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Abstract

A well-known rule in practical survey research is to include weights when estimating a popu-
lation average but not to use weights when fitting a regression model—as long as the regression
includes as predictors all the information that went into the sampling weights. But what if you
don’t know where the weights came from? We propose a quasi-Bayesian approach using a joint
regression of the outcome and the sampling weight, followed by poststratifcation on the two
variables, thus using design information within a model-based context to obtain inferences for
small-area estimates, regressions, and other population quantities of interest.

1. Background

1.1. Survey weights

One of the central challenges of statistics is generalizing from sample to population. The natural

first step here is to adjust for known, expected, or assumed discrepancies between sample and

population1—but even this basic level of correction can be challenging, especially when sample and

population diverge in many dimensions (for example, age, sex, education, ethnicity, geography, and

political affiliation in social surveys).

Weighting is a way to summarize an adjustment: each item in the sample gets a nonnegative

weight which is intended to be proportional to its representation in the population. Population

estimates can then be obtained as weighted averages of the sample.

Five difficulties arise with classical survey weighting: construction of weights, uncertainty es-

timates, small-area estimation, regression modeling, and the general inflation in the variance of

weighted estimates due to the use of weights in estimation (the so-called ”unequal weighting ef-

fect”).

Construction of weights is difficult because real-world surveys will require adjustment for many

factors, and simple approaches based on poststratification or estimated probabilities of sampling

often result in highly noisy weights. Noisier weights lead to losses in the efficiency of weighted

estimates: the more variability that exists in the weights, the less efficient the weighted survey

estimates become (Korn and Graubard, 1999). This in turn motivates more complicated approaches

based on smoothing or modeling the weights, which can be done but at the cost of many choices in

modeling and estimation (Little, 1991, Gelman and Little, 1998, Little and Vartivarian, 2003, Chen

et al., 2006, Gelman, 2007, Chen et al., 2012, 2017, Xie et al., 2020, Si et al., 2020, Ben-Michael et

al., 2023).

∗Data and code are at http://www.stat.columbia.edu/∼gelman/weight regression/. We thank Rod Little,
Michael Elliott, Jae-Kwang Kim, and Terrance Savitsky for helpful comments and the U.S. National Science Foun-
dation, National Institutes of Health, and Office of Naval Research for partial support of this work.
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1An example of a known discrepancy between sample and population would be a sample of 60 women and 40 men

that is intended to represent a population that is 52% women and 48% men. An example of an expected discrepancy
would be clusters sampled with probability proportional to a known measure of size. These discrepancies become
assumed if the population proportions and sampling probabilities are approximate and not known.



Standard errors or other uncertainty measures with weighted averages are challenging because

a set of weights is sufficient to define a weighted average but does not specify a full probability

model; additional assumptions must be added beyond those implied by the weights (Lumley, 2004,

Solon et al., 2015).

Small-area estimation using weights is difficult because a small area may have so few observations

that no purely local estimate, weighted or otherwise, would be reasonable (Fay and Herriott, 1979,

Rao, 2003). Consider, for example, a national political survey that contains five responses from

Wyoming, all of whom support the Republican candidate for president. Any weighted average

would result in an obviously wrong estimate of 100% Republican support in the state. Weighting

is defeated by data granularity, and modeling is required.

Regression modeling with weights can work in simple settings, replacing least squares or max-

imum likelihood with weighted versions of these methods. Several procedures exist that allow

analysts to test whether survey weights are needed for the estimation of a given regression model

(Bollen et al., 2016), which can lead to more efficient estimates of regression model parameters if

the weights are not in fact necessary. Procedures have also been developed to minimize the impact

of noisy weights on estimated regression model parameters (Pfeffermann, 2011). But the use of

weights to fit models becomes a more difficult issue when moving to more advanced multilevel,

Bayesian, or regularized methods that are needed to answer complex questions in the presence

of data granularity (DuMouchel and Duncan, 1983, Pfeffermann et al., 1998, Rabe-Hesketh and

Skrondal, 2006; Lumley and Scott, 2017).

This is not to say that weighting-based methods are useless. Much work has gone into population

inference using survey weights. Our point here is that there are no generally applicable or easy

solutions to the problem of adjusting for discrepancies between sample and population, and so there

are theoretical, methodological, and applied reasons for wanting a generally-applicable and unified

approach to regression modeling and small-area estimation using survey weights. The approach

presented here follows ideas of Särndal (1978), Kalton (1983), Pfefferman (1993), Little (2015), and

others that incorporate design information into model-based inference.

1.2. Multilevel regression and poststratification

Multilevel regression and poststratification (MRP) or, more generally, regularized regression and

poststratification, is an approach to survey analysis that combines modeling of the data with

adjustment for nonrepresentativeness of the sample. In the basic MRP setup, an outcome y and

background variables x are observed in the sample, and the distribution of x is known in the

population. If the variables in x are discrete, then their interactions define poststratification cells.

If the observed data are independently sampled with probabilities of selection that do not vary

within poststratification cells, then population inference can be performed by fitting a regression

model of y on x and then averaging over the cells in proportion to their known population counts

(Holt and Smith, 1979, Little, 1993).

So far, this is simply regression and poststratification. The multilevel part comes in because,

given the implicit assumption of constant probability of inclusion within cells, there is a desire to

poststratify on as many factors as possible, and a regression model with a large number of predictors

and interactions cannot be estimated stably using least squares. Multilevel modeling is a good

way to fit a regression with many predictors such as arise when modeling survey responses given

demographic and geographic factors (Gelman and Little, 1997). Other approaches are possible,

hence we have also used the more general term, “regularized regression and poststratification”

(Gelman, 2018, Bisbee, 2019, Broniecki et al., 2021, Gopelrud, 2023). A key attribute of MRP (or
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RRP) is that it allows predictions for y given values of x that are not observed in the sample, or

which have such small counts in the sample that it would be impossible to make predictions for

them from local data alone.

There is a growing literature on MRP and its generalizations. Challenges include obtaining

good group-level predictors for multilevel regressions (so that, for example, inferences for small

states in a national survey are partially pooled toward reasonable state-level estimates rather than

to a national baseline); adjusting for non-census variables, in which case the population counts

of the poststratification cells themselves must be estimated from the data (Su and Gelman, 2023,

Li and Si, 2024); analyzing cluster samples when the cluster sizes in the population are unknown

(Graubard and Korn, 2002, Stanek and Singer, 2004, Makela et al., 2018); and, with particular

relevance to the present research, modeling unequal sampling probabilities within poststratification

cells. One quick way to incorporate survey weights is to replace the observed mean response within

each cell by its weighted mean and use an adjusted within-cell variance estimate (Potthoff et al.,

1992, Ghitza and Gelman, 2013, Chen et al., 2014), but this approach fails when data are sparse

and many cells have only a single respondent, in which case important variation in the weights can

be missed.

1.3. Analyzing surveys collected by others

Textbooks on survey sampling focus on the scenario in which the data are analyzed by the same

team that conducted the survey. There is some literature on the construction of sampling weights,

but not much on the analysis of surveys collected by others, even though this type of secondary

analysis is a common mode of social science research (Kish, 1992, Korn and Graubard, 1999, West

et al., 2016, Heeringa et al., 2017, Haziza and Beaumont, 2017, Lohr, 2022). Publicly-available

surveys typically come with weights but often do not fully explain how the weighting scheme was

chosen or exactly how the weights are computed, hence it can be difficult or impossible to reproduce

the procedure starting from the data (Voss et al., 1995). Unfortunately, the documentation provided

by these surveys for data users, talking about the weights and other design features and how they

should be used, varies tremendously in detail and usefulness (Kolenikov et al., 2020).

When conducting analyses of data collected by others, researchers are often advised to use the

weights when estimating population averages but not when fitting regression models, as long as all

the variables that went into the weighting are included as predictors; see, for example, Winship and

Radbill (1994). This advice is useful where it can be followed, but it does not resolve the question of

what to do when fitting a regression whose predictors do not include all the variables that went into

the weights. In addition, it is awkward to consider averaging and regression as different problems,

given that averaging is a special case of regression. For example, when estimating the average

within a subgroup (for example, average responses for women or men), we might simply use the

weighted average from the relevant group in the sample, but if the subgroup is small enough (for

example, individual states or geographic/demographic categories in a national survey), we would

want to perform small-area estimation using regression.

The literature on design-based secondary analysis of survey data is clear on the point that using

correctly-specified inverse-probability weights will produce consistent and asymptotically unbiased

estimates of regression parameters with respect to the sample design, even if that regression model

model has been poorly specified (Korn and Graubard, 1999, Heeringa et al., 2017). But such

weighted estimates can be noisy; in addition, if the weights provide little or no predictive power

beyond what is in the regression predictors, than weighting can simply add unnecessary noise. We

would like to get the best of both worlds, using weighting adjustments just to the extent that the
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weights add relevant information.

The goal in the present paper is to share a general approach to analyzing surveys with weights,

under the scenario that the weights have already been constructed before the analyst sees the

data, as in West and McCabe (2012). This is similar to the idea in multiple imputation for public

surveys, in which the organization in charge of the survey uses sophisticated methods to construct

imputations, and then users can analyze the imputed datasets, taking the imputations as given

(Rubin, 1996, Meng, 1994). Dividing the problem in two parts—first the construction of the

weights, then the analysis of the weighted dataset—entails an inevitable loss of statistical efficiency

(except in some special cases), but, as with imputation, offers practical gains of division of labor

and facilitates comparability of analyses by different users of the same survey.

