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Abstract

In this paper we develop a method to estimate both individual social

network size (i.e., degree) and the distribution of network sizes in a pop-

ulation by asking respondents how many people they know in specific

subpopulations (e.g., people named Michael). Building on the scale-up

method of Killworth et al. (1998b) and other previous attempts to esti-

mate individual network size, we propose a latent non-random mixing
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model which resolves three known problems with previous approaches.

As a byproduct, our method also provides estimates of the rate of social

mixing between population groups. We demonstrate the model using

a sample of 1,370 adults originally collected by McCarty et al. (2001).

Based on insights developed during the statistical modeling, we con-

clude by offering practical guidelines for the design of future surveys

to estimate social network size. Most importantly, we show that if the

first names to be asked about are chosen properly, the simple scale-up

degree estimates can enjoy the same bias-reduction as that from the our

more complex latent non-random mixing model.

Keywords: Social Networks; Survey Design; Personal Network Size;

Negative Binomial Distribution; Latent Non-random Mixing Model

1 Introduction

Social networks have become an increasingly common framework for under-

standing and explaining social phenomena. Yet, despite an abundance of so-

phisticated models, social network research has yet to realize its full potential,

in part because of the difficulty of collecting social network data. In this pa-

per we add to the toolkit of researchers interested in network phenomena by

developing methodology to address two fundamental questions posed in the

seminal paper of Pool and Kochen (1978): first, we would like to know for any

individual, how many other people she knows (i.e. her degree, di); and sec-

ond, for a population, we would like to know the distribution of acquaintance

volume (i.e. the degree distribution, pd).
1

1At first glance it may seem that any method which could estimate the degree distribution
could also estimate the degree of an individual, but that is not the case. For example, the
scale-up method of Killworth et al. (1998b), which will be described in greater detail later
in this paper, provides estimates of the degree distribution, but cannot be used to estimate
the degree of a specific individual. It is also the case that some methods that allow a
researcher to estimate the social network size of an individual are so costly that they cannot
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Recently, the second question, that of degree distribution, has received the

most attention because of interest in so-called “scale-free” networks (Barabási,

2003). Some networks, particularly technological networks, appear to have

power-law degree distributions (i.e., p(d) ∼ d−α for some constant α), and

a number of mathematical and computational studies have found that this

extremely skewed degree distribution may affect the dynamics of processes

happening on the network including the spread of diseases and the evolution

of group behavior (Pastor-Satorras and Vespignani, 2001; Santos et al., 2006).

However, the actual functional form of the degree distribution of the acquain-

tanceship network is not known, and that question has become so central to

some researchers that Killworth et al. (2006) went so far as to declare that es-

timating the degree distribution is “one of the grails of social network theory.”

While estimating the degree distribution is certainly important for un-

derstanding how networks affect the dynamics of social processes, the ability

to quickly estimate the personal network size of an individual is probably of

greater long-term importance to social science. Currently, the dominant frame-

work for empirical social science is the sample survey which has been astutely

described by Barton (1968) as a “meatgrinder” that completely removes peo-

ple from their social contexts. Having a survey instrument which allows for the

collection of social content would allow researchers to address a range of ques-

tions. For example, to understand differences in status attainment between

siblings Conley (2004) wanted to know whether siblings who knew more peo-

ple tended to be more successful. Because of difficulty in measuring personal

network size, his analysis was ultimately inconclusive.

This paper develops a method to estimate both individual network size

and degree distribution in a population using a battery of questions that can

be employed on the scale required to estimate the degree distribution in a population.
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be easily embedded into existing surveys. We begin with a review of previous

attempts to measure personal network size, focusing on the scale-up method

of Killworth et al. (1998b) which is promising, but known to suffer from three

shortcomings: transmission errors, barrier effects and recall error. In Section 3

we propose a latent non-random mixing model which resolves these problems.

As a byproduct of the latent non-random mixing model we also obtain new

information about the mixing patterns in the acquaintanceship network that

we believe will be of substantive value to the social science community. We

then fit the model to 1,370 survey responses from McCarty et al. (2001), a

nationally representative telephone sample of Americans. In Section 5, we

draw on insights developed during the statistical modeling to offer practical

guidelines for the design of future surveys. Most importantly we show that

future researchers can achieve improved network size estimates without com-

plex statistical computation if the names asked about are chosen properly. We

conclude with a discussion of the limitations of this method, specifically how

additional demographic information for first names (currently collected but

not released by the Census Bureau) could improve network size estimates.

2 Previous research

The most straightforward method for estimating the personal network size of

a respondent would be to simply ask them how many people they “know.”

Although we are not aware of any direct evidence that this procedure works

poorly, we suspect it would not be very accurate because of the well-documented

problems with self-reported social network data (Killworth and Bernard, 1976;

Bernard et al., 1984; Brewer, 2000; Butts, 2003). A number of more clever at-

tempts have been made to address these questions and we will review them
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here. Because of space constraints we will not, however, review the larger liter-

ature on network data collection in general; interested readers should see Mars-

den (1990, 2005).

In the literature, we have identified four main methods attempting to es-

timate individual personal network size—the reverse small-world method, the

summation method, the diary method, and finally the phonebook method/scale-

up method—and these methods will now be described with strengths and

weaknesses summarized in Table 1.2

One of the earliest methods for estimating personal network size was the

reverse small-world method (Killworth and Bernard, 1978; Killworth et al.,

1984; Bernard et al., 1990) which, motivated by the small-world experiments

of Milgram (1967), asked respondents to name someone they would use if they

were required to pass a message to a given target. By asking respondents about

a large number of such targets, it is possible that a respondent will enumerate

a large proportion of his acquaintance network. Unfortunately, the required

number of targets is quite large; most studies use 500 targets which at a rate

15 seconds per target would take more than 2 hours to complete. Also, this

procedure of searching in one’s social network for an appropriate contact is

difficult to model (Watts et al., 2002) and therefore is hard to embed within a

statistical framework that would allow for formal inference and estimation of

sampling uncertainty (i.e., standard errors).3

2The random subgraph method described in Granovetter (1976) is excluded because it
only allows for the estimation of the average personal network size in a population.

3The reverse small-world procedure bears some resemblance to the “name generator” pro-
cedures which are frequently employed in network research (Burt, 1984; Campbell and Lee,
1991; Marsden, 2005). In these procedures, respondents are asked “name generator” ques-
tions which elicit names and then “name interpreters” to probe the respondent’s relationship
with the named individual. For example, the 1985 and 2004 General Social Survey included
social network modules where respondents were asked to list people with whom “they dis-
cussed important matters.” This approach tends to produce “core” discussion networks
which are much smaller (around 3 people) than the total number of acquaintances (Burt,
1984; Marsden, 1987; McPherson et al., 2006). Others have employed different name genera-
tors which yield weaker ties, for example Fischer (1982).Ultimately name generators depend
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Method embeddable in survey statistical modeling

reverse small-world method no no
summation method yes no
diary method no no
phonebook/scale-up method yes yes

Table 1: Strengths and weaknesses of methods for estimating person network
size.

