

and for 7, , 7 = 1, 2 the expected bias is approximately
6{=FE(a31, o E—(”E‘-g—mE(k..)}. (3.1.9)
1

In case I for matched samples with (r > 2), E(%,, — Z..) = 0 (see Table 2);
hence 7, , #, and #, all have approximately zero expected bias. Notice however,
that if E(s3) = E(s2) but E(z,, — Z,.) is large, #, would have approximately
zero expected bias only if E(k, + k;) = 0 (case II, random samples). Thus
a situation in which there is a large bias in the mean of X but very similar
higher moments (3 = s, k; = k,) would not necessarily be favorable to
using the estimate 7, unless the distribution of X is symmetric (k, = k, = 0).

In cases IT and III for samples matched with » > 2, ¢ > E(s}) (see
Table 3) and E(Z,, — ..) is not trivial (see Table 2). Expressions (3.1.4)
and (3.1.5) suggest that #, should be the worst estimate since E(s2 — s2) > 0,
E@#. — #.)° > 0, and E(k,/s2) < 0 (results not presented indicate that in
the conditions considered with r > 1, E(k,) < 0). Also, %, should be better
than #, or %, in these cases because E(k,) = 0 and we are subtracting E (%, —
Z,,)* from E(s} — s7). The Monte Carlo results confirm these trends.

The above discussion has at least to some extent explained the Monte
- Carlo results in section 2 for 7, , 7, and 7, and thus generated an understanding
of the effect of these estimates which is not tied to normal distributions
and exponential response surfaces.

3.2 Bias of 74

Thus far no explanation has been offered for the often superior per-
formance of the regression adjusted estimate based on matched pair dif-
ferences, 7; . This omission was intentional because even the intuitive ex-
planation given below is somewhat involved.

We begin by showing that for any set of N matched pairs there is some
mth degree (1 < m < N 4+ 1) non-trivial polynomial response surface for
which the pairs are exactly matched. Let P(z) = > ., a.2* be an mth degree
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polynomial in X; then if all matched pairs are exactly matched with respect
to P we have

;ak(xllci_xgi)=0, j=1---,N.
Such a polynomial always exists if m = N -4 1 because we can always find
a non-trivial solution for N -+ 1 unknowns given N homogeneous linear
equations. If the pairs are exactly matched, the minimum m is 1; the samples
are exactly matched for linear response surfaces as well as for all higher
degree response surfaces.

Intuitively, one might feel that as the matches become better the minimum
degree of the response surface for which the pairs are exactly matched should
decrease, or at least the degree of the response surface for which the pairs
are almost exactly matched should decrease. In this discussion we will assume
that the matched pairs are close enough so that they are almost exactly
matched for some quadratic response surface:

(@1 — 7)) + ax(a}; — 23;) = d; (3.2.1)

where d; is small for all matched pairs and its average value over matched
pairs is zero. Since we require the average value of d; to be zero we have

0 = a,(&. — &)+ 0«2(3—3?. + 321) - :E; - 32)

If Z,. = Z,. , all regression adjusted estimates considered are identical to #, .
If 7, # &, without loss of generality, let a, = 1, so that

_@. —(;)_er(s) — )., (3.2.2)

a; =

The bias of #; is

Ec(ﬁi - ﬂ = Ec[(gl. - gz)

E {Zy; — Ta; — (&1, — ) Wrs — Yoi) /o s :|
Z {xli — 2 — (&, — 152.)}2 . %)
= 8{@. — 23.) + (s} — =)}
—(r = ) E {xli — &y — (&1, — fz)}(x?: - xgi)
(x1. 332.) Z {xli — 0y — (151. — 3-32,)}2 (3.2.3)
But from (3.2.1) and (3.2.2) assuming &, # &, , we have
— &) + (61— )

& — %)

=2
(@3 — %) = d; + (@1; — 221) (&, (3.2.4)
Inserting (3.2.4) into (3.2.3) and taking expectations over matched samples
we have

E(a-fl. - -’zz.)

E(#; — 7) = 64, where A = “Var (@, — @)

Cov (@1; — 224, d;),
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and Var ( ) and Cov ( ) are the variance and covariance over the distribution
of z;; in matched samples.

If the samples are well matched with respect to some quadratic response
surface the d; should be relatively small and relatively uncorrelated with
the z,; — ,; , implying a small A. Hence, #; should be approximately un-
biased if the response surface is basically quadratic and the samples are well
matched with respect to some other quadratic response surface. If the true
response surface is exactly quadratic and the matches are exact with respect
to any quadratic response (d; = 0), #; will be conditionally unbiased. A
might be large if the samples are very poorly matched as with random
samples; thus, it is not surprising that for random samples in case IT (¢} = 73),
#, is superior to #; . However, even in those situations in which #; is not the
best estimate, the expected bias of #; is rarely substantially larger than that
of the least biased estimate. In general it appears that for moderately linear
response surfaces and moderately well matched samples, 73 will be the least
biased estimate that we have considered.

4, SUMMARY

We now summarize the Monte Carlo results of section 2 and the analytic
results of section 3 in the form of advice to an investigator who wants to
estimate the constant difference between parallel univariate response surfaces
in two populations P, and P, . This constant difference is called the treatment
effect and designated 7.

In review, we assume @ is a random sample from P; of size N and G,
is a random sample from P, of size rN, r > 1. 7 will be estimated using G,
and a N-size subsample of G, matched to G, on the matching variable X,
Gy . If r = 1 G, is a random sample from P, .

Five estimates of 7 are considered (see Table 1 for explicit definitions).

(1) #,—the average difference across matched pairs.