2. A quasi-Bayesian approach to regression with survey weights

2.1. Model

Suppose we have a vector of background variables x that are observed in the sample and whose

distribution is known in the population, and a weight variable w > 0 and scalar outcome y that are

known only in the sample. Assume the data have been sampled independently from the population

with probabilities inversely proportional to the weights.2 The poststratification cells j = 1, . . . , J

correspond to the possible values of x in the population; we label these as xj , with Nj being the

size of cell j in the population.

Our goal is to perform Bayesian inference for the population values of y, given the known

background variables x. Inference for y|x can then be combined to get inference for the entire

population or for subgroups of interest; this is the poststratification step. For example, if we are

poststratifying a national poll into 4 ethnic categories, 4 age categories, 2 sex categories, 5 education

categories, and 50 states, then the number of cells is J = 4 · 4 · 2 · 5 · 50 = 8000, and the population

mean value of the outcome for white people in Alabama, for example, is the weighted average of

E(y|xj) over the 40 cells corresponding to that group.

If there were no survey weights and we could assume equal-probability sampling, we would

simply regress y on x in the sample and then use the fitted models to make predictions (with

uncertainty) for the rest of the population. The challenge is that the data are sampled with

unequal probabilities. We use the notation p and psample for the distributions of the population and

sample, respectively; that is, we are considering the items in the population to be drawn at random

from an infinite superpopulation with distribution p(y, x, w), so that the sample can be considered

a draw from the distribution psample(y, x, w) ∝ p(y, x, w)/w.

We handle the problem of unequal sampling probabilities by modeling the joint distribution of

outcome and weights, following Skinner (1994), Beaumont (2008), Si et al. (2015), and Léon-Novelo

and Savitsky (2019):

Model for the outcome: p(y|x,w, θ) = psample(y|x,w, θ) (1)

Model for the weights: p(w|x, ϕ) ∝ w psample(w|x, ϕ), (2)

where θ and ϕ represent the parameters in the outcome and weight models. Both models (1) and

(2) are conditional on x, which is fine because x is assumed to be known in the population. The

advantage of the above formulation is that it makes clear how both models can be estimated from

2We use the term “sampling” here to include all factors relating to inclusion in the sample, including nonresponse;
see Rubin (1976) and Brick (2013).
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the sample data. Because we are doing this work using simulation, it can be thought of as a design-

consistent and model-based approach to generating a synthetic population as proposed by Dong et

al. (2014).

In effect, we are poststratifying on (x,w), which requires estimation of p(w|x) so that we can

construct the joint distribution of x and w in the population.

Three key aspects of this approach are:

• The outcome model (1), which, following the principles of MRP, can include many predictors

x and their interactions;

• The adjustment for the sampling weights in the transition from sample to population distri-

butions in (2), which captures the adjustment information in the weights;

• The adjustment for w is performed using a model, rather than simply reweighting individual

data points. Using a model allows the method to work with sparse data, using MRP, and the

observed data are used to estimate a complete population distribution.

Finally, we assume we are interested in the overall population mean Y and functions of the

population mean within poststratification cells, Y j , and for simplicity we assume an essentially

infinite population, so that we can approximate each Y j by its expectation, E(y|xj). Our method

also applies to finite populations and other summaries, for example when estimating the variance

of attitudes within states, which can be of interest when studying the geography of political po-

larization. We restrict the focus to means (or proportions, which is a special case of means with

a binary outcome) only for simplicity in this short paper; extensions of these ideas to regression

coefficients are straightforward.

2.2. Inference and computation

Before getting into details of Bayesian inference, uncertainty, and computation, let us consider how

to fit (1) and (2) using point estimation. The first step is to regress y on x and w, yielding some

p(y|x,w, θ). The second step is to regress w on x, again using the observed data, thus yielding

some psample(w|x, ϕ). Here we are simply taking θ and ϕ as their point estimates. Next we convert

from sample to population distribution,

p(w|x, ϕ) =
w psample(w|x, ϕ)∫
w psample(w|x, ϕ)dw

. (3)

This latter expression needs to be evaluated for each value of x in the population (that is, for

all the poststratification cells), hence the integral in (3) must either be determined analytically

or though some fast approximation. Conceptually, though, the problem is now solved: for each

poststratification cell j, we determine p(w|xj , ϕ) from (3) and then average over this distribution

to get the predictive distribution of y in cell j:

p(y|xj , θ, ϕ) =
∫

p(y|xj , w, θ)p(w|xj , ϕ)dw. (4)

This integral can be derived analytically or else approximated in some way. In any case, we now

have estimated the population predictive distribution within each cell and can then poststratify by

averaging over the assumed-known cell counts in the population.

Bayesian inference is performed the same way, with the only difference being that inferential

inference about θ and ϕ is propagated through (3) and (4). Here is a computational implementation:
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1. Define a prior distribution for θ, p(θ), or use some form of a non-informative prior in the

absence of any prior information on the parameter(s) of interest. (We note that informative

priors will be likely in repeated cross-sectional surveys like NHANES.)

2. Fit the model p(y|x,w, θ) to the sample data; obtain posterior simulations θs, s = 1, . . . , S.

3. Given a prior distribution for ϕ, fit the model psample(w|x, ϕ) to the sample data; obtain

posterior simulations ϕs, s = 1, . . . , S. If θ and ϕ share parameters or are dependent in their

prior distribution, these two models would be fit together in one step.

4. For each draw (θs, ϕs):

(a) For each poststratification cell j:

i. Draw weights wl, l = l, . . . , L from psample(w|xj , ϕs).

ii. For each wl, compute E(y|xj , wl, θs) from the regression model. Then compute∑L
l=1w

lE(y|xj , wl, θs, ϕs)/
∑L

l=1w
l. Label this weighted average as Ŷ s

j ; it is a Monte

Carlo estimate of E(y|xj , θs, ϕs), the population mean within cell j under the model.

(b) Compute the inferred population mean Ŷ s =
∑J

j=1Nj Ŷ
s
j /

∑J
j=1Nj and any subpopu-

lation means or comparisons of interest. (We assume that the Nj quantities are known

with certainty. In practice, these quantities may be estimated based on other large prob-

ability surveys, and this uncertainty should be addressed as part of this procedure; see

Dever and Valliant (2010) for details.)

5. Approximate the posterior distribution of all quantities saved in the previous step by their S

simulations.

The workflow would then be continued with the usual steps of checking computational accuracy,

model fit, and sensitivity, and altering or expanding the model as necessary (Gelman et al., 2013,

2020).

This approach should automatically give stable small-area estimates, as long as the factors

defining the small areas are included in x, and as long as a rich enough set of models is used to fit

regressions (1) and (2). Indeed, this is the main selling point of our approach, that it seamlessly

performs weighting adjustment within a modeling context that allows small-area estimation and

poststratification.

If there is interest in within-cell population summaries other than averages, then step 3b of the

above algorithm must be made more general. Instead of simply computing a weighted average over

the draws wl, we can use Pareto-smoothed importance resampling to draw a subset M < L of these

weights with probabilities proportional to wl (Vehtari et al., 2015). Collect the M resampled draws

and renumber them as wm,m = 1, . . . ,M . These approximate a set of draws from the population

model, p(w|xj , ϕs). For each wm, we can then continue by sampling one value y from the predictive

distribution, p(y|xj , wm, θs). We can then complete the process by computing whatever summaries

are desired using the M draws of y within that cell (including regression coefficients).

2.3. Closed-form solution with a lognormal or gamma model for the weights

The algorithm just described has a cumbersome nested design requiring a new draw of w1, . . . , wL for

each posterior draw of the model parameters, along with a potentially unstable weighted averaging

step.
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One way to speed the computation is to use a model for the weights where the denominator

of (3) can be evaluated in closed form. One such model, proposed by Skinner (1994), is lognormal

regression.

Suppose we define v = logw and fit the model, psample(v|x) = normal(v|g(x, β), σ), where g is

some family of regression functions given parameter vector β, so that ϕ = (β, σ). Then (3) can be

written as,

p(v|x, ϕ) =
evpsample(v|x, ϕ)∫
evpsample(v|x, ϕ)dv

, (5)

and we can simplify the expression that appears in the numerator and denominator:

evpsample(v|x, ϕ) = ev
1√
2πσ

e−
1

2σ2 (v−g)2

=
1√
2πσ

e−
1

2σ2 ((v−g)2−2σ2v)

=
1√
2πσ

e−
1

2σ2 ((v−(g+σ2))2−σ4−2gσ2)

= eg+
1
2
σ2

normal(v | g + σ2, σ),

so that (5) becomes,

p(v|x, ϕ) =
eg+

1
2
σ2

normal(v | g + σ2, σ)

eg+
1
2
σ2

= normal(v | g + σ2, σ). (6)

Thus, under the lognormal model, the population distribution of the weights is identical to the

sample distribution except that it is shifted to the right by σ2. This makes sense. First, a large

weight corresponds to more representation in the population, so we should expect higher weights to

be more common in the population than in the sample. Second, σ2 is the residual variance of the

log weights, so the higher the value of σ, the more consequential will be the weighting (in terms of

estimates, if the weights are correlated with the variable of interest, or in terms of precision, if the

weights are independent of the variable of interest), hence the larger the shift. At the extreme of

σ = 0, the weights do not vary within poststratification cells at all, and no adjustment is needed.