An additional procedure that cannot be modeled statistically, but which

can be embedded in a survey is the summation method (McCarty et al., 2001).

In this method, respondents are asked how many people they know in a list

of specific relationship types, for example, immediate family, neighborhood,

coworkers, etc., and these responses are then summed to yield an overall es-

timate. McCarty et al. (2001) propose 16 relation types which when added

together should yield the total personal network size.4 Unfortunately, since

it is not possible to construct a list of mutually exclusive groups, this proce-

dure will lead to double counting (e.g., someone who is a coworker can also

be a neighbor) and respondents may not be able to answer these questions

accurately.

In addition to the reverse small-world method and the summation method,

there are two methods that were originally proposed by Pool and Kochen

which have had substantial impact on later work. The diary method required

subjects to keep a daily record of all known people encountered over the span

of 100 days. This method, while yielding very rich and accurate data, requires

too much cooperation and time to be employed in routine sample surveys.5

on respondents enumerating alters one by one and thus will never be able to quickly measure
an acquaintance network that could number in the hundreds or thousands.

4The 16 categories are: immediate family, other birth family, family of spouse or signifi-
cant other, coworkers, people at work but don’t work with directly, best friends/confidantes,
people known through hobbies/recreation, people from religious organization, people from
other organization, school relations, neighbors, just friends, people known through others,
childhood relations, people who provide a service, and, lastly, other (McCarty et al., 2001).

5Gurevich (1961) employed this method for his dissertation research on social networks,
but because of the logistical difficulties with employing the diary method, he was only able
to study 27 people.
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Later efforts have attempted to reduce the burden on respondents by using

data on contacts that are recorded automatically; for example, Christmas card

mailing lists (Hill and Dunbar, 2003), email logs (Kossinets and Watts, 2006),

or cell-phone records (Onnela et al., 2007). Because these methods are not

embeddable within the standard sampling survey framework, however, their

general applicability in the context of this paper is limited.

The second method proposed by Pool and Kochen, however, has the po-

tential to be employed in a survey framework and is amenable to statistical

modeling. This method—the phone book method—has also received the most

subsequent development. In its original form, a respondent was provided ran-

domly selected pages from the phone book and based on the proportion of

pages which contained the family name of someone known to respondent, it

was possible to estimate the respondent’s social network size. The estima-

tion was improved greatly in later work by Freeman and Thompson (1989)

and Killworth et al. (1990) which instead of providing respondents pages of

phone books provided them with lists of last names. The general logic of this

procedure was then developed further as the scale-up method (Killworth et al.,

1998b).

We believe the scale-up method holds the greatest potential for getting

accurate estimates quickly with reasonable estimates of uncertainty. The scale-

up method, however, is known to suffer from three distinct problems: barrier

effects, transmission effects, and recall error (Killworth et al., 2003, 2006).

In Section 2.1 we will describe the scale-up method and these three issues

in detail. Section 2.2 presents an earlier model by Zheng et al. (2006) that

partially addresses some of these issues.
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2.1 The scale-up method and three problems

Consider a population of size N . We can store the information about the

social network connecting the population in an adjacency matrix ∆ such that

δij = 1 if person i knows person j.6 The personal network size or degree of

person i is then di =
∑

j δij.

The most direct method to estimate the personal network size of an indi-

vidual, di, would be to collect a simple random sample of n other population

members and ask person i if she knows each of these others. Inference for

individual degrees is then based on the fact that the number of person i’s

acquaintances among these n randomly sampled individuals from the popula-

tion, follows approximately a binomial distribution with size n and probability

di/N . In large population, however, this method is extremely inefficient be-

cause the probability of a relationship between any two people is very low. For

example, if one assumes an average personal network size of 750 (as estimated

by Zheng et al. (2006)), then the probability of two randomly chosen Ameri-

cans knowing each other is only about 0.0000025 meaning that a respondent

would need to be asked about millions of people to produce a decent estimate.

A more efficient method would be to ask respondents about an entire set

of people at once. For example, asking, “How many women do you know

who gave birth in the last 12 months?” instead of asking the respondent if

she knows 3.6 million distinct people. The scale-up method uses responses to

questions of this form (“How many X’s do you know?”) to estimate personal

network size. For example, if you report knowing 3 women who gave birth

this represents about one-millionth of all women who gave birth within the

6What it means to “know” someone is itself a complex issue. Throughout this paper we
will assume McCarty et al.’s definition, “that you know them and they know you by sight
or by name, that you could contact them, that they live within the United States, and that
there has been some contact (either in person, by telephone or mail) in the past 2 years.”
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last year. We could then use this information to estimate that you know

about one-millionth of all Americans,

3

3.6 million
· (300 million) ≈ 250 people. (1)

The accuracy of this estimate can be increased by averaging responses of many

groups yielding the scale-up estimator (Killworth et al., 1998b)

d̂i =

∑K
k=1 yik∑K
k=1 Nk

·N (2)

where yik is the number of people that person i knows in subpopulation k,

Nk is the size of subpopulation k, and N is the size of the population. One

important complication to note with this estimator is that asking “How many

women do you know that gave birth in the last 12 months?” is not equivalent

to asking about 3.6 million random people; rather the people asked about

are women, probably between the ages of 18 and 45. This creates statistical

challenges that are addressed in detail in subsequent sections.

To estimate the standard error of the simple estimate, we follow the practice

of Killworth et al. (1998a) by assuming

K∑

k=1

yik ∼ Binomial

(
K∑

k=1

Nk,
di

N

)
. (3)

The estimate of the probability of success, p = di/N , is

p̂ =

∑k
i=1 yik∑K
k=1 Nk

=
d̂i

N
. (4)
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with standard error (including finite population correction) (Lohr, 1999)

SE(p̂) =

√
1∑K

k=1 Nk

p̂(1− p̂)
N −∑K

k=1 Nk

N − 1
.

Our simple degree estimate d̂i then has standard error

SE(d̂i) = N · SE(p̂)

= N

√
1∑K

k=1 Nk

p̂(1− p̂)
N −∑K

k=1 Nk

N − 1

≈
√

N −∑K
k=1 Nk∑K

k=1 Nk

d̂i =

√
d̂i ·

√√√√1−
∑K

k=1 Nk

N∑K
k=1 Nk

N

. (5)

For example, if we asked respondents about the number of women they

know who gave birth in the past year, the approximate standard error of the

degree estimate is calculated as

SE(di) ≈
√

d̂i ·
√√√√1−

∑K
k=1 Nk

N∑K
k=1 Nk

N

≈

√√√√√
1− 3.6 million

300 million
3.6 million
300 million

√
250 = 143.5.

