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inferences and predictions, and frequentist
reasoning when evaluating their quality—
for instance, by keeping score on the accu-
racy of their predictions for data not used in
the modeling process. It seems odd to tie
one probabilistic hand behind your back
before you even begin, so to speak, as ana-
lysts such as Leo Breiman seem to advocate
in their opposition to Bayes.

Because this discussion is intended to be
a partially interactive format and we find
ourselves less in disagreement with Bun-
tine than Breiman, some remarks respond-
ing directly to the latter’s essay would per-
haps be useful.

Breiman has looked for Bayesian appli-
cations in the Current Index to Statistics,
which is dominated by journals in which
statisticians talk to each other. If he had
gone one or two layers farther out into the
real world—to the actual applied journals
in AIDS research and political science, for
instance—he would have found more
Bayesian work in the trenches. For exam-
ple, the Inspec database, which covers the
physical sciences, electrical engineering,
and computer science, returns over 350
entries for 1996–7 in response to the query
“(Bayes or Bayesian) and data,”
many involving real problems.

Breiman asks how to figure out what the
“right” prior knowledge is, a question that
seems to hang up many non-Bayesians to a
much greater extent than actual Bayesian
applied experience would justify. Here are
a few general responses:

• Sensitivity analysis is crucial. If you are
not sure how to quantify the substantive
(expert) knowledge available prior to
the current data collection, try several
ways that look plausible and see if they
lead to substantially the same conclu-
sions. (This is, after all, how Bayesians
and non-Bayesians alike specify the
part of the statistical model—the likeli-
hood—that permits inferences to be
drawn from the data information, when
no randomization was employed in the
data-gathering.)

• Tune the prior to get good predictive
calibration. Good statistical models—
for Bayesians, this includes both the
prior and the likelihood—should make
good predictions. So, in the absence of
strong substantive guidance, one ap-
proach to prior specification is to find
priors that produce good out-of-sample

predictive performance.
• Vague prior distributions. Standard non-

Bayesian methods based only on the
likelihood portion of the model have two
common defects. First, they are often
driven by approximations that work well
with large amounts of data, leaving open
the question of their validity in small
samples. Second, they can produce
poorly calibrated inferences about un-
knowns of principal interest, in the pres-
ence of a large number of unknowns of
less direct interest. Bayesian and non-
Bayesian analysts alike are finding it
increasingly useful to employ the
Bayesian machinery with prior distribu-
tions that convey little or no prior infor-
mation (vaguepriors), to produce infer-
ential and predictive procedures with
good frequentist calibration properties.

It seems odd that Breiman claims the
recent idea of “perturbing and combining
predictors” in pattern recognition as a
solely frequentist success story, when the
research area of Bayesian model aver-
aging—which has been active since the
late 1980s, and which can trace its roots to
papers in the 1960s—has already demon-
strated the value of combining predictors in
both theory and applications. Buntine sup-
ports this with his remarks about support-
vector machines and averaging over multi-
ple models.

The example we outlined earlier demon-
strates that Bayesian statistics is far more
than frequentist statistics with a prior dis-
tribution—this seems to be what Breiman
and Buntine are thinking of when they say
that Bayes “puts another layer of machin-
ery between the problem ... and the prob-
lem-solver.” We contest this view strongly.
We have found that Bayesian methods and
outlook provide a modeling framework that
is liberating in its ability to represent real-
world complexity.

We are not claiming that Bayesian meth-
ods are vital to the successful solution of the
problems discussed here—non-Bayesian
methods might have also succeeded in some
or all cases. What we areclaiming is that—
with the advent of MCMC—the field of
Bayesian applied statistics is for real: as
Andrew Gelman has noted, “Bayesian tech-
niques are out there, they are being used to
solve real problems, and the success of these
methods can be evaluated based on their
results.”
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No Bayesians in foxholes 

Leo Breiman 
University of California, Berkeley

In World War II, there was a saying,
“there are no atheists in foxholes.” The
implication was that on the front lines and
under pressure, soldiers needed someone to
pray to. The implication in my title is that
when big, real, tough problems need to be
solved, there are no Bayesians.