The above calculation took advantage of a conjugacy property of ev with the normal density.

Closed-form computation is available under other models as well. For example, if the weights follow

a gamma regression, then multiplying the density function by w has the effect of adding 1 to the

shape parameter of the model and correspondingly shifting the mean upward, so that if the mean of

the distribution of psample(w|x, ϕ) in the sample is g, then the mean in the population distribution

p(w|x, ϕ) becomes α+1
α g, which again makes sense, both in that it is an increase compared to the

sample and that the increase goes to zero in the limit of α → ∞, which corresponds to a gamma

distribution with zero variance.

2.4. Closed-form solution with a mixture of lognormals or gammas

For various reasons, the distribution of weights can be far from normal or gamma. But we can

retain the clean computation of these conjugate forms using a mixture model. We demonstrate

with the lognormal.
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Start with the model, psample(v|x, ϕ) =
∑K

k=1 λk normal(v|gk(x, β), σk), where g is a family of

regression functions given parameter vector β, so that ϕ = (β, λ, σ). Similar algebra as before yields

the population distribution,

p(v|x, ϕ) =
∑K

k=1 λk e
gk(x,β)+

1
2
σ2
k normal(v | gk(x, β) + σ2

k, σk)∑K
k=1 λk e

gk(x,β)+
1
2
σ2
k

, (7)

which again is a mixture of lognormals. In addition to each mean being shifted by σ2 as before,

the mixture proportions change, with modes with higher values counting more in the population,

which makes sense. For the poststratification, we will need to compute the mixture components in

(7) for each poststratification cell, using the predictors xj .

In practice it may be enough to model the weights using a lognormal or gamma error term or

perhaps mixtures of one of these. But if a more general model is desired, it should be possible

to get much of the computational benefits by first fitting the closed-form model and then using

it as an approximation for the desired model. Instead of importance ratios wl in step 3b of our

algorithm, one would use the ratio of the exact and approximate densities, which should be more

stable.

2.5. Example where the distribution of weighting-model residuals varies across poststratifica-
tion cells

In our procedure, the adjustment for unequal-probability sampling is performed by reweighing the

distribution of log weights v conditional on predictors x. Sections 2.3 and 2.4 considered models

where the distribution of v|x has a common form across postratification cells, with mean determined

by a regression model and variance estimated based on the residuals from the regression fit to all

the data. The variance of the residuals then determines the amount that the estimated distribution

of weights need to be shifted upward to account for unequal-probability sampling.

But what if the variance of the weights itself varies across poststratification cells? In that case

it is not appropriate to shift the log weights in all cells by the same amount; such a procedure can

lead to a biased estimate, even asymptotically.

We demonstrate the problem using a simple hypothetical example of a survey with only two

poststratification cells, women and men, coded as x = 0 and 1, respectively. We assume that

women have been oversampled and comprise two-thirds of the sample. We further assume that

the weights depend on various unobserved factors that vary more with men than with women,

so that the log weights are higher and more variable for men than for women, following these

distributions: psample(v|x=0)=normal(v|0, 0.5), psample(v|x=1)=normal(v|0.5, 0.8). (We have set

these values so that the average weight for men in the sample is approximately twice that of the

average weight of women: e0+
1
2
(0.5)2 = 1.13; e0.5+

1
2
(0.8)2 = 2.27.) To get the population distribution

of v|x, we simply follow equation (6) and shift upward by the residual variance; thus, p(v|x=0)=

normal(v|0.52, 0.5)=normal(v|0.25, 0.5), p(v|x=1)=normal(v|0.5+0.82, 0.8)=normal(v|1.14, 0.8).
Unfortunately, this are not the estimated distribution of v|x obtained by fitting a regression

model with pooled variance. In this case there is only a single predictor, and the regression picks

up the sample mean of v within each sex and a pooled sample variance, which will be estimated

as approximately 2
3(0.5)

2 + 1
3(0.8)

2 = 0.38, thus an estimated residual standard deviation σ of√
0.38 = 0.62, and so the inferred (but incorrect) population distribution of v is normal(0.38, 0.71)

for women and normal(0.88, 0.62) for men.

These estimated distributions of log weights for the two sexes are much different from the

true population distributions, even in the limit of large amounts of data. And this can have
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a devastating impact on inferences for any outcome y that is correlated with v. Suppose, for

example, that y is height in centimeters, x is an indicator for being male, and the data are well

fit by a model, y = 161 + 6x + 7xv + error. We have set up a scenario in which, conditional on

sex, taller men (but not taller women) are less likely to be included in the sample (on average,

they have higher weights) and have set up the numbers so that the average heights for women and

men approximately correspond to known population averages: given the numbers above, E(y|x=
0) = 161 and E(y|x= 1) = 161 + 6 + 7 · 1.14 = 175. If instead we use the estimated population

distribution of v from the regression model with pooled variance, we get the wrong answer of

E(y|x=1) = 161+6+7 ·0.62 = 171.3. By using the pooled error distribution for v in this example,

we greatly underestimated the variance of weights among men, which in turn reduced the shift

when adjusting from sample to population distribution of E(v) in (6). What is distressing is that

the error does not go away as sample size increases; that is, the estimate is inconsistent.

2.6. Extending the computation to allow the distribution of weighting-model residuals to vary
across poststratification cells

We can address this problem by setting up the model for v|x so that the variance as well as the

mean varies with x, following ideas used by Maiti et al. (2014), Sugasawa et al. (2017), and Savitsky

et al. (2022) for small-area estimation and adapting them to the weighting problem. The simplest

approach is to extend the normal model of Section 2.3 as follows:

psample(v|x, ϕ) = normal(v|g(x, β), h(x, γ)), (8)

with separate regression models for the mean and variance, and with parameter vectors β and γ

estimated from the data, and ϕ = (β, γ). A natural choice of parametric form would be linear on

the location and log-linear on the scale:

psample(v|x) = normal(v|xβ, exγ),

In any case, the distribution of the log weights would be shifted by the variances, as with (6); thus

(8) yields,

p(v|x, ϕ) = normal(v | g(x, β) + h(x, γ)2, h(x)). (9)

One could similarly alter the gamma and mixture models as well.

2.7. Weighted bootstrap of regression residuals

An alternative to modeling the distribution of regression residuals is to bootstrap them, resampling

in proportion to the weights (Bertail and Combris, 1997, Cohen, 1997).

First consider the basic model with a shared error distribution across cells. We can then apply

a weighted bootstrap to the full set of n residuals. If the residuals from the regression of v on x

are r1, . . . , rn, then for each poststratification cell j we sample L residuals with replacement from

{r1, . . . , rn}, with probabilities proportional to exp(ri).

If the residuals average to zero, then, from Jensen’s inequality, the distribution of residuals

weighed by their exponentials has positive expectation. This makes sense: to estimate the popula-

tion distribution we are oversampling the larger weights, so the expected value of the log weights

should be greater for the population distribution than for the sampling distribution, and this should

hold within each cell.
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If the model for E(y|x, v, θ) is linear in v, we can then proceed simply by computing the mean

of the distribution of resampled residuals, that is r̄weighted =
∑n

i=1(rie
ri)/

∑n
i=1 e

ri , hence we just

plug in E(v|xj , ϕ) + r̄weighted instead of E(v|xj , ϕ) for vj when estimating E(y|xi, vj , θ) within each

poststratification cell.

If E(y|x, v, θ) is nonlinear in v, as with logistic regression, then we would want to estimate the

expectation averaging over v, E(y|x, θ) using sampling, for each cell j imputing values for v|xj by

taking the predicted value for the cell, E(v|xj , ϕ), and then adding random draws from the residuals

sampled using the above-described weighted bootstrap.

Next consider the more general case in which the error variance itself varies across cells. It

would not work to simply bootstrap the residuals within each cell, as some cells have no data at all,

thus no residuals to bootstrap—and it would be wrong to set the imputed residuals to zero for such

cells, as this would underestimate the population cell mean, E(v|xj). In addition, if a cell has very

few data points, then it will have very few residuals to booststrap, and the resulting adjustment

wil be very noisy.

So it makes sense to do some sort of partial pooling between a bootstrap of within-cell residuals

and a bootstrap of all the residuals in the data. For each cell j, this can be done using a weighted

bootstrap of the residuals ri, n = 1, . . . , n from the fitted regression of v on x, using the following

rule:

bootstrap weight for ri =

{
A exp(ri) if i is within cell j

exp(rj) otherwise.
(10)

where A is some number greater than 1 that ensures that the residuals within the cell count more

than those outside when imputing the population distribution of the error term for v|xj .
We make the somewhat arbitrary decision to set

A =
n

30
,

so that in a cell with nj = 30, our bootstrap will give roughly equal total weight to the residuals

within and outside the cell, cells with much fewer than 30 observations will mostly rely on the full

sample of residuals, and cells with much more than 30 observations will mostly rely on the residuals

within the cell. As n increases, all the cell sizes increase in expectation; thus, in the asymptotic

limit, each cell’s bootstrap is determined by the residuals within the cell, so that this part of the

inference is consistent.

The reweighting in (10) will do for now, but it is an incomplete solution, for two reasons. First,

it is a simple mix of hyperlocal (residuals within the single cell) and global (the entire sample).