If in addition, we also asked respondents the number of people they know who

have a twin sibling, the number of people they know who are diabetics, and the

number of people they know who are named Michael, we would have increased

our aggregate subpopulation size,
∑K

k=1 Nk, from 3.6 million to approximately

18.6 million and in doing so decreased our estimated standard error to 61.5. In

Figure 1, we plot SE(d̂i)/
√

d̂i against
∑k

k=1 Nk/N . The most drastic reduction

in estimated error comes in increasing the survey fractional subpopulation

size to about 20 percent (or approximately 60 million in a population of 300

million). After roughly 20 percent adding additional subpopulations to the
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survey still decreases the estimated standard error but at a slower rate.7
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Figure 1: Standard error of the simple scale-up degree estimate (scaled by the
square root of the true degree) plotted against fractional subpopulation size.
As we increase the fraction of population represented by survey subpopula-
tions, the precision of the estimate improves, with diminishing improvements
after about 20%.

The original studies using the scale-up method relied on 29 subpopulations

including some defined by first name (e.g., Michael, Christina), occupation

(e.g., postal worker, pilot, gun dealer), ethnicity (e.g., Native American), or

medical condition (e.g., diabetic, on kidney dialysis); a complete list can be

found in McCarty et al. (2001).8

The scale-up estimator using “How many X do you know?” data, is known

to suffer from three distinct problems: transmission errors, barrier effects, and

recall problems (Killworth et al., 2003, 2006). Transmission errors occur when

the respondent knows someone in a specific subpopulation, but is not aware

7The above error estimates depend on subpopulation sizes only through their sum and
thus one obtains the same reduction in estimated error by asking one question about a large
subpopulation as would be obtained by asking several questions about smaller subpopu-
lations. This, however, is not true in practice since, as we will shown in this paper, one
single large subpopulation introduces more recall error and bias due to social structure than
multiple smaller subpopulations would.

8The survey actually included 32 subpopulations, but for three of them researchers lacked
an estimated population size. For these three groups, the scale-up method was used in
reverse to estimate their group sizes given estimated individual degrees.
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that they are actually in that subpopulation. For example, a respondent might

know a woman who recently gave birth, but might not know that she had re-

cently given birth. These transmission errors likely vary from subpopulation

to subpopulation depending on the sensitivity and visibility of the informa-

tion. These errors are extremely difficult to quantify because very little is

known about how much information respondents have about the people they

know (Laumann, 1969; Killworth et al., 2006; Shelley et al., 2006).

Barrier effects occur whenever some individuals systematically know more

(or fewer) members of a specific subpopulation than would be expected under

random mixing, and thus can also be called non-random mixing. For example,

since people tend to know others of similar age and gender (McPherson et al.,

2001), a 30-year old woman probably knows more women who have recently

given birth than would be predicted just based on her personal network size

and the number of women who have recently given birth. Similarly, an 80-

year old man probably knows fewer than would be expected under random

mixing. Therefore, estimating personal network size by asking only “How

many women do you know who have recently given birth?”—the estimator

presented above in (1)—will tend to overestimate the degree of women in their

30’s and underestimate the degree of men in their 80’s. Because these barrier

effects can introduce a bias of unknown size, they have prevented previous

researchers from using the scale-up method to estimate the degree of any

particular individual.9

A final source of error is that responses to these questions are prone to

recall error. To understand this problem, consider how you would answer the

question, “How many people do you know named Michael?” For many people

9However, since researchers believed that these biases likely canceled out for sufficiently
large samples, they have still used the scale-up method to estimate the degree distribu-
tion (McCarty et al., 2001).
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this is not an easy question and there is evidence that people cannot answer

accurately (Killworth et al., 2003). If people were answering such questions

consistently we would expect a linear relationship between the size of the

subpopulation and the mean number of individuals recalled. That is, if the

size of subgroup doubled, the mean number recalled should also double. This

is not the case as can be seen in Figure 2, which plots the mean number known

in each subpopulation as a function of subpopulation size for the 12 names in

the McCarty et al. (2001) data. The figure shows that there was over-recall of

small subpopulations and under-recall of large subpopulations, a pattern that

has been noted previously (Killworth et al., 2003; Zheng et al., 2006).
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Figure 2: Mean number recalled as a function of subpopulation size for 12
names. If respondents recall perfectly, then we would expect the mean number
recalled to increase linearly as the subpopulation size increases. The best-fit
line and loess curve show that this was not the case suggesting that there is
recall error.

2.2 The Zheng et al. (2006) Model with Overdispersion

Before presenting our model for estimating person network size using “How

many X’s do you know?” data, it is important to review the multilevel overdis-

persed Poisson model of Zheng et al. (2006) which, rather than treating non-
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random mixing (i.e., barrier effects) as an impediment to network size estima-

tion, treated it as something important to estimate for its own sake. Zheng

et al. (2006) began by noting that under simple random mixing the responses

to the “How many X’s do you know?” questions, yik’s, would follow a Pois-

son distribution with rate parameter determined by the degree of person i, di,

and the network prevalence of group k, bk. Here bk is the proportion of ties

that involve individuals in subpopulation k in the entire social network. If

we can assume that individuals in the group being asked about (e.g. people

named Michael), on average, as popular as the rest of the population, then

bk ≈ Nk/N .

The responses to many of the questions in the McCarty et al. (2001) data

did not follow a Poisson distribution, however. In fact, most of the responses

show overdispersion, that is, excess variance given the mean. For example,

consider the responses to the question: “How many males do you know incar-

cerated in state or federal prison?” The mean of the responses to this question

was 1.0, but the variance was 8.0, indicating that some people are much more

likely to know someone in prison than others. To model this increased vari-

ance Zheng et al. (2006) allowed individuals to vary in their propensity to form

ties to different groups. If these propensities follow a gamma distribution with

a mean value of 1 and a shape parameter of 1/(ωk − 1) then the yik can be

modeled with a negative binomial distribution,

yik ∼ Neg-Binom(mean = µik, overdispersion = ωk) (6)

where µik = dibk. Thus, the ωk estimates the variation in individual propensi-

ties to form ties to people in different groups and represent one way of quan-

tifying non-random mixing (i.e., barrier effects).

14



Despite being developed to estimate ωk, the Zheng et al. model also pro-

duces personal network size estimates, di. However, these estimates are still

susceptible to the problems of transmission effects, barrier effects, and recall

bias that plague personal network size estimation based on the “How many

X’s do you know?” data.

3 A new statistical method for degree estima-

tion

We now develop a new statistical procedure to address the three known prob-

lems with estimating individual degree using the “How many X’s do you

know?” data: transmission effects, barrier effects, and recall bias. Transmis-

sion errors, while probably the most difficult to quantify, are also the easiest

to eliminate. We will limit our analysis to the 12 subpopulations defined by

first names that were asked about in McCarty et al. (2001). These 12 names,

half male and half female, are presented in Figure 3 with their age profiles.