For decades, the pages of various statisti-
cal journals have been littered with theo-
logical arguments on the virtues of the
Bayesian approach versus frequentist ap-
proaches. I have no intention of continuing
the debate on this level. My approach is
pragmatic: which approach works best
when dealing with real data in solving
complex problems?

Hardly a better mousetrap
The Current Index of Statistics lists all

statistics articles published since 1960 by
author, title, and key words. The CIS in-
cludes articles from a multitude of journals
in various fields—medical statistics, relia-
bility, environmental, econometrics, and
business management, as well as all of the
statistics journals. Searching under any-
thing that contained the word “data” in
1995–1996 produced almost 700 listings.
Only eight of these mentioned Bayes or
Bayesian, either in the title or key words.
Of these eight, only three appeared to apply
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a Bayesian analysis to data sets, and in
these, there were only two or three parame-
ters to be estimated.

I spent 13 years as a full-time consultant
and continue to consult in many fields
today—air-pollution prediction, analysis of
highway traffic, the classification of radar
returns, speech recognition, and stock-
market prediction, among others. Never
once, either in my work with others or in
anyone else’s published work in the fields in
which I consulted, did I encounter the appli-
cation of Bayesian methodology to real data.

More specifically, speech recognition is a
difficult and important prediction problem.
Many approaches have been tried—large
neural nets, hidden Markov chains, decision
trees, and so on. But there are no working
Bayesian speech-recognition systems. The
same holds for handwritten character recog-
nition and many other less well-known but
difficult high-dimensional problems. In the
reinforced learning field, there are no strong
Bayesian chess-playing or backgammon
algorithms—but there are effective ad hoc
frequentist-based programs.

Over the years, I have discussed solving a
large variety of prediction problems with
hundreds of researchers in many fields. With
very few exceptions, even the avowed
Bayesians confess that when faced with data
and a problem—for instance, using a data set
of 15,000 examples, find an accurate algo-
rithm that recognizes 34 different patterns
using 128 inputs—they will think frequentist.

Thousands of smart people are working
in various statistical fields—in pattern
recognition, neural nets, machine learning,
and reinforced learning, for example. Why
do so few use a Bayesian analysis when
faced with applications involving real data?
It’s not that the Bayes approach is new. It
has been around almost since the begin-
nings of statistics and has been the subject
of thousands of theoretical papers. It’s
quite respectable, and numbers of eminent
theoretical statisticians are devoted Bayes-
ians. But if it’s a better mousetrap, why is
the path to its doorstep so overgrown?

Bayesians say that in the past, the ex-
treme difficulty in computing complex
posteriors prevented more widespread use
of Bayesian methods. There has been a
recent flurry of interest in the machine-
learning/neural-net community because
Markov Chain Monte Carlo methods might
offer an effective method of using com-
puter-generated random tracks to approxi-

mate posterior distributions. They hope that
MCMC methods for computing posterior
distributions will lead to effective Bayesian
work on complex problems.

I am dubious for several reasons: MCMC
has drawbacks—it is a slow, compute-
intensive method with no known means of
judging convergence. If we apply it to situa-
tions with more than, say, 1,000 parameters
(typical in complex problems), the diffi-
culty is compounded because the posterior
distribution is generally concentrated on a
lower-dimensional subspace, and the ran-
dom paths might spend most of their orbit
outside this subspace.

No matter how you select priors, they
might not be appropriate for the problem.
In high-dimensional problems, to decrease
the dimensionality of the prior distribution
to manageable size, we make simplifying
assumptions that set many parameters to be
equal but of a size governed by a hyper-
parameter. For instance, in linear regres-
sion, we could assume that all the coeffi-
cients are normally and independently
distributed with mean zero and common
variance. Then the common variance is a
hyperparameter and is given its own prior.

This leads to what is known in linear re-
gression as ridge regression. This method,
which has been widely tested, has proven
itself in some cases, but fails in situations
when some of the coefficients are large and
others small. A Bayesian would say that the
wrong prior knowledge had been used, but
this raises the perennial question: how do
you know what the right prior knowledge is?