Ideally we would want a procedure closer to what is done in multilevel modeling, giving higher

weights to residuals from cells that are close in the space of x. This should be possible—once we

have established the general idea of reweighting, we can construct some modeling scheme that has

the effect of giving the higher weights to observations whose predictors x are similar, using some

distance measure, to those in the poststratification cell, without restricting to a simple in-or-out

rule.

The second weakness of our reweighting approach is that it does not work with continuous

predictors x, in which case there are no “poststratification cells”; there is just a poststratification

list, a large matrix of predictors corresponding to some large pre-set population. In this case,

the approach of (10) is meaningless. Again, we should be able to solve this problem by using a

distance-based weighting scheme.
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2.8. Integrated Bayesian computation

We can perform all the steps of regression and poststratification in a single probabilistic program

when performing the weighting adjustment using a closed-form solution or bootstrap simulation.

The computation goes as follows:

1. Specify models psample(v|x, ϕ) and p(y|x, v, θ) and estimate ϕ and θ together. Joint estimation

of the two models would not, strictly speaking, be necessary if the parameter vectors ϕ and

θ are distinct and independent in their prior distribution, but it is convenient to perform

inference within the same probabilistic program so that we can work with posterior simulations

from both of them together in the next step.

2. Loop through the poststratification cells j = 1, . . . , J : for each cell j, sample L draws vl

from the estimated or approximated p(v|xj , ϕ) using the closed-form solution or weighted

bootstrap. Propagate each simulated vl through the regression model for the outcome variable

to compute E(y|xj , vl, θ), and then average over these to obtain a Monte Carlo estimate of

E(y|xj , θ).

3. The result of the above steps is an S × J matrix of simulations representing the posterior

distribution of the population mean in the J poststratification cells; these can be combined to

get posterior estimates and uncertainties for the poststratified population mean or any subset

of the population defined in terms of the predictors x.

3. Concerns

3.1. Unrealistic assumptions of the model

We call our method quasi rather than fully Bayesian because it is based on a generative model in

which the weights w are defined in the population and are drawn to create the sample, but in real

surveys the weights are constructed from the sample and do not have a population distribution to

be estimated. In that way, our approach is similar to many applications of statistics in which a

probability model is used even in the absence of any superpopulation or physical randomization

(Little, 2004, Elliott and Valliant, 2017).

Our model assumes independent sampling with probabilities proportional to 1/w, but survey

weights are often constructed by raking and do not represent sampling probabilities at all. Even

when weights are intended to represent inverse sampling probabilities, they generally do not, as the

construction of weights is only approximate.

Why would we purposely construct a model that is wrong in these crucial ways? The short

answer is that, to the extent that weights are well constructed in a practical sense and used as

intended, an item with weight w in the sample is intended to represent w items in the population.

Our procedure can be viewed as a smoothed version of applying weights to items in the sample.

To the extent that we are building a model-based adaptation or generalization of existing practice,

it makes sense to take the weights seriously and consider them as being inversely proportional

to the probability of inclusion in the sample, even if they are not. Similarly, the assumption of

independent sampling can be viewed as an instantiation of the recommended methods in which

weights are attached to individual units. As we have written elsewhere, we fit a model consistent

with standard practice because we want our approach to be an improvement upon rather than

merely a replacement for standard weighted analysis of sample surveys. Similar ideas can be

applied using non-Bayesian methods (Morikawa et al., 2022).
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Another potential concern is the use of a regression, p(w|x), that implies a continuous distri-

bution of weights in the population, even though weights in real surveys typically take on only a

finite possible number of values. In the past we have considered nonparametric modeling of survey

weights (Si et al., 2015), but this adds enough complexity to the analysis that we have avoided it

here. In practice, the lognormal or lognormal-mixture regression model used in the present paper

should be fine: the lognormal regression should be a reasonable fit to weights that are constructed

by multiplying many individual factors, mixture modeling can capture the discreteness that can

arise if weights are dominated by one or two factors, and to the extent that the weights depend on

variables in x, much of their variation will be explained by the deterministic part of the weighting

regression anyway.

3.2. Sensitivity to large weights

As with weighting-based methods in general, we need to be concerned about the right tail of

the weight distribution, for two reasons. First, survey weights are often smoothed or trimmed to

reduce their variability, which can make sense as a variance-reduction tool but complicates their

interpretation. Second, large weights correspond to lower probabilities of sampling and/or survey

response, so they represent “dark matter” in the sampling procedure: potentially large chunks

of the population that are expected to appear rarely or not at all in the data. Any resolution

of this problem requires strong assumptions, such as a hard cap on the maximum weight in the

population or a short upper tail that limits the total proportion of the population that would have

large weights. In a finite-population analysis there is also a bound on the low end, because the

probability of inclusion in the sample can never exceed 1. One advantage of the bootstrap-the-

residuals procedure described in Section 2.7 is that this automatically bounds the weights.

When considering various aspects of sensitivity to model assumptions, remember that the goal

is to estimate the population regression function, p(y|x); the weights are just a means to this end,

a way of adjusting for the biases that would occur if one were to attempt to extrapolate from a

fitted model without adjusting for known discrepancies between sample and population. What is

relevant, then, is the dependence of p(y|x,w) on w. If this model is a smooth function of w, then

approximating a discrete distribution of w by a continuous distribution might not cause serious

problems. If the model behaves calmly for large values of w, then the “dark matter” problem of

very large weights in the population might not be such a concern. It should be possible to do

some theoretical analysis, looking at the tails of the model for w along with the functional form

of p(y|x,w) for large w to ensure bounded influence from the unobserved items with large weights.

Working with deciles of the actual weight values may also be helpful for this kind of sensitivity

analysis.

3.3. Weights that are negative, zero, or positive but very small

A dataset can include observations with zero weights, which is a signal to exclude them from

analysis entirely. In our procedure it makes sense to remove these data points before beginning the

analysis to avoid the awkward and otherwise unnecessary step of modeling a weight variable that

can be zero or positive.

There are settings where negative weights can make sense as part of a regression adjustment

(Ben-Michael et al., 2023), but these cannot be interpreted as inverse probability of inclusion in the

sample, and so negative weights cannot fit into the methods used in this paper. In such settings, we

would either restrict to data with positive weights or try to remove the steps within the weighting

process that produced negative weights.
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Finally, data points with extremely tiny weights will have essentially no effect on any weighted

averages, but they can interfere with our estimation procedure by driving up the estimated variance

of the weights in the population. One solution here is to fit a mixture model in which one of the

components captures the low weights, thus effectively “quarantining” them so as not to contaminate

inferences for population averages. It can also make sense to apply a simpler approach and just

exclude such extreme cases.

4. Real and simulated-data examples

The appendixes give data and code for three examples: (A) Simulated data with a simple logistic

regression model and a high correlation between the sampling weight and the outcome of interest;

(B) Real data from an opinion poll with a multilevel linear regression and sampling weights; (C)

Real data with a multilevel logistic regression.

5. Theoretical examples

We can work through some simple simulated-data examples to understand where the method works

and where it breaks. Here are some ideas:

• No background variables x, only weights w, so the goal is to estimate the population mean.

How does our approach compare to the simple weighted average?

• Weights w that depend entirely on the background variables x. Our approach should be

identical to unweighted MRP.

• Simple stratified sampling with weights; then perform the analysis ignoring the strata. How

does this differ from the standard stratified analysis? How does it differ from a weighted-

average analysis ignoring the strata?

• Finite-population sampling including a certainty stratum and thus a hard lower bound on

weights.

• Poststratification weights modeled as inverse-probability weights: how much does our ap-

proach inflate the variance estimate compared to the correct poststratification analysis?

• Simple small-area estimation without or with a group-level predictor. Result will depend on

the dependence between weights and expected outcome, so try different possibilities in the

simulations.

• Small-area estimation with a huge number of cells so nj = 0 or 1 in almost all cells and there

is no observable variation in weights within each cell, but the weights still matter.

• Weights that have been estimated for non-probability samples based on quasi-randomization

or doubly robust approaches (Chen et al., 2020). How well does this procedure perform in

this case in which the weights are only estimates of inverse probabilities of selection?

These examples raise conceptual challenges. Consider, for example, a national survey that is

poststratified by geography, in such small areas (for example, zip codes) that there are no cells

with more than one respondent in the sample. Also suppose that the survey weights are not based

on geography but are instead based on the number of people living in the respondent’s household,
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a variable that is not otherwise included in the analysis. The weights will still vary by geography

even though they are not defined explicitly in geographic terms. But with only one respondent per

poststratification cell in the data we cannot estimate the within-cell variance in log weights (the

crucial parameter σ2 in model (6)), and the only way forward, short of including the “number of

people in the household” variable in the analysis, might be to combine cells to allow the estimation

of within-cell variation of the weights.

Add some structure to the problem, though, and it becomes easier to solve. Take the same

example, with the same number of poststratification cells, but suppose they are formed by the

intersection of several variables, for example age, sex, ethnicity, education, and congressional dis-

trict. In this case, a multilevel regression of log weight on these factors will yield a nonzero residual

variance, as long as the model does not include the fully-saturated interaction of all the predictors.

6. Applications

We want as soon as possible to apply our method to live applications. Two examples we have

immediately at hand are the Cooperative Election Study and Pew Research pre-election polls.