Though McCarty et al.’s definition of knowing someone (see footnote 6 on

page 8) does not explicitly require respondents to know individuals by name,

we believe that using first names provides the minimum imaginable bias due

to transmission errors; that is, it’s unlikely that you know someone, but don’t

know his/her first name.10 Even though using only first names controls trans-

mission errors, it does not address bias from barrier effects or recall bias. In

the remainder of this section, we propose a latent non-random mixing model

10A definition of “know” that requires respondents to know an acquaintance’s name would
address this issue. One could define “know”, for example, as was done in the 2006 General
Social Survey: “people that you are acquainted with (meaning that you know their name
and would stop and talk at least for a moment if you ran into the person on the street or
in a shopping mall).” However, simply changing the definition of “know” may not have a
strong effect on how respondents actually answer the questions.
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to address these two issues.

Figure 3: Age profiles for the 12 names used in the analysis (data source:
Social Security Administration). The heights of the bars represent the percent
of American newborns in a given decade with a particular name. The total
subpopulation size is given across the top of each graph. The male names
chosen by McCarty et al. are much more popular than the female names.
These age profiles are the information required to construct the matrix of Nak

Na

terms.

3.1 Latent non-random mixing model

We begin by considering the impact of barrier effects, or non-random mixing,

on degree estimation. Figure 4 gives a graphical representation of a hypo-

thetical 30-year old male with the shaded oval representing the breadth of

the individual’s network. Following standard network terminology (Wasser-

man and Faust, 1994), we refer to the respondent as ego and the people to

whom he can form ties as alters. In this case, the respondent’s alters are di-

vided in 8 alter groups based on age and gender, though one could divide the

16



network based on additional characteristics as well. This example captures

the well-documented tendency for people to form ties to alters that are simi-

lar (McPherson et al., 2001). In this case, 30 percent of ego’s network is made

up of individuals in the most similar alter category (males 21-40) while only

1 percent of his ties are to the more socially distant alter category of females

61 and older.

If we ignore non-random mixing and ask this respondent how many Michaels

he knows, we will overestimate the size of his network using the scale-up

method because Michael tends to be a more popular name among younger

males (Figure 3). If we asked how many Roses he knows, in contrast, we

would underestimate the size of his network since Rose is a name that is more

common with older females. In both cases, the properties of the estimates are

affected by the demographic profiles of the names that are used in the estimate.

The simple scale-up method, however, does not account for this problem.

Figure 4: Non-random mixing by age and gender in an example ego’s network.
In the latent non-random mixing model m(e, a) allows the propensity of ties
to vary based on characteristics of both the alters and the egos. Here, by ego,
we refer to a survey respondent and by alter, we refer to a member of subgroup
a with whom the respondent could potentially form ties.

We model the non-random mixing sketched in Figure 4 using a negative bi-
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nomial model. Specifically, we model explicitly the propensity for a respondent

in ego-group e to know members of alter group a. The model is then

yik ∼ Neg-Binom(µike, ω
′
k) (7)

where µike = di

A∑
a=1

m(e, a)
Nak

Na

(8)

(9)

and di is the degree of person i, e is the ego group that person i belongs to,

Nak/Na is the relative size of name k within alter-group a (for example, 4% of

males between ages 21 and 40 are named Michael), and m(e, a) is the mixing

coefficient between ego-group e and alter-group a that we will define in the

following:

m(e, a) = E

(
dia

di =
∑A

a=1 dia

∣∣∣∣∣ i in ego group e

)
(10)

where dia is the number of person i’s acquaintances in alter group a. That is,

m(e, a) represents the expected fraction of the ties of someone in ego-group e

that go to people in alter-group a. For any group e,
∑A

a=1 m(e, a) = 1.

Therefore, the number of people that person i knows in group k, given that

person i is in ego-group e, is based on person i’s degree (di), the proportion

of people in alter-group a that are in group k, (Nak/Na), and the mixing rate

between people in group e and people in group a, (m(e, a)). Additionally, if

we do not observe non-random mixing, then m(e, a) = Na/N and µike in (7)

reduces to dibk in (6).

In addition to µike, the latent non-random mixing model also depends on

the overdispersion, ω′k, which represents the variation in the relative propen-

sity of respondents within an ego group to form ties with individuals in a

particular subpopulation k. Using m(e, a) we model the variability in relative

propensities that can be explained by non-random mixing between the defined
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alter and ego groups. Explicitly modeling this variation should cause a reduc-

tion in overdispersion parameter ω′k when compared to ωk in (6) and Zheng

et al. (2006). The term ω′k is still present in the latent non-random mixing

model, however, since there is still residual overdispersion based on additional

ego and alter characteristics that could effect their propensity to form ties.

Fitting the model in practice requires choosing the number of ego groups,

E, and alter groups, A. In this case, we classified egos by gender and by three

age categories—youth (18-24), adult (25-64) and senior (65+)—giving a total

of six ego groups. Constructing the alter groups requires information on the

demographic profiles of the names used. The only systematic source of this

data that we could find was from the Social Security Administration (SSA)

which provides decade-by-decade tables of the proportion of births in a decade

made up of children with a particular name.11 We use these tables as a proxy

for the relative proportion of individuals with a particular name in the popula-

tion.12 Based on this information we opted for eight alter categories based on

crossing gender (2 categories) and age (4 categories: 0-20, 21-40, 41-60, 61+).

Together this gives us a total of 48 mixing parameters, m(e, a), to estimate

11The Census Bureau collects respondent’s first names so they have all the information
that would be needed to compile the demographic profile of first names, but they do not
routinely release this information and our efforts to acquire this information were ultimately
unsuccessful.

12By using the SSA data we are making three implicit assumptions. First we assume
that life expectancy is uncorrelated with an individual’s first name, since the data provide
information only about the number of individuals born with a certain name and not the
number alive at the time of the survey. This may not be true in all cases. If a particular
name is more common with individuals living in poverty, for example, the life expectancy for
individuals with that name is likely overall lower. Second, we assume that individuals with a
particular first name are not predisposed to any behavior such as immigration or emigration
that would disproportionately alter the number of individuals in the population with that
name at the time of data collection. We do not believe that this assumption is problematic
for the names in the McCarty et al. survey. Third, we must assume that the factors that
influenced individuals’ decisions about registering for social security are uncorrelated with
first names, even during the early years of Social Security (which was established in 1935)
when registration was not universal. Again, there are conditions under which this conditions
could be violated, but there is little reason to believe that is the case here. Having data on
the demographic profiles of the first names from the Census Bureau would reduce the need
for such assumptions.
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(6 ego groups by 8 alter groups). We believe that this represents a reasonable

compromise between parsimony of parameters and obtaining detailed infor-

mation. Our model is flexible in this regard in that we could further stratify

based on available information of either the respondents or the demographic

profiles of names. This flexibility is especially important for survey researchers

who often have much more demographic information about respondents than

is currently available for the names.