For instance, some nonlinear-prediction
methods have recently been moderately
successful in fiscal market prediction. I re-
call a workshop some years ago at which a
well-known Bayesian claimed that the way
to do prediction in the stock market was to
put priors on it. I was rendered speechless
by this assertion. But one of the principals in
a successful fiscal market prediction com-
pany shot to his feet and emphatically re-
jected the idea as being totally hopeless.

But the biggest reason that Bayesian
methods have not been used more is that
they put another layer of machinery
between the problem to be solved and the
problem solver. Given that there is no evi-
dence that a Bayesian approach produces
solutions superior to those gotten by a non-
Bayesian methods, problem solvers clearly
prefer approaches that get them closest to
the problem in the simplest way.

Papers on current Bayesian applications
focus primarily on the machinery—on the
selection of the priors and on how the
MCMC was run, for example—and pay less
attention to the shape of the problem and
nature of the data. In higher-dimensional
problems with, say, over a few dozen para-
meters, researchers typically do not select
priors by expert opinion about the distribu-
tion of the parameters. Rather, they make
selections in terms of technical considera-
tions that have little to do with the prob-
lem’s context.

The Bayesian claim that priors are the
only (or best) way to incorporate domain
knowledge into the algorithms is simply not
true. Domain knowledge is often incorpo-
rated into the structure of the method used.
For instance, in speech recognition, some of
the most accurate algorithms consist of
neural nets whose architectures were ex-
plicitly designed for the speech-recognition
context. In handwritten digit recognition,
one of the most accurate algorithms uses
nearest-neighbor classification with a dis-
tance that is locally invariant to things such
as rotations, translations, and thickness.

Adventuresome tinkering
Incorporating domain knowledge into

the structure of a statistical procedure is a
much more immediate and intuitively ap-
pealing approach than setting up the Bayes
machinery. It lets you strike at the heart of
the problem and focuses your attention on
what is important, not on technical aspects
of machinery. Many people, including me,
approach problems by trying this, trying
that, tinkering here, tinkering there, seeing
what works and what doesn’t. Adventure-
some tinkering goes painfully slowly if you
are running MCMC on a high-dimensional
parameter space.

If you are trying to solve a high-dimen-
sional problem using neural nets, there are
generally hundreds or thousands of para-
meters. Bayesian machinery treats this situ-
ation by piling hyperparameters onto
hyperparameters onto parameters, then
running a long MCMC to evaluate the pos-
terior. As Christopher Bishop points out in
his sympathetic overview of Bayesian
methods, even the claim that the Bayesian
approach picks the model of appropriate
complexity for the data does not hold up in
terms of picking the best predictive model.1

Problem solvers have little motivation,
then, to use Bayesian methods. What

22 IEEE EXPERT

.



NOVEMBER/DECEMBER 1997 23

makes many skeptical about Bayesian
methodology is the dearth of impressive
success stories that could provide motiva-
tion. All it would take to convince me are
some major success stories in complex,
high-dimensional problems where the
Bayesian approach wins big compared to
any frequentist approach.

The last few years have seen major suc-
cesses in terms of methods that give
improved pattern-recognition prediction
accuracy on a large variety of data sets. One
such is the concept of support-vector ma-
chines originated by Vladimir Vapnik.2 An-
other comes from the idea of perturbing and
combining predictors. Both are based firmly
on frequentist ideas. It is not at all clear if
they can be understood, derived, or success-
fully implemented in a Bayesian framework.

My message to the Bayesians is that I can
be convinced, but it’s going to be a hard sell.

Other viewpoints
Wray Buntine’s discussion is quite in-

teresting. Although it looks like we would
take similar approaches when faced with
live problems growling at us, we base our
conceptualizations on different frame-
works. The proof of the pudding might be
how we would teach a graduate course in
“using complex data to solve problems.”
I suspect that differences would surface in
the first week, but they might simply be
different paths to the same goal.

David Draper and David Madigan give a
more traditional Bayesian viewpoint. They
begin with a presentation of Bayesian ideas
reminiscent of many past theology discus-
sions in statistical journals. I will not deal
with these because my orientation is how
results are gotten in practice. So I comment
only on the parts of their essay that are rel-
evant to this goal.