Both these surveys include weights, and we have applied MRP to them in the past (Lei et al.,

2017). We apply our method to the Cooperative Election Study in Appendices B and C but that

is more of a demonstration and test case than a live example. We could also see how our method

works when including post-election weighting based on vote preference.

We can also look into the Fragile Families Study, a survey of at-risk births for which we have

been involved in construction of the weights (Kennedy and Gelman, 2021). ALSO CONSIDER A

HEALTH SURVEY LIKE NHANES.

Evaluating the method in applied examples can be difficult because for most survey questions

we do not know the true population values. One setting where we do know the truth, and which we

have used to evaluate MRP in the past, is U.S. election polling; however, challenges arise there too

given problems of differential nonresponse (Little and Gelman, 1998, Brick and Tourangeau, 2017,

Kuriwaki et al., 2023). LET ME KNOW IF YOU’D LIKE TO WORK WITH THE POLLING

DATA FROM OUR 2023 POQ PAPER (WEST AND ANDRIDGE).

That said, we still think much can be learned by applying our procedure to real problems. The

method could run into computational difficulties, it could give completely unreasonable results,

and the model could have problems fitting to the data. More positively, we could get a sense of

distributions of weights in real surveys and compare different approaches to small-area estimation

and regression modeling in the presence of survey weights.

We can also conduct simulation studies by subsampling from real survey data. In that case, the

“population” (a large existing survey) is completely known, we have full control over the sampling

procedure, we can define weights however we want, and we can compare our inferences to the

population values, checking accuracy of estimates and coverage of uncertainty intervals.

7. Conclusion

The problem being attacked in this paper is to model an outcome y given predictors x from a sample

whose data are collected with unequal probabilities, and also given inverse-probability weights w.

We assume the joint distribution of x in the population is known. Our approach is to first estimate

the w given x in the sample, then adjust (using the assumption of inverse-probability weighting) to

estimate the distribution of w given x in the population. We then fit a model predicting y given x

and w. The process is completed by averaging that fitted model over w to obtain the desired goal of
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an estimated distribution of y given x. This can then be averaged over the population distribution

of x (“poststratification”) to obtain inferences for the entire population or for subsets defined by x.

Our method goes beyond existing weighting methods by using a regression model for w given

x, which allows us to escape the trap of what to do in small cells with only one or two observa-

tions. More generally, we can think of our procedure as a model-based adjustment for unequal

sampling probabilities which plays well with MRP and other model-based approaches to small-area

estimation.

Some future challenges include inference with known margins (poststratification with marginal

or lower-dimensional joint distributions, for example post-election adjustments based on local vote

totals); cluster sampling; inference for non-census variables (for example, religion); and generaliza-

tion from sample to population in causal inference (Miratrix et al., 2013, O’Muircheartaigh and

Hedges, 2014, Kennedy and Gelman, 2021).

For now, our practical recommendations depend on where you stand in the process of data

preparation and analysis:

• If you have access to the raw data and relevant population information: We would not typi-

cally recommend the methods in this paper. Instead of creating weights and then incorporat-

ing them into the analysis, it should be better to just model the data directly conditional on

all information that might go into weighting. This might require augmenting the poststratifi-

cation table (if there are relevant non-census variables: information predictive of the outcome

and predictive of inclusion in the sample that is not available at the population level), but

that modeling could be done directly, with no need to create survey weights as intermediate

quantities.

• If you have conducted a survey and want to create weights for others to use: In this case it

could make sense to anticipate the methods discussed in the present paper when forming the

weights. It could help future users of the survey if the weights contain relevant information

to help the model-based analysis perform well. Some research is needed here, given that

probabilities of inclusion in the sample are generally not known, only estimated, and also

given that the goal is adjustment to the population, not estimation of inclusion probabilities.

• If you are analyzing a survey collected by others where the weights have been supplied: Here,

we hope our theoretical and applied examples give some sense of when it would make sense

to follow the approach presented here.

Our theoretical and practical challenge is to design a procedure that unifies existing design-based

weighting methods and existing model-based approaches to small-area estimation. We will learn

more when we try out the method on some examples.
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A. Simulated-data example with code: logistic regression

We first demonstrate our method with a hypothetical marketing study. The population comprises the N
users who visit a webpage during a month, a small fraction of whom are given the opportunity to buy a
certain product. Each user i has a customer engagement score, xi, and the probability πi of user i being
exposed to the promotion is determined by an algorithm that depends on xi and some other factors. The
distribution of xi is known in the population, and we know the values of πi for the n users in the sample.
Label yi as the binary outcome of whether person i in the sample buys the product. The goal is to estimate
the proportion of people in the population who would buy the product, and also to learn how this probability
varies with x.

A.1. Simulating the population and sample

We simulate data based on the following assumptions:

1. N = 106.

2. The engagement scores xi in the population are uniformly distributed in the set {1, 2, . . . , 10}.

3. The probability of inclusion in the sample is an increasing function of engagement score, but with
variation: πi = 10−4xj exp(ϵj), where ϵj ∼ normal(0, 0.8).

4. The probability of buying the product is an increasing function of the engagement score; beyond that,
it increases with the probability of being in the sample, following the rule, Pr(yi = 1) = logit−1(0.9 +
0.1xj + 0.5 log(πj)). We set the coefficients for xj and πj so that both would be relevant to the
outcome, and then we set the intercept so that the buy rate in the sample is approximately 10%.

5. The survey is conducted, and the analyst is given the distribution of x in the population and the
following information on the n respondents in the sample: the engagement score x, the response y,
and a weight w which is proportional to 1/π. The analyst is not given the values of π in the population.

Here is code to simulate the data and sampling probabilities in the populations:

library("arm")

library("rstanarm")

library("cmdstanr")

set.seed(123)

N <- 1e6

x <- sample(1:10, size=N, replace=TRUE)

pi <- 1e-4 * x * exp(rnorm(N, 0, 0.8))

y <- ifelse(runif(N) < invlogit(0.9 + 0.1*x + 0.5*log(pi)), 1, 0)

We calculate the quantity of interest, the true buy rate in the population:

> print(mean(y))

[1] 0.100

We then draw the sample:

in_sample <- (runif(N) < pi)

n <- sum(in_sample)

Here is the sample size:

> print(n)

[1] 771

We next prepare the data that would be available to the analyst:
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w <- 1/pi # inverse probability of selection

w <- w/mean(w[in_sample]) # normalized to have mean 1 in the data

sample_data <- data.frame(x, y, w)[in_sample,]

And here is the poststratification table:

poststrat <- data.frame(x = as.numeric(names(table(x))), N = as.numeric(table(x)))

J <- nrow(poststrat)

We then label the cells in the sample data:

sample_data$cell <- NA

for (j in 1:J) {

sample_data$cell[sample_data$x==poststrat$x[j]] <- j

}

Now it is the analyst’s turn. The starting point is to compute the raw and weighted estimates from the
sample:

> print(c(mean(sample_data$y), mean(sample_data$w*sample_data$y)/mean(sample_data$w)))

[1] 0.163 0.103

As expected, the raw estimate is off—in this case, it is too high, which makes sense because in this simulation,
the probability π of inclusion in the sample is positively correlated with the outcome, y. The weighted average
is fine as a point estimate of the population average, but the analyst is also interested in how the outcome
varies with x, hence the need for a regression model that adjusts for the sampling probabilities.

A.2. Estimating the model of weights in the population

Uncertainty in our inferences for the population will come from two sources: the fitted data model (1) and the
fitted weight model (2). There is also potential uncertainty in the Nj ’s but we are ignoring any imperfections
in the poststratification in this paper.

To show the basic idea, we start with a point estimate for the model of weights in the population. We
return later in this section to account for uncertainty in that part of the model.

We start with a lognormal regression for the weights, as described in Section 2.3.

sample_data$v <- log(sample_data$w)

fit_v <- lm(v ~ x, data=sample_data)

display(fit_v)

Here is the result:

coef.est coef.se

(Intercept) 0.81 0.09

x -0.17 0.01

---

n = 771, k = 2

residual sd = 0.82, R-Squared = 0.20

The residual standard deviation σ is estimated at 0.82, so, following the mathematics in Section 2.3, the
estimated distribution of v in the population is shifted to the right by σ2, yielding the estimated distribution,
v|x ∼ normal(0.81− 0.17x+ 0.822, 0.82).
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A.3. Estimating the model of y|x, v

We next use the sample data to estimate the regression of the outcome on the predictor x and the log weights,
v. In this case the outcome is binary and we fit logistic regression. We perform Bayesian inference so that
we will have posterior simulation draws that capture inferential uncertainty.

fit_y <- stan_glm(y ~ x + v + x:v, family=binomial(link="logit"), data=sample_data)

print(fit_v, digits=2)

This yields:

Median MAD_SD

(Intercept) -3.09 0.43

x 0.15 0.06

v -0.39 0.44

x:v -0.02 0.05

In order to use this model to make predictions, we need the distribution of v, given x, which we estimated
in Section A.2.