3.2 Correction for recall error

The model in (7) is a model for the actual network of the respondents assuming

only random sampling error. Unfortunately, the observed data rarely yield

reliable information about this network because of the systematic tendency

for respondents to under-recall the number of individuals they know in large

subpopulations (Killworth et al., 2003; Zheng et al., 2006). For example,

assume that a respondent recalls knowing five people named Michael. Then,

the estimated network size would be:

5

4.8 million/300 million
≈ 300 people. (11)

However, Michael is a common name, making it likely that there are ad-

ditional Michaels in the respondent’s actual network who were not counted at

the time of the survey (Killworth et al., 2003; Zheng et al., 2006). Consistent

with the approach taken in Killworth et al. (2003), we could choose to ad-

dress this issue in two ways which, though ultimately equivalent, suggest two

distinct modeling strategies.

First, we could assume that the respondent is inaccurately recalling the

number of people named Michael she knows from her true network. Under
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this framework, any correction we propose should increase the numerator in

(11). This requires that we propose a mechanism by which respondents under-

report their true number known on individual questions. In our example, this

would be equivalent to taking the 5 Michaels reported and applying some

function to produce a corrected response (presumably some number greater

than 5), which would then be used to fit the proposed model. It is difficult,

however, to speculate about the nature of this function in any detail.

Another approach would be to assume that respondents are not recalling

from their actual network, but rather from a recalled network which is a subset

of the actual network. We speculate that the recalled network is created when

respondents change their definition of “know” based on the fraction of their

network made up of the population being queried such that they use a more

restrictive definition of “know” when answering about common subpopulations

(e.g., people named Michael) than when answering about rare subpopulations

(e.g., people named Ulysses). This means that, in the context of Section 2.2,

we no longer have that bk ≈ Nk/N . We can, however, use this information for

calibration because the true subpopulation sizes, Nk/N , are known and can

be used as a point of comparison to estimate and then correct for the amount

of recall bias. Previous empirical work (Killworth et al., 2003; Zheng et al.,

2006; McCormick and Zheng, 2007) suggests that the calibration curve, f(·)
should impose less correction for smaller subpopulations and a progressively

greater correction as the popularity of the subpopulation increases.

We devise such a calibration curve as described in the Appendix and apply
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it to our model as follows:

yik ∼ Neg-Binom(µike, ω
′
k)

where

µike = dif
(∑A

a=1 m(e, a) Nak

Na

)
.

(12)

3.3 Model Fitting Algorithm

We use a multilevel model and Bayesian inference to estimate di, m(e, a),

and ω′k in the latent non-random mixing model described in Section 3.1. We

assume that log(di) follows a normal distribution with mean µd and standard

deviation σd. Zheng et al. (2006) postulate that this prior should be reasonable

based on previous work (specifically McCarty et al. (2001)) and found that the

prior worked well in their case. We estimate a value of m(e, a) for all E ego

groups and all A alter groups. For each ego group, e, and each alter group, a,

we assume that log(m(e, a)) has a normal prior distribution with mean µm(e,a)

and standard deviation σm(e,a). For ω′k, we use independent uniform(0,1) priors

on the inverse scale, p(1/ω′k) ∝ 1. Since ω′k is constrained to (1,∞), the

inverse falls on (0,1). The Jacobian for the transformation is ω′−2
k . Finally, we

give noninformative uniform priors to the hyperparameters µd, µm(e,a), σd and

σm(e,a). The joint posterior density can then be expressed as

p(d, m(e, a), ω′, µd, µm(e,a), σd, σm(e,a)|y) ∝
K∏

k=1

N∏
i=1

(
yik + ξik − 1

ξik − 1

)(
1

ω′k

)ξik
(

ω′k − 1

ω′k

)yik

×
N∏

i=1

(
1

ω′k

)2

N(log(di)|µd, σd)

×
E∏

e=1

N(log(m(e, a))|µm(e,a), σm(e,a)) (13)

where ξik = dif
(∑A

a=1 m(e, a) Nak

Na

)
/(ω′k − 1).
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Adapting Zheng et al. (2006), we use a Gibbs-Metropolis algorithm in each

iteration v.

1. For each i, update di using a Metropolis step with jumping distribution

log(d∗i ) ∼ N(d
(v−1)
i ,(jumping scale of di)

2).

2. For each e, update the vector m(e, ·) using a Metropolis step. De-

fine the proposed value using a random direction and jumping rate.

Each of the A elements of m(e, ·) has a marginal jumping distribu-

tion log(m(e, a)∗) ∼ N(m(e, a)(v−1), (jumping scale of m(e, ·))2). Then,

rescale so that the row sum is one.

3. Update µd ∼ N(µ̂d, σ
2
d/n) where µ̂d = 1

n
Σn

i=1di

4. Update σ2
d ∼ Inv-χ2(n− 1, σ̂2

d), where σ̂2
d = 1

n
× Σn

i=1(di − µd)
2.

5. Update µm(e,a) ∼ N(µ̂m(e,a), σ
2
m(e,a)/n) for each e where µ̂m(e,a) = 1

A
Σa

a=1m(e, a)

6. Update σ2
m(e,a) ∼ Inv-χ2(a − 1, σ̂2

m(e,a)), for each e where σ̂2
m(e,a) = 1

A
×

ΣA
a=1(m(e, a)− µm(e,a))

2

7. For each k, update ω′k using a Metropolis step with jumping distribution

ω′∗k ∼ N(ω
′(v−1)
k ,(jumping scale of ω′k)

2).

4 Results

To fit the model we used data from McCarty et al. (2001) which consisted

of survey responses from 1,370 adults living in the United States who were

contacted via random digit dialing.13 We obtained approximate convergence

13More specifically, we used survey 1 (796 respondents, January 1998) and survey 2 (574
respondents, January 1999). Sometimes responses were categorized, in which cases we used
the central value in the bin (e.g., imputing 7.5 for the response 5-10). To correct for responses
that were suspiciously large (e.g,, a person claiming to know over 50 Michaels), we truncated
all response at 30, a procedure which affects only 0.25% of the data. We also inspected the
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of our algorithm (R̂max < 1.1; see Gelman et al. (2003)) using three parallel

chains with 2000 iterations per chain. We used the first half of each chain

for burn-in and thin the chain every ten iterations. As we will demonstrate

using a simulation study in Section 5.2 (see Figure 11) , the latent non-random

mixing model estimates with more accuracy both the degree distribution and

the individual degrees of the respondents, a major improvement over previous

methods. Next we will present those estimates.

4.1 Personal network size estimates

We estimated a mean network size of 611 (median = 472) and the distribution

of network sizes in presented in Figure 5. The solid line in Figure 5 is a

log-normal distribution with parameters determined via maximum likelihood

(µ̂mle = 6.2 and σ̂mle = 0.68); the lognormal distribution fits the distribution

quiet well.14 Given the recent interest in power-laws and networks, we also

explored the fit of the power-law distribution (dashed line) with parameters

estimated via maximum likelihood (αmle = 1.28) (Clauset et al., 2007). The

fit is clearly poor, a result consistent with previous work showing that another

social network—the sexual contact network—is also poorly approximated by

the power-law distribution (Hamilton et al., 2008). Together these results

suggests that some of the interest around power-law degree distributions in

social networks may be misplaced.