They do not get the meaning of “success
story.” In my view, a success story does
mean that someone has managed to do a
Bayesian analysis of a data set. Simply list-
ing some Bayesian analyses in different
fields does not cut it. A success story is a
tough problem on which numbers of people
have worked where a Bayesian approach
has done demonstrably better than any
other approach. For instance, they cite no
tough, complex prediction problem where a
Bayesian analysis has produced signifi-
cantly more accurate test-set results than
anything else tried.

In my experience, Bayesian analyses

often are demonstration projects to show
that a Bayesian analysis could be carried
out. Rarely, if ever, is there any comparison
to a simpler frequentist approach. But, I
emphasize again, problem solvers need to
be pragmatic and nonideological. If I en-
counter a situation where a Bayesian ap-
proach seems useful, I will try it.

In answer to my doubts regarding the
selection of priors, Draper and Madigan
have the following advice:

• Try several priors and see if they lead to
substantially the same conclusion: start
with one prior, run the MCMC, pull
another prior out of the hat, run MCMC,
and keep going until satisfaction sets in.

• Tune the prior to get good predictive
results: start with one prior, run
MCMC, compute the test-set error. Try
another prior, run MCMC, and see what
the new test-set error is. Keep going
until you achieve a low test-set error.

• On small data sets that they assert fre-
quentists can’t handle, a method that
works well (they say) is to use vague
priors: priors that contain no prior infor-
mation about the parameters. We have to
take their word on this because they give

no examples or citations. But this seems
to contradict the Bayesian ideology.

No matter how you put it, their advice re-
quires a lot of machinery, computing time,
experience, and good instincts to get it right.

Two minor points:

• They note that Bayesian model averag-
ing goes back to the 1960s, so that the
success of “perturb and combine” meth-
ods is not really a solely frequentist
success story. This is like saying that
because Leonardo da Vinci thought of
the possibility of human flight, the
credit for flight does not solely belong
to Orville and Wilbur Wright. Bayesian
model averaging has been around for
awhile but was never taken up seriously
because it only modestly improved ac-
curacy while requiring a lot of machin-
ery. Recent frequentist methods such as
bagging (Breiman3) and boosting (Fre-
und and Schapire4) dramatically im-
prove accuracy while requiring only
trifling amounts of machinery. These
methods are not simple model averag-
ing.

• I was taken aback by their dismissal of
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the journals listed in CIS as “statisticians
talking to each other.” Is their implica-
tion that the many good applied statisti-
cians in a wide variety of fields are uni-
versally wrong in not using Bayesian
methods? An equally valid reading might
be that the longer Bayesian methods are
known to researchers in an area, the less
they are used. 

References
1. C. Bishop,Neural Nets for Pattern Recogni-

tion, Claredon Press, Oxford, U.K., 1995. 
2. V. Vapnik,The Nature of Statistical Learn-

ing Theory,Springer, New York, 1995.
3. L. Breiman, “Bagging Predictors,”Machine

Learning,Vol. 26, No. 2, 1996, pp.
123–140.

4. Y. Freund and R. Schapire, “Experiments
with a New Boosting Algorithm,”Machine
Learning: Proc. 13th Int’l Conf.,1996, pp.
148–156.

Bayesian in principle, but not
always in practice
Wray Buntine EECS, UC Berkeley and Ultimode
Systems

Before considering the whys and where-
fores of Bayesian reasoning in practice,
let’s first consider the different uses of the
term and the role that Bayesian reasoning
should play for the scientific community.

Probabilistic reasoning or modeling, to-
gether with its partner, decision theory, is a
key theoretical tool for addressing uncer-
tainty in intelligent systems of all kinds.
Probabilistic reasoning comes in many
shapes and sizes, and does not necessarily
imply the use of Bayesian methods proper,
as I’ll discuss. However, probabilistic meth-
ods are undoubtedly the most important fam-
ily of tools in the general modeling of intelli-
gent systems, including for machine
learning, neural networks, speech recogni-
tion, natural language, and, increasingly,
theoretical computer science, integrated cir-
cuits and computer architectures, robotics,
and vision. Fuzzy logic—one supposed re-
placement for probabilistic modeling—is at
best an important engineering tool that pro-
vides a methodology for techniques such as
control by interpolation from casesand other
neat tricks. Consequently, I would expect
that all members of this Trends & Controver-
sies discussion—Leo Breiman, David
Draper, David Madigan, and I—would be
strong proponents of probabilistic modeling.