A.4. Averaging over the estimated population distribution of v|x

For each poststratification cell j, we take 1000 draws from the fitted distribution of log weights, w, and then
pipe these through the uncertainty in the fitted model for y|x,w as represented by the S draws from that
posterior distribution:

sims_y <- as.matrix(fit_y)

S <- nrow(sims_y)

L <- 1000

Ey <- array(NA, c(S, J))

for (j in 1:J){

x <- poststrat$x[j]

v <- rnorm(L, coef(fit_v) %*% c(1, x) + sigma(fit_v)^2, sigma_v_pop)

Ey_pop <- posterior_epred(fit_y, newdata=data.frame(x, v))

Ey[,j] <- rowMeans(Ey_pop)

}

The result is Ey, an S × J matrix, which contains S draws from the posterior distribution of E(y|xj) for the
J cells.

We can look at the inferences for the cells individually:

Ey_cell_est <- colMeans(Ey)

Ey_cell_se <- apply(Ey, 2, sd)

This gives estimates and posterior standard deviations for the J cells.
We can also compute the posterior distribution of the poststratified population average:

Ey_poststrat <- (Ey %*% poststrat$N) / sum(poststrat$N)

cat(mean(Ey_poststrat), "+/-", sd(Ey_poststrat), "\n")

which yields,

0.095 +/- -.012
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A.5. Accounting for uncertainty in the fitted model for the weights

With a bit more effort, we can propagate the uncertainty in the estimated distribution of weights. This
approach could be especially useful when weights are being estimated for non-probability samples (Chen et
al., 2020). This requires computing posterior simulations for the parameters in the regression model for v:

fit_v <- stan_glm(v ~ x, data=sample_data, refresh=0)

sims_v <- as.matrix(fit_v)

and then looping the predictive calculations over the S simulation draws:

Ey <- array(NA, c(S, J))

for (s in 1:S){

for (j in 1:J){

x <- poststrat$x[j]

v <- rnorm(L, sims_v[s,1:2] %*% c(1, x) + sims_v[s,"sigma"]^2, sims_v[s,"sigma"])

Ey_pop <- invlogit(sims_y[s,1:4] %*% rbind(1, x, v, x*v))

Ey[s,j] <- mean(Ey_pop)

}

}

The way the model is set up, the parameters of the two regression models are independent in the posterior
distribution, so we could use any ordering of simulation draws when propagating uncertainty, as long as we
are consistent. For simplicity in setting up the code we use the same ordering of the S draws from the two
fitted models.

We can then summarize the simulations in Ey as before. In this case, the results are the same as before
to two decimal places (0.095± 0.012), whcih implies that the uncertainty for these population summaries is
dominated by the uncertainty in the fitted regression of y.

A.6. Fitting a regression of log weights with normal-mixture error term

In this case, the log weights were simulated from a regression model with normal errors, but in general we
would not know this. Following Section 2.4, we fit a linear regression for v|x with an error term that is a
mixture of three normals. We do this in Stan, and here is the program, which we call mixture.stan:

data {

int M;

int N;

int K;

vector[N] v;

matrix[N,K] X;

}

parameters {

vector[K] beta;

simplex[M] lambda;

ordered[M] mu;

vector<lower=0>[M] sigma;

real<lower=0> log_sigma_0;

}

model {

vector[N] Xbeta = X*beta;

lambda ~ lognormal(log(1./M), 1);

mu ~ normal(0, 10);

sigma ~ lognormal(log_sigma_0, 1);

sum(lambda.*mu) ~ normal(0, 0.01);
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for (n in 1:N){

vector[M] lps = log(lambda);

for (m in 1:M){

lps[m] += normal_lpdf(v[n] | Xbeta[n] + mu[m], sigma[m]);

}

target += log_sum_exp(lps);

}

}

generated quantities {

real mu_total = sum(lambda.*mu);

real sigma_total = sqrt(sum(lambda.*((mu - mu_total)^2 + sigma^2)));

}

The model includes weakly informative priors on the parameters of the mixture components, and the line
“sum(lambda.*mu) ~ normal(0, 0.01);” serves as a soft constraint to pin the mean of the fitted mixture
model to zero, which allows the intercept of the regression to have the same interpretation as before.

We then fit the model in R and print and extract the results:

mixture <- cmdstan_model("mixture.stan")

M <- 3

K <- 2

mixture_data <- list(v=sample_data$v, X=cbind(rep(1,n), sample_data$x), N=n, K=K, M=M)

fit_v_mixture <- mixture$sample(data=mixture_data, seed=123, chains=4, parallel_chains=4)

print(fit_v_mixture, max_rows=20)

Here is the output:

variable mean median sd mad q5 q95 rhat ess_bulk ess_tail

lp__ -948.41 -948.02 2.81 2.71 -953.58 -944.57 1.00 990 1338

beta[1] 0.81 0.81 0.09 0.09 0.66 0.97 1.00 2137 1624

beta[2] -0.17 -0.17 0.01 0.01 -0.19 -0.15 1.00 2162 1697

lambda[1] 0.30 0.23 0.24 0.22 0.04 0.78 1.01 889 1023

lambda[2] 0.38 0.34 0.25 0.29 0.05 0.82 1.00 1177 1075

lambda[3] 0.31 0.24 0.24 0.23 0.04 0.78 1.01 1166 1585

mu[1] -0.46 -0.43 0.27 0.31 -0.95 -0.09 1.00 887 1466

mu[2] -0.03 -0.02 0.26 0.19 -0.49 0.42 1.01 1034 1399

mu[3] 0.50 0.47 0.31 0.34 0.09 1.04 1.00 1341 1636

sigma[1] 0.66 0.69 0.18 0.14 0.32 0.90 1.00 931 683

sigma[2] 0.73 0.77 0.18 0.12 0.38 0.97 1.00 907 635

sigma[3] 0.65 0.67 0.15 0.14 0.36 0.85 1.00 1607 1809

log_sigma_0 -0.43 -0.43 0.61 0.63 -1.46 0.56 1.00 2672 2552

mu_total 0.00 0.00 0.01 0.01 -0.02 0.02 1.00 3888 2852

sigma_total 0.82 0.82 0.02 0.02 0.79 0.86 1.00 4134 2662

A.7. Averaging over the fitted normal-mixture regression model for log weights

Next we extract the relevant parameters from the simulations and, for each simulation draw s and each
poststratification cell j, we then take L draws v from the reweighted mixture model (7) and, for each,
compute the expected value of y:

lambda_v <- as.matrix(fit_v_mixture$draws("lambda", format="df"))[,1:M]

mu_v <- as.matrix(fit_v_mixture$draws("mu", format="df"))[,1:M]

beta_v <- as.matrix(fit_v_mixture$draws("beta", format="df"))[,1:K]

sigma_v <- as.matrix(fit_v_mixture$draws("sigma", format="df"))[,1:M]
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Ey <- array(NA, c(S, J))

for (s in 1:S){

for (j in 1:J){

x <- poststrat$x[j]

v_hat_mixture <- as.numeric(beta_v[s,] %*% c(1, x)) + mu_v[s,]

lambda_v_new <- lambda_v[s,] * exp(v_hat_mixture + 0.5*sigma_v[s,]^2)

m <- sample(1:M, L, replace=TRUE, prob=lambda_new)

v <- rnorm(L, v_hat_mixture[m] + sigma_v[s,m]^2, sigma_v[s,m])

Ey_pop <- invlogit(sims_y[s,1:4] %*% rbind(1, x, v, x*v))

Ey[s,j] <- mean(Ey_pop)

}

}

As before, we can average over the cells to get S simulations of the poststratified population mean and
compute its posterior mean and standard deviation:

Ey_poststrat <- (Ey %*% poststrat$N) / sum(poststrat$N)

cat(mean(Ey_poststrat), "+/-", sd(Ey_poststrat), "\n")

which yields,

0.095 +/- 0.012

This is approximately the same result as before, which makes sense given that the data were simulated from
a model with a normal distribution for errors, which is approximately recovered by the fit of a mixture of
three normals.

A.8. Bootstrapping residuals from the model for log weights

Finally we apply the simpler and perhaps more robust approach of Section 2.7 to simulate v|x using a
weighted bootstrap of the residuals:

fit_v <- lm(v ~ x, data=sample_data)

Ey <- array(NA, c(S, J))

for (j in 1:J){

x <- poststrat$x[j]

r_boot <- sample(resid(fit_v), L, replace=TRUE,

prob=exp(resid(fit_v))*ifelse(sample_data$x==x, n/30, 1))

v <- predict(fit_v, newdata=data.frame(x)) + r_boot

Ey_pop <- posterior_epred(fit_y, newdata=data.frame(x, v))

Ey[,j] <- rowMeans(Ey_pop)

}

As in Section A.4, we use the point estimate of the fitted model of v|x—this is implied by the use of the
predict() function for v—in order to keep the code cleaner, because we found that propagating uncertainty
in that part of the model did not have any noticeable impact on the final results.