(2) #,—the covariance adjusted estimate using the pooled estimate of
the regression coefficient from a l1-way analysis of variance. This
estimate is the natural regression adjusted estimate when dealing
with random samples.

(3) #,—the regression adjusted estimate using matched pair differences,
or equivalently a two-way analysis of variance. This regression
adjusted estimate is the natural one when dealing with matched
samples.

(4) #,—the regression adjusted estimate using only the G, sample to
estimate the regression coefficient.

(5) #,—the regression adjusted estimate using only the matched Gs.
sample to estimate the regression coefficient.

#, and %, are most natural when average differences between non-parallel
response surfaces are desired.
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4.1 No regression adjustments—r,

If no regression adjustments are to be performed, random order, nearest
available pair-matching with a ratio of sample sizes » > 2 generally reduces
the bias of the estimate, 70 = #,. — #a.. , of the response surface difference,
especially if the variance of the matching variable is greater in P, than in
P, . The values of percent reduction in bias for linear response surfaces
given in Table 2 are optimistic by less than 109, in most nonlinear cases
considered here. However, in some ‘“unfavorable’ cases, the values of percent
reduction in bias for moderately nonlinear response surfaces are much less
than suggested by the values for linear response surfaces. Detailed advice on
#, for linear response surfaces is given in Rubin [1973].

4.2 Regression adjusted estimates—=, , 3 , £, , 74

A. #; vs #,—Variances of X Approximately Equal and Distribution of X
Symmetric

When the variances of X are approximately equal in P, and P, and the
distribution of X is symmetric in both P; and P, the Monte Carlo results
of section 2 and the analytic results of section 3 suggest the following con-
clusions:

(1) The estimate 7, based on random samples is approximately unbiased
when the response surfaces are approximately linear or quadratic;
hence, for these simple and often assumed distributions of X there
may be littie gain in obtaining matched samples.

(2) If matched samples have been obtained with 4 > r > 2, #; will be
the least biased estimate but generally not less biased than 7, based
on random samples, and hence probably less preferred because of the

fewer degrees of freedom used to estimate the regression coefficient.

B. #; vs £,—Variances of X Unequal and/or Distributions of X Non-
Symmetric

When the variances of X are different in P, and P, and/or the distributions
of X are not symmetric in P; and P, , results in sections 2 and 3 suggest the
following conclusions:

(1) Matching with r > 2 and using the estimate #; based on matched
pair differences should in most cases be the least biased procedure
we have considered, removing most (90-1109,) of the original bias
of #, based on random samples.

(2) Even with random samples (r = 1), assigning matches and using
7, In these cases may often be superior to the usual pooled estimate 7, .

(3) If in the final matched samples the variances of X are approximately
equal and the distributions of X appear symmetric, 7, may be slightly
less biased than 4, .

(4) In general, the decrease in bias of a regression adjusted estimate
from matching with » = 4 rather than » = 2 is minor.
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(5) If the response surface is linear, all regression adjusted estimates
are unbiased, but 7, will be superior to #; because it uses all of the
data to estimate the regression coefficient and thus has smaller
variance.

C. #;and 7,

In general, for the cases considered in sections 2 and 3, #; and #; are
inferior to either #; or 7, and their use should be avoided when the response
surfaces are parallel.

4.3 Other estimates of t

It could be argued in those cases in which 7, was the least biased estimate
that the extra N — 1 degrees of freedom (p.F.) used to estimate parameters
for the N matched pairs when forming matched pair differences could be
better used on the pooled data to estimate the response surface more ac-
curately. Thus a reasonable suggestion would be to obtain matched or
random samples and whenever the response surfaces are thought to be even
slightly nonlinear use the pooled data to estimate a quadratic (or higher
order) term in X assuming parallel response surfaces. A possible criticism
of this method is that in a multivariate case one may not have a large enough
sample to estimate all quadratic terms. The generalization of this work to
the multivariate case is currently being studied.

ACKNOWLEDGMENTS

This work was supported by the Office of Naval Research under contract
N00014-67A-0298-0017, NR-042-097 at the Department of Statistics, Harvard
University.

I wish to thank Professor William G. Cochran for many helpful suggestions
and criticisms on earlier drafts of this article. I would also like to thank
the two referees for their helpful comments.

L’UTILISATION D'UN ECHANTILLONNAGE AVEC APPARIEMENT ET D'UN
AJUSTEMENT PAR REGRESSION POUR SUPPRIMER LES BIAIS DANS
DES ENQUETES D’0OBSERVATION

RESUME

On étudie dans cet article la capacité d’un échantillonnage avec stratification et de
Pajustement par régression linéaire & réduire les biais de I’estimation de Peffet d’un traite-
ment dans deux enquétes d’observation et ceci par une méthode d’appariement simple et
par cing estimations simples. On donne les résultats, par la méthode de Monte Carlo, pour
des surfaces de résponses modérément linéaires exponentielles et des résultats analytiques
pour des surfaces de réponses modérément linéaires exponentielles et aussi quadratiques.
Les conclusions sont:

(1) on peut s’attendre & ce que en général A la fois I’échantillonnage avec appariement
et ’ajustement par régression réduisent les biais
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(2) dans quelques cas, lorsque la variance de la variable d’appariement différe dans les
deux populations, & la fois ’appariement et I’ajustement par la régression peuvent accroitre
le biais

(3) quand la variance de la variable d’appariement est la méme dans les deux popula-
tions et que les distributions de la variable d’appariement sont symétriques 1’estimation
habituelle ajustée par covariance, fondée sur des échantillons aléatoires, est presque non
biaisée

(4) la combinaison d’ajustement par régression dans des échantillons appariés donne en
général 'estimateur le moins biaisé.
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