The estimated distribution is also presented separately for males and fe-

data using scatterplots which revealed a respondent who was coded as knowing seven people
in each subpopulation. We removed this case from the dataset.

14Though we state in Section 3.3 that the prior distribution for the degree is lognormal,
the observed lognormal distribution in Figure 5 is not an artifact of our model. We confirmed
this claim by performing additional simulation studies showing that the model will recover
the true nature of the population distribution even if that distribution is not lognormal. In
these experiments we first truncated the distribution estimates presented in Figure 5 at the
median. We then used these (now not lognormally distributed) values to generate data using
random draws from a negative binomial distribution. We fit our model to this artificial data
and are able to accurately recover the data-generating degree distribution.
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males in Figure 6. Overall, we estimate that the degree distribution for males

is similar to the distribution of females, though males have slightly larger net-

works on average. Amongst male respondents, we estimate a median degree

of approximately 500 (mean 640) and we expect 90 percent of males to have

degree between 172 and 1581. For females we estimate a median degree of 452

(mean 590) with 90 percent of females expected to have degrees between 157

and 1488.

Estimated Degree

0 1000 2000 3000 4000 5000 60000 1000 2000 3000 4000 5000 60000 1000 2000 3000 4000 5000 6000

Figure 5: Estimated degree distribution from the fitted model. The median is
about 470 and the mean is about 610. The shading represents posterior simu-
lation draws to indicate inferential uncertainty in the histograms. The overlay
line is a log-normal distribution with parameters estimated via maximum like-
lihood using the observed data (µ̂mle = 6.2 and σ̂mle = 0.68). The dashed
line is a power-law density with scaling parameter estimated via maximum
likelihood (α̂mle = 1.28)

Figure 7 compares the estimated degree from the latent non-random mixing

model to estimates from the method of Zheng et al. (2006), a previous method

that did not explicitly deal with the three known problems with estimating

individual degrees using “How many X’s do you know?” data. In general, the

estimates from the latent non-random mixing model tend to be slightly smaller
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Figure 6: Estimated degree distribution by gender. Shading represents simula-
tion draws from the posterior and implies inferential uncertainty. The average
degree for males is slightly larger than for females. For males the median is
about 500 (mean 640) while the median for females is about 452 (mean 590).

with an estimated median degree of 472 (mean 611) compared to an estimated

median degree of 610 (mean 750) in Zheng et al. (2006). The difference in de-

gree estimates is likely due to non-random mixing in the acquaintance network

that was not addressed in the procedure of Zheng et al. (2006). Figure 7 also

reveals a clear advantage of the latent non-random mixing estimates, that the

correction in degree estimation differs among ego groups due to non-random

mixing. For example, although there were six males names and six female

names used in the McCarty et al. data, these names were of very different

sizes so that the combined set of names queried included 16.1 million males

but only 3.3 million females (see Figure 3). The Zheng et al. model does not ac-

count for this fact and thus overestimates the degree of male respondents. The

latent non-random mixing model, however, incorporates this information and

thereby produces the corresponding corrections. Similarly, Figure 3 demon-

strates that the names used by McCarty et al. were most popular amongst
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adult respondents, which explains why Figure 7 shows the largest correction

on the degree estimates of adult respondents.
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Figure 7: Comparison of the estimates from Zheng et al. and the latent non-
random mixing (LNRM) model broken down by age and gender: grey points
represent males and black points females. Whereas the Zheng et al. estimates
do not account for non-random mixing, the latent non-random mixing model
considers non-random mixing within each ego group individually. Since our
model has six ego groups, there are six distinct patterns in the figure.

4.2 Mixing estimates

Though we developed this procedure to obtain good estimates of personal net-

work size, it also gives us information about the mixing rates in the population.

As far as we know, this is the first survey-based approach to estimate such in-

formation which is thought to be important for the spread of disease (Del Valle

et al., 2007) and information (Volz, 2006). These results are presented in Fig-

ure 8. As mentioned in the previous section, the mixing matrix represents

the proportion of the network of a person in ego group e that is made up of

alter group a. In this case we have six respondent categories and eight alter

categories, demonstrating that the number of groups can be manipulated to

suit individual research questions.

In general, Figure 8 indicates plausible relationships within subgroups with
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the dominant pattern being that individuals tend to preferentially associate

with others of similar age and gender, a finding that is consistent with the

large sociological literature on homophily—the tendency for people to form

ties to those who are similar (McPherson et al., 2001). This trend is especially

apparent for adult males who demonstrate a high proportion of their ties to

other males.

With additional information on the race/ethinicity of the different names,

the latent non-random mixing model could be used to estimate the extent of

network-based segregation, an approach that could have many advantages over

traditional measures of residential segregation (Echenique and Fryer, 2007).

Male AltersFemale Alters
Fraction of Network

0.4 0.2 0 0.2 0.4

61+

41−60

21−40

0−20

Alter Groups

Female Egos

Male AltersFemale Alters
Fraction of Network

0.4 0.2 0 0.2 0.4

Youth

Adult

Senior

Male Egos

Figure 8: Barplot of the mixing matrix. Each of the six stacks of bars rep-
resents the network of one ego group. Each stack describes the proportion of
the given ego group’s ties that are formed with all of the alter groups; thus,
the total proportion within each stack is 1. For each individual bar, a shift to
the left indicates an increased propensity to know female alters. Thick lines
represent +/- one standard error (estimated from the posterior) while thin
lines are +/- two standard errors.
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4.3 Overdispersion

Another way to assess the latent non-random mixing model is to examine

the overdispersion parameter ω′k which represents the variation in propensity

to know individuals in a particular group. In the latent non-random mixing

model, a portion of this variability is modeled by the ego-group dependent

mean µike. The remaining unexplained variability forms the overdispersion

parameter, ω′k. In Section 3.1 we predicted that ω′k would be smaller than the

overdispersion ωk reported by Zheng et al. (2006) since Zheng et al. (2006)

does not model non-random mixing.

This prediction turned out to be correct. With the exception of Anthony,

all of the estimated overdispersion estimates from the latent non-random mix-

ing model are lower than those presented in Zheng et al. (2006). To judge

the magnitude of the difference we create a standardized difference measure,

ω′k−ωk

ωk−1
. Here, the numerator, ω′k − ωk represents the reduction in overdisper-

sion resulting from modeling non-random mixing explicitly in the latent non-

random mixing model. In the denominator, an ωk value of one corresponds

to no overdispersion. The ratio for group k, therefore, is the proportion of

overdispersion encountered in Zheng et al. (2006) that is explicitly modeled

in the latent non-random mixing model. The standardized difference was on

average 0.213 units lower for the latent non-random mixing model estimates

than for the Zheng et al. estimates, indicating that roughly 21 percent of the

overdispersion found in Zheng et al. (2006) can be explained by non-random

mixing base due to age and gender. If appropriate ethnicity or other demo-

graphic information about the names were available, we expect this reduction

to be even larger.
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5 Designing future surveys

In the previous sections we analyzed existing data in a way that resolves three

known problems with estimating personal network size from “How many X’s

do you know?” data. In this section, we offer survey design suggestions

that allow researchers to capitalize on the simplicity of the scale-up estimates

while enjoying the same bias-reduction as in the latent non-random mixing

model. The findings in this section, therefore, offer an efficient and easy-to-

apply degree estimation method that is accessible to a wide range of applied

researchers who may not have the training or experience necessary to fit the

latent non-random mixing model.