As before, we then summarize to obtain a posterior distribution for the population mean:

Ey_poststrat <- (Ey %*% poststrat$N) / sum(poststrat$N)

cat(mean(Ey_poststrat), "+/-", sd(Ey_poststrat), "\n")

which yields,

0.096 +/- 0.012
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A.9. Integrated Bayesian computation

We can follow the plan described in Section 2.8 and embed all the computation inside a single Stan program,
which we call normal_logit_weighting_bootstrap.stan. As indicated by the name of the file, this program
fits a linear regression, p(v|x, ϕ), and a logistic regression, p(y|x, v, θ), and then in uses a weighted bootstrap
to adjust for the unequal sampling probabilities in the generated quantities block:

data {

int N; // Number of data points

int K; // Number of regression predictors

int J; // Number of poststratification cells

array[N] int<lower=0,upper=1> y; // Binary outcome

array[N] int<lower=0,upper=J> cell; // Poststratification cells of data

vector<lower=0>[N] w; // Sampling weights (data with 0 or neg weights must be removed)

matrix[N,K] X; // Regression predictors (including constant term)

matrix[J,K] X_poststrat; // Regression predictors for poststratification cells

vector[J] N_poststrat; // Sizes of poststratification cells

int L; // Number of simulations for approximating p(v|x)

}

transformed data {

vector[N] v = log(w);

matrix[N,2*K] Xv = append_col(X, X .* rep_matrix(v, K));

matrix[N,J] cell_indicator;

for (n in 1:N){

for (j in 1:J){

cell_indicator[n,j] = cell[n]==j;

}

}

}

parameters {

vector[K] b_v; // Coefs for regression of v on X

vector[2*K] b_y; // Coefs for regression of y on X interacted with v

real<lower=0> sigma_v; // Residual sd of regression of v

}

transformed parameters {

vector[N] E_v = X*b_v;

}

model {

v ~ normal(E_v, sigma_v);

y ~ bernoulli_logit(Xv*b_y);

}

generated quantities {

vector[J] E_y_poststrat;

real E_y_poststrat_mean;

{

vector[N] resid = v - E_v;

vector[J] v_pred = X_poststrat * b_v;

for (j in 1:J){

vector[N] prob_boot = exp(resid) .* (1 + (N/30.0 - 1) * cell_indicator[,j]);

prob_boot = prob_boot/sum(prob_boot);

vector[L] resid_boot;

for (l in 1:L) {

resid_boot[l] = resid[categorical_rng(prob_boot)];
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}

vector[L] v_sim = v_pred[j] + resid_boot;

matrix[L,K] X_sim = rep_matrix(X_poststrat[j], L);

matrix[L,2*K] Xv_sim = append_col(X_sim, X_sim .* rep_matrix(v_sim, K));

vector[L] E_y_sim = inv_logit(Xv_sim * b_y);

E_y_poststrat[j] = mean(E_y_sim);

}

E_y_poststrat_mean = sum(N_poststrat .* E_y_poststrat) / sum(N_poststrat);

}

}

We run the Stan program from R:

integrated_boot <- cmdstan_model("normal_logit_weighting_bootstrap.stan")

integrated_data <- list(N=n, K=2, J=J, L=100, y=sample_data$y, w=sample_data$w,

X=cbind(rep(1,n),sample_data$x), X_poststrat=cbind(rep(1,J),poststrat$x),

N_poststrat=poststrat$N, cell=sample_data$cell)

integrated_boot_fit <- integrated_boot$sample(integrated_data, seed=123, chains=4,

parallel_chains=4)

print(integrated_boot_fit, c("b_v","b_y","sigma_v","E_y_poststrat","E_y_poststrat_mean"),

max_rows=30, digits=3)

When coding directly in Stan, this runs much faster than our earlier indirect approach piping the simulations
of v|x through the posterior prediction functions in rstanarm or brms. Here is the output:

variable mean median sd mad q5 q95 rhat ess_bulk ess_tail

b_v[1] 0.816 0.815 0.094 0.092 0.663 0.975 1.003 2302 2517

b_v[2] -0.173 -0.173 0.013 0.012 -0.194 -0.153 1.002 2362 2316

b_y[1] -3.134 -3.123 0.441 0.437 -3.888 -2.458 1.000 1755 2110

b_y[2] 0.152 0.150 0.059 0.059 0.055 0.251 1.000 1746 2289

b_y[3] -0.404 -0.396 0.441 0.446 -1.170 0.294 1.003 1498 1821

b_y[4] -0.018 -0.020 0.055 0.055 -0.106 0.075 1.003 1425 1871

sigma_v 0.818 0.817 0.021 0.021 0.784 0.854 1.002 3506 2150

E_y_poststrat[1] 0.037 0.031 0.024 0.019 0.011 0.085 1.001 1416 1900

E_y_poststrat[2] 0.042 0.038 0.021 0.018 0.016 0.082 1.001 1455 1990

E_y_poststrat[3] 0.049 0.047 0.018 0.017 0.024 0.082 1.001 1572 2291

E_y_poststrat[4] 0.060 0.059 0.015 0.015 0.037 0.087 1.001 1807 2316

E_y_poststrat[5] 0.072 0.071 0.014 0.014 0.050 0.096 1.001 2332 2546

E_y_poststrat[6] 0.090 0.089 0.013 0.013 0.069 0.112 1.000 3500 2570

E_y_poststrat[7] 0.104 0.103 0.014 0.013 0.082 0.129 1.002 4366 3087

E_y_poststrat[8] 0.136 0.135 0.016 0.016 0.111 0.164 1.000 4232 3136

E_y_poststrat[9] 0.163 0.162 0.021 0.021 0.131 0.198 1.002 3495 3364

E_y_poststrat[10] 0.193 0.192 0.027 0.028 0.152 0.240 1.001 3129 3306

E_y_poststrat_mean 0.095 0.094 0.012 0.012 0.076 0.117 1.002 3066 2966

This gives us inference for both sets of regression parameters, the residual standard deviation of the regression
of v|x, population averages within all the poststratification cells, and the poststratified population mean.

B. Real-data example with code: multilevel linear regression

We next show a small real-data example from our MRP case study (Lopez-Martin et al., 2022), which uses
data from the 2018 Cooperative Congressional Election Study (Ansolabehere, 2019), a survey that included
weights which for simplicity we had not included in our earlier case study. Here, we estimate opinion on
abortion (using a composite response on a 0–6 scale which we treat as a continuous outcome), poststratifying
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on ethnicity, age, education, and state. The biggest difference between this and the previous example is that
our goal here is inference for small areas—in this case, state-level estimates of abortion attitudes—rather
than for the population average. We work with a random sample of 500 respondents so as to make the
benefits of multilevel modeling more dramatic.

B.1. Simple unweighted and weighted MRP

First we set up R, read in the data, extract a subset, and renormalize the weights:

library("rstanarm")

source("setup_1.R")

set.seed(123)

n <- 500

subset <- sort(sample(nrow(df), n))

data <- df[subset,]

data$w <- data$w/mean(data$w)

We then fit the multilevel model with and without weights:

fit_unweighted <- stan_glmer(abortion ~ (1 | state) + (1 | eth) + (1 | educ) + male +

(1 | male:eth) + (1 | educ:age) + (1 | educ:eth) + repvote + (1 | region),

data=data, cores=4)

fit_weighted <- stan_glmer(abortion ~ (1 | state) + (1 | eth) + (1 | educ) + male +

(1 | male:eth) + (1 | educ:age) + (1 | educ:eth) + repvote + (1 | region),

weight=w, data=data, cores=4)

In addition to the poststratification variables, the model includes two state-level predictors: an indicator for
region and the Republican vote share in the state in the 2016 presidential election, standardized to have zero
mean and unit standard deviation among the 50 states.

We look at the fitted models to make sure they make sense:

Median MAD_SD

(Intercept) 2.6 0.4

male -0.1 0.4

repvote 0.4 0.1

Auxiliary parameter(s):

Median MAD_SD

sigma 1.9 0.1

Error terms:

Groups Name Std.Dev.

state (Intercept) 0.22

educ:age (Intercept) 0.55

educ:eth (Intercept) 0.45

male:eth (Intercept) 0.65

educ (Intercept) 0.37

region (Intercept) 0.47

eth (Intercept) 0.64

Residual 1.90

> print(fit_weighted)

Median MAD_SD

(Intercept) 2.6 0.5
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male -0.1 0.4

repvote 0.1 0.2

Auxiliary parameter(s):

Median MAD_SD

sigma 2.6 0.1

Error terms:

Groups Name Std.Dev.

state (Intercept) 0.20

educ:age (Intercept) 0.39

educ:eth (Intercept) 0.38

male:eth (Intercept) 0.59

educ (Intercept) 0.41

region (Intercept) 0.75

eth (Intercept) 0.61

Residual 2.64

Next we poststratify each fitted model to obtain inferences for the 50 states, which we graph vs. Republican
vote share in the previous election:

poststrat_state_graph <- function(Ey, poststrat_df, statelevel_predictors_df, y_range,

ylab="", main="") {

S <- nrow(Ey)

states <- names(table(poststrat_df$state))

n_state <- length(states)

mrp_state <- array(NA, c(S, n_state))

for (i in 1:n_state){

keep <- poststrat_df$state==states[i]

mrp_state[,i] <- Ey[,keep] %*% poststrat_df$N[keep] / sum(poststrat_df$N[keep])

}

mrp_state_est <- apply(mrp_state, 2, mean)

mrp_state_se <- apply(mrp_state, 2, sd)

plot(range(statelevel_predictors_df$repvote), y_range,

xlab="Standardized Republican vote share", ylab=ylab, bty="l", type="n", main=main)

for (i in 1:n_state){

lines(rep(statelevel_predictors_df$repvote[i], 2),

mrp_state_est[i] + c(-1,1)*mrp_state_se[i], col="darkgray", lwd=.5)

}

text(statelevel_predictors_df$repvote, mrp_state_est, states, cex=.8, col="blue")

}

poststrat_state_graph(posterior_epred(fit_unweighted, newdata=poststrat_df),

poststrat_df, statelevel_predictors_df, c(1.6,3.9),

ylab="Avg abortion attitude (on 0-6 scale)", main="Unweighted MRP of y|x")

poststrat_state_graph(posterior_epred(fit_weighted, newdata=poststrat_df),

poststrat_df, statelevel_predictors_df, c(1.6,3.9),

ylab="", main="Weighted MRP of y|x")

The left and center plots on Figure 1 show the results. In this case, the difference between unweighted and
weighted MRP inferences appear to come from estimation of the coefficients for region in the fitted models.

