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Abstract

Compartmental models that describe infectious disease transmission across

subpopulations are central for assessing the impact of non-pharmaceutical interventions,

behavioral changes and seasonal effects on the spread of respiratory infections. We
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present a Bayesian workflow for such models, including four features: (1) an adjustment

for incomplete case ascertainment, (2) an adequate sampling distribution of

laboratory-confirmed cases, (3) a flexible, time-varying transmission rate