In Section 5.1, we derive the requirement for selecting first names for the

scale-up method so that the estimator is equivalent to the degree estimator

from fitting a latent non-random mixing model using MCMC computation.15

The intuition behind this result is that the names asked about should be chosen

so that the combined set of people asked about is a “scaled-down” version

of the overall population. For example, if 20% of the general population is

females under 30 then 20% of the people with the names used must also be

females under 30. Section 5.2 presents practical advice for choosing such a set

of names and presents a simulation study of the performance of the suggested

guidelines. Finally, Section 5.3 offers guidelines on the standard errors of the

estimates.

5.1 Selecting names for the scale-up estimator

Unlike the scale-up estimator (2), the latent non-random mixing model ac-

counts for barrier effects due to some demographic factors by estimating degree

15Those using the simple scale-up method will not, however, be able to estimate the social
mixing parameters.
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differentially based on characteristics of the respondent and of the potential

alter population. If, however, there were conditions where the simple scale-

up estimator was expected to be equivalent to the latent non-random mixing

model, then the simple estimator would enjoy the same reduction of bias from

barrier effects as the more complex latent non-random mixing model estimates.

In this section we derive such conditions.

The latent non-random mixing model assumes an expected number of ac-

quaintances for an individual i in ego group e to people in group k (as in

(7)),

µike = E(yike) = di

A∑
a=1

m(e, a)
Nak

Na

.

On the other hand, the scale-up estimator assumes

E

(
K∑

k=1

yike

)
=

K∑

k=1

µike = di

A∑
a=1

m(e, a)

[
K∑

k=1

Nak

Na

]

≡ di

∑K
k=1

∑A
a=1 Nak

N
, ∀e. (14)

With the third equality in (14), the Killworth et al. scale-up estimator (2) is in

expectation equivalent to that of the latent non-random mixing model. This

equality holds if

m(e, a) =
Na

N
, ∀a, ∀e, (15)

or ∑K
k=1 Nak∑K
k=1 Nk

=
Na

N
, ∀a. (16)

In other words, the two estimators are equivalent if there is random mixing

(15) or if the combined set of names represents a “scaled-down” version of the

population (16). Since random mixing is not a reasonable assumption for the

acquaintances network of Americans, we need to focus on selecting the names
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to satisfy the scaled-down condition. That is, we should select the set of names

such that, if 15% of the population is males between ages 21 and 40 (Na

N
) then

15% of the people asked about must also be males between ages 21 and 40

(
∑K

k=1 Nak∑K
k=1 Nk

).

In actually choosing a set of names to satisfy the scaled-down condition,

we found it more convenient to work with a rearranged form of (16):

∑K
k=1 Nak

Na

=

∑K
k=1 Nk

N
, ∀a. (17)

In order to find a set of names that satisfy (17) we found it helpful to

create Figure 9 that displays the relative popularity of many names over time

by gender; lighter color represent greater popularity. Given the trendiness

of names demonstrated in Figure 9, we tried to select a set of names such

that the popularity across alter categories ended up balanced. For example,

if we consider selecting names to address barrier effects due to age, the names

selected should be popular in a particular time period then unpopular in the

remaining time periods.

Consider selecting three names from Figure 9: Walter, Bruce and Kyle.

Walter was most popular amongst those born from 1910-1940, but relatively

unpopular otherwise, whereas Bruce was popular during the middle of the

century and Kyle near the end. Thus, the effects of names at any one time

period will be canceled out by the popularity of names in the other time

periods, preserving the required equality in the sum (17).16

When choosing what names to use, in addition to satisfying (17), it is also

important consider the overall popularity of the names. For efficiency’s sake

16Note that this only works well if the names Walter, Bruce, and Kyle have similar
overall popularity because if one is much more popular than the others, it will dominate the
combined set of names. The McCarty et al. names for example have gender profiles that
are reasonably balanced but the male names are overall much more popular than the female
names, see Figure 3.
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Figure 9: Heat maps of additional male and female names based on data from
the Social Security Administration. Lighter color indicates higher popularity.
Three distinct popularity profiles are clear in the male names. The clustering
of female popularity profiles is still present, but less clear for the male names.

we suggest using names that are not too obscure, but we also suggest avoiding

names that are too popular in order to minimize the recall problems described

in Section 3.2. Generally, we found that names comprising approximately 0.1

to 0.2 percent of the population were easiest to work with because at this

level there are few recall problems and the average response ranges from 0.6-

1.3 from the respondents. Choosing names that are not commonly associated

with nicknames will also help to minimize transmission errors.

5.2 Simulation Study

We now demonstrate the above guidelines in a simulation study. Again, we use

the age and gender profiles of the names as an example. If other information

were available the general approach presented here would still be applicable.

The name-age profiles presented in Figure 9, are all of the desired popu-

larity (between 0.1 and 0.2 percent of the population). We have plotted the

figures separately for male and female names and clustered names based on age

profiles. In the figure for male names, there are three general clusters, roughly
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corresponding to the younger, middle-aged, and older respondents. For women

the pattern is less clear, which is expected since female names tend to be more

trendy for short time periods.

We demonstrate our guidelines by selecting two sets of names directly from

these figures. The first set of names in Table 2—the good names—were se-

lected using the procedure described in the previous section. This represents

our best attempt to choose a set of names that will produce reasonable esti-

mates from the simple scale-up estimator. As a point of comparison we also

selected another set of the names—the bad names—that were popular with

individuals born in the first decades of the twentieth century. As a final point

of comparison, we will also use the set of 12 names from the McCarty et al.

data.

Figure 10 provides a visual check of the scaled-down condition (15) for

these three sets of names by plotting the combined demographic profiles for

each set compared to that of the overall population. The figure reveals clear

problems with the McCarty et al. names and the bad names. In the bad

names, for example, a much larger fraction of the subpopulation of alters is

made up of older individuals than in the population overall (as expected given

our method of selection). Thus, we expect that scale-up estimates based on

Good names Bad names

Male Female Male Female

Walter Rose Walter Alice
Bruce Tina Jack Marie
Kyle Emily Harold Rose
Ralph Martha Ralph Joyce
Alan Paula Roy Marilyn
Adam Rachel Carl Gloria

Table 2: A set of names that approximately meet the scaled-down condition—
the good names—and a set of names that do not—the bad names.
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Figure 10: Combined demographic profiles for three sets of names (shaded
bars) and population proportion of the corresponding category (solid lines).

the bad names will over-estimate the degree of older respondents.