B.2. Estimating the model of weights in the population

We checked and this survey has no data with zero or negative weights, so we proceeded by fitting a regression
of log weights on the predictors used in the MRP model:
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Figure 1: Posterior estimates ±1 standard deviation for state-level opinion averages based on three

different multilevel regression and poststratification (MRP) analyses fit to a sample of 500 respon-

dents: (a) MRP applied to the unweighted data, (b) MRP using the weights as powers of the likelhood

factors, (c) our recommended approach using a joint model for weights and outcomes.

data$v <- log(data$w)

fit_v <- stan_glmer(v ~ (1 | state) + (1 | eth) + (1 | educ) + male +

(1 | male:eth) + (1 | educ:age) + (1 | educ:eth) + repvote + (1 | region),

data=data, cores=4)

print(fit_v)

which yields,

Median MAD_SD

(Intercept) -0.1 0.3

male 0.4 0.2

repvote -0.1 0.0

Auxiliary parameter(s):

Median MAD_SD

sigma 0.6 0.0

Error terms:

Groups Name Std.Dev.

state (Intercept) 0.13

educ:age (Intercept) 0.11

educ:eth (Intercept) 0.30

male:eth (Intercept) 0.26

educ (Intercept) 0.63

region (Intercept) 0.15

eth (Intercept) 0.26

Residual 0.61

Figure 2 displays a histogram of the residuals from the regression of log weights. Recall that here we are
working with a random sample of 500 survey respondents. When looking at the full survey with data from
60,000 people, the distribution of weights has a second mode, corresponding to less than 1% of the data,
of very small weights, less than −8 on the log scale. These data points will be negligible in any weighted
analysis; however, because of their distance from the large mass of the data, they would have some influence
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residuals of v|x
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Figure 2: Histogram of log weights for the MRP example. The distribution is unimodal with wider-

than-normal tails.

on the coefficients for v in the model of y|x, v, and we would recommend removing these cases with extremely
low weights before proceeding.

B.3. Estimating the model of y|x, v

We begin the joint modeling by fitting a multilevel regression of the outcome given predictors, interacting
everything with the log-weight variable, v:

fit_y <- stan_glmer(abortion ~ (1 + v | state) + (1 + v | eth) + (1 + v | educ) + v*male +

(1 + v | male:eth) + (1 + v | educ:age) + (1 + v | educ:eth) + v*repvote + (1 + v | region),

data=data, cores=4)

print(fit_y)

which yields,

Median MAD_SD

(Intercept) 2.6 0.3

v 0.1 0.3

male -0.2 0.3

repvote 0.4 0.1

v:male -0.3 0.4

v:repvote -0.1 0.2

Auxiliary parameter(s):

Median MAD_SD

sigma 1.9 0.1

Error terms:

Groups Name Std.Dev. Corr

state (Intercept) 0.20

v 0.31 -0.24

educ:age (Intercept) 0.48

v 0.28 -0.04

educ:eth (Intercept) 0.38

v 0.23 0.12

male:eth (Intercept) 0.44

v 0.33 0.17

educ (Intercept) 0.20

v 0.20 0.00
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region (Intercept) 0.31

v 0.28 0.16

eth (Intercept) 0.45

v 0.43 0.00

Residual 1.89

If there is interest, it would be possible to study the varying coefficients in this model to see which particular
age categories, ethnic groups, ethnicities, regions, and states are associated with higher weights, which should
comport with general understanding of which people are less likely to participate in surveys (Voss et al.,
1995). Perhaps surprisingly, younger respondents do not have higher weights; perhaps the survey put in
special effort to reach young people. The residual standard deviation of 1.89 is essentially unchanged from
the 1.90 from the regression that did not include v (see the fitted model fit unweighted on page 28), so in
this case the weights are not highly predictive of the outcome. This is fine: our goal here is to demonstrate
an approach that can be applied in general, not just to outcomes where the weighting makes a big difference.

B.4. Bootstrapping residuals from the model for log weights

We can simulate the distribution of v within each poststratification cell using a weighted bootstrap of
residuals as described in Section 2.7. In this case, though, the model of y|x,w is linear in v, hence all we
need is E(v|x), so we can replace the bootstrap sample of residuals by a weighted average:

r <- resid(fit_v)

r_pop_mean <- sum(exp(r)*r)/sum(exp(r))

I need to fix this code to do the reweighting of residuals as shown in equation (10). — AG
We then pipe this thorough our fitted model to obtain posterior simulation draws of the expected

outcomes within all J cells:

v_pop_mean <- colMeans(posterior_epred(fit_v, newdata=poststrat_df)) + r_pop_mean

Ey <- posterior_epred(fit_y, newdata=data.frame(poststrat_df, v=v_pop_mean))

And then we plot the inferences for the 50 states. The result is the rightmost plot of Figure 1.

B.5. Integrated Bayesian computation

We can follow the plan described in Section 2.8 and embed all the computation inside a single Stan program,
as demonstrated for our earlier example in Section A.9. We have not done so here just because the resulting
Stan program with all the multilevel components was getting tangled. It would make more sense to build
upon the rstanarm or brms package, which convert multilevel regressions directly into Stan code, and then
augment the resulting Stan program with a generated quantities block to perform the sampling of v|x, ϕ,
the calculation of E(y|x, v, θ), and the poststratification, as with the Stan program in Section A.9.

C. Real-data example with code: multilevel logistic regression

Section B demonstrated our procedure in the context of MRP with a linear model fit to data from the
2018 Cooperative Election Study. We now illustrate a logistic model using a binary outcome from the same
survey. The procedure is mostly unchanged, but at the end there is a challenge: E(y|x, v) is now a nonlinear
function of v, so we cannot just summarize the distribution of v|x by its expectation. Instead, within each
poststratification cell j, we create 1000 simulations vl|xj , then compute E(y|xj , v

l) for each, then average
over these to compute a Monte Carlo estimate of E(y|x, vj). All this is conditional on the parameter vector
θs; we average over the distribution induced by the S simulations to compute posterior mean and standerd
deviations. As before, we condition on a point estimate of ϕ, the parameters governing the model for v|x,
because uncertainty in ϕ seems to be a very minor contributor to posterior uncertainty in E(y|x).

First we define a binary outcome and fit a multilevel logistic regression predicting it given x and v:
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Figure 3: Posterior estimates ±1 standard deviation for state-level opinion for a binary outcome

based on three different multilevel regression and poststratification (MRP) analyses fit to a sample of

500 respondents: (a) MRP applied to the unweighted data, (b) MRP using the weights as powers of

the likelihood factors, (c) our recommended approach using a joint model for weights as demonstrated

for our earlier example in Section A.9. We have not done so here just because the re and outcomes.

data$abortion3 <- data$abortion >= 3

fit_y_binary <- stan_glmer(abortion3 ~ (1 + v | state) + (1 + v | eth) +

(1 + v | educ) + v*male + (1 + v | male:eth) + (1 + v | educ:age) +

(1 + v | educ:eth) + v*repvote + (1 + v | region),

family=binomial(link="logit"), data=data, cores=4)

We then average over the fitted distribution of v within each poststratification cell. Because of the additional
storage and computing requirements, we only simulate L = 20 values of v within each cell. We concatenate
these into JL points to be predicted using the fitted model for y|x, v. Some annoying code is required to
put these together as a matrix:

L <- 20

Ey_alt <- array(NA, c(S, J))

Ev0 <- colMeans(posterior_epred(fit_v, newdata=poststrat_df))

poststrat_rep <- NULL

v_rep <- NULL

for (l in 1:L){

poststrat_rep <- rbind(poststrat_rep, poststrat_df)

v_rep <- c(v_rep, Ev0 + sample(r, L, replace=TRUE, prob=exp(r)))

}

I need to fix this code to do the reweighting of residuals as shown in equation (10). — AG
We then compute S posterior draws of E(y|x) for the JL cells:

poststrat_rep <- data.frame(poststrat_rep, v=v_rep)

We then average the L points within each poststratification cell to obtain an S × J matrix representing S
posterior draws of average opinion within the J cells:

Ey_pop <- posterior_epred(fit_y_binary, newdata=poststrat_rep)

for (j in 1:J){

indexes <- j + (0:(L-1))*J

Ey_alt[,j] <- rowMeans(Ey_pop[,indexes])

}
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From there, we can poststratify within states to get S posterior draws of average opinion within the 50 states.
Figure 3 shows the result, compared to MRP and weighted MRP of the data. As with the continuous-data
models in Figure 1, the joint model gives similar results to the unweighted analysis. More generally, though,
the weights can make a difference, in which case we want to apply them appropriately.

As discussed in Section B.5, the best way to proceed would be to embed all the computation inside
a single Stan program, extending rstanarm or brms to perform the necessary sampling of v, inference for
E(y|x, v, θ), and poststratification in a generated quantities block, at which point the results could be plotted
as above.
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