For the statistician, Bayesian methods
incorporate the use of prior probabilities,
which include, for instance, weighting
schemes for judging neural networks before
seeing any data and the use of an expert’s
subjective opinion on different outcomes,
again before having seen any data. (My Web-
site contains a detailed tutorial and reference
list on prior probabilities.1) Breiman’s cri-
tique is largely about Bayesian methods in
this statistical sense. Draper and Madigan
mention some of the more creative statistical
uses of Bayesian methods.

Confusingly, Bayesian classifers—now
the darling of the machine-learning com-
munity and coming to the corporate world
through SGI’s MindSet program for knowl-
edge discovery—are probabilistic models.
They rarely incorporate Bayesian methods
in the accepted statistical sense and, in
many cases, have no need to.

Equally confusingly, Bayesian networks,
as used by the uncertainty in artificial intel-
ligence (UAI) community, are likewise not
Bayesian in the accepted statistical sense.
As a form of probabilistic model, they are a
subset of the more general and rich family
of graphical models. Unfortunately, many
in the neural networks, expert systems, and
machine-learning communities see these
graphical models merely as an alternative
to a feed-forward network, rule-based sys-
tem, decision tree, or linear regression.
What an undersell! The UAI community
has done itself a great disservice by not
representing graphical models in their full
glory. They are a powerful representational
tool for probabilistic modeling in general
that encompasses both the functional and
axiomatic properties of issues such as inde-
pendence, problem decomposition, and
mapping knowledge. This is fundamental
stuff that all students of intelligence and
computation should learn early in their
graduate training. Graphical models are
also a beautiful match for Bayesian meth-
ods when modeling a new problem. (See
my Website for a fuller discussion of statis-
tical computation via graphical models.2)

The statistician’s view
Having considered these other kinds of

Bayesians, what then of Bayesian reason-
ing in the statistician’s sense? Thankfully,
in many parts of the academic community,
the long Bayesian versus non-Bayesian
wars have ended. Bayesian methods are
now a prominent theory in areas of eco-

nomics and statistics. They provide a co-
herent theoretical framework that, given
certain qualifications, must be a central
theory of statistics and, more generally, of
intelligent systems. This claim rests on the
theory of rationality, which states, more or
less, that a single agent acting under uncer-
tainty but with infinite computational re-
sources should behave in a manner consis-
tent with Bayesian decision theory. 

Many of the so-called problems and para-
doxes people find with Bayesian methods
arise from mistakes or poor modeling. The
inherent consistency of Bayesian methods
means that if you are dealing with a single
agent, and if you are ignoring tractability,
producing a paradox is almost impossible.
(My online tutorial lists some notable bloop-
ers by distinguished professors.)

Bayesian theory allows ample room for
flexibility. Vladimir Vapnik’s support-
vector machines, which have achieved con-
siderable practical success, are a recent
shining example of the principle of rational-
ity and thus of Bayesian decision theory.
You do not have to be a card-carrying
Bayesian to act in agreement with these
principles. You only have to act in accord
with Bayesian decision theory. Academics
love to invent their own paradigms:
machine learning, for instance, has a half
dozen competing paradigms at last count.
Competing paradigms are the stuff of which
tenure and journals are made. A great acad-
emic industry has arisen for converting
algorithms and methods from Bayesian to
MDL, from maximum likelihood to Bayes-
ian, and from PAC to Bayesian, for exam-
ple. (Yes from my IJCAI’89 paper, I am
guilty—as are many others! Good tutorial
articles here can be found at Jon Oliver’s
web site at Monash University.) However,
the principle of rationality merely says that
our behavior—the predictions we make or
the actions we take—should be approxi-
mately the same as those of some Bayesian
methods. Support-vector machines have an
elegant explanation in Bayesian theory;
hence, they agree with it as far as necessary. 

Due to the qualifications applied to the
justification for rationality, you should be
aware of the limitations on applying
Bayesian methods. For instance:

• If the network is the computer, as Sun
Microsystems would have us believe,
then some computing is not done by a
single agent but by a bunch of them.
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