We assessed this prediction via a simulation study that fit the latent non-

random mixing model to the McCarty et al. data and then used these estimated

parameters (degree, overdispersion, mixing matrix) to generate a negative bi-

nomial sample of size 1,370. We then fit the scale-up estimate, the latent

non-random mixing model and the Zheng et al. model to this simulated data

to see how these estimates could recover the known data-generating parame-

ters.

Figure 11 presents the results of the simulation study. In each panel the

difference between the estimated degree and the known data-generating de-

gree for individual i is plotted against the age of the respondent. For the bad

names (Table 2) individual degree is systematically over-estimated for older

individuals and under-estimated for younger individuals in all three models,

but the latent non-random mixing model showed the least age bias in esti-

mates. This over-estimation of the degree of older respondents was expected
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Figure 11: A comparison of the performance of the latent non-random mixing
model, the Zheng et al. overdispersion model, and the Killworth et al. scale-up
method. In each panel the difference between the estimated degree and the
known data-generating degree is plotted against age. Three different sets of
names were used: a set of names that do not satisfy the scaled-down condition
(bad names), the names used in the McCarty et al. survey, and a set of names
that satisfy the scaled-down condition (good names). With the bad names, all
three procedures show some age bias in estimates, but these biases are smallest
with the latent non-random mixing model. With the McCarty et al. names,
the scale-up estimate and the Zheng et al. estimates show age bias, but the
estimates from the latent non-random mixing model are excellent. With the
good names, all three procedures preform well.

given the combined demographic profiles of the set of bad names (Figure 10).

For the names from the McCarty et al. (2001) survey the scale-up estimator

and the Zheng et al. model over-estimate the degree of the younger members

of the population, again as expected given the combined demographic profiles

of this set of names (Figure 10). The latent non-random mixing model, how-
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ever, produced estimates with no age bias. Finally, for the good names—those

selected according to the scaled-down condition—all three procedures work

well, further supporting the design strategy proposed in Section 5.1.

Overall, our simulation study shows that the proposed latent non-random

mixing model preformed better than existing methods when names were not

chosen according to the scaled-down condition, suggesting that it is the best

approach from estimating personal network size with most data. However,

when the names were chosen according the scaled-down condition, even the

much simpler scale-up estimator works well.

5.3 Selecting the Number of Names

For researchers planning to use the scale-up method an important issue to

consider in addition to which names to use is how many names to use. Ob-

viously, asking about more names will produce a more precise estimate, but

that precision comes at the cost of increasing the length of the survey. To help

researchers understand the trade-off, we return to the approximate standard

error under the binomial model presented in Section 2.1. Simulation results

using 6, 12, and 18 names chosen using the guidelines suggested above agree

well (details omitted) with the results from the binomial model in (5). This

suggests that the simple standard error may be reasonable when the names

are chosen appropriately.

To put the results of (5) into a more concrete context, a researcher who

uses names whose overall popularity reaches 2 million would expect a standard

error of around 11.6×√500 = 259 for a estimated degree of 500 whereas with
∑

Nk=6 million, she would expect a standard error of 6.2×√500 = 139 for the

same respondent. Finally, for the good names presented in Table 2,
∑

Nk=4

million so a researcher could expect a standard error of 177 for a respondent
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with degree 500.

6 Discussion and Conclusion

Using “How many X’s do you know?” type data to produce estimates of

individual degree and degree distribution holds great potential for applied

researchers. These questions require limited time to answer, impose no more

demands on respondents than the average survey question, and can easily be

integrated into currently existing surveys. The usefulness of this method has

previously been limited, however, by three previously documented problems.

In this paper we have proposed two additional tools for researchers. First,

the latent non-random mixing model in Section 3 deals with the known prob-

lems when using “How many X’s do you know?” data allowing for improved

personal network size estimation. In Section 5, we show that if future re-

searchers choose the names used in their survey wisely—that is, if the set of

names satisfies the scaled-down condition—then they can get improved net-

work size estimates without fitting the latent non-random mixing model. We

also provided guidelines for selection such a set of names.

Though the methods presented here account for bias in individual degree

estimation in ways that are not present in other methods, they are only as good

as the available data on the demographics of first names. Using “How many

X’s do you know?” data to estimate person network size requires knowing the

number of people in the population with the different first names. In many

countries such information may not be available. Further, the scaled-down

condition that we proposed can only control for non-random mixing across

dimensions for which there are sufficient data. For example, even if the set of

names used satisfies the scaled-down condition with respect to age and gender,
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there still could be a bias in the individual estimates that is correlated with

something that is not included in the model, such as race/ethnicity. We there-

fore believe that improved information about the demographics of different

first names, information that is collected but not released by the U.S. Census

Bureau, would be a great benefit to social science, and as such we suggest that

this information be released to the public.

A potential area for future methodological work involves improving the

calibration curve used to adjust for recall bias. The curve is currently fit de-

terministically based on the twelve names in the McCarty et al. (2001) data

and the independent observations of Killworth et al. (2003). In the future the

curve could be dynamically fit for a given set of data as part of the model-

ing process. Another area for future methodological work is formalizing the

procedure used to select names that satisfy the scaled-down condition. Our

trial-and-error approached worked well here because there were only 8 alter

categories, but if there were more, a more automated procedure would be

preferable.

In addition to the general benefit to social science from more accurate

estimates of personal network size, we think that one of the most interesting

and important potential applications of these improved network size estimates

is for the study of “hidden” or “hard-to-reach” populations, such as injection

drug users, men who have sex with men, and sex workers and their clients.

In most countries these are the subpopulations at greatest risk for becoming

infected with HIV, but, unfortunately, the sizes of these subpopulations are

not known and this hinders efforts to fight the spread of the disease (UNAIDS,

2003). As was shown by Killworth et al. (1998b) and Bernard et al. (1991),

estimates of person network size along with “How many X’s do you know?”

data can be used to estimate the size of hidden populations. For example, if you
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know 300 people and 2 injection drug users, then we can estimate that there

are about 2 million injection drug users in the United States (300 million
300

· 2 =

2 million). Thus, the improved degree estimates described in this paper should

lead to improved estimates of the sizes of hidden populations.

Appendix

A Details of the calibration curve

Killworth et al. (2003) and Zheng et al. (2006) both suggested that the relation

between βk = log(bk) and β′k = log(b′k) (the subpopulation sizes in the actual

social network and the recalled social network on the log scale) begins along

the y = x line and the slopes decreases to 1/2 (corresponding to a square root

relation on the original scale) as the fractional subpopulation size increases.

Based on this assumption and some boundary conditions, McCormick and

Zheng (2007) derived that

β′k = b +
1

2
(βk − b) +

1

2
(1− eβk−b),

where b = −7. For details on this derivation, the readers are referred to

McCormick and Zheng (2007). Therefore the calibration curve between bk

and b′k used in (12) is then

f(x) = exp(g(log(x))) → eb as x → eb,

= O(
√

x) as x →∞,

where

g(x) = b +
1

2
(x− b) +

1

2a

(
1− e−a(x−b)

)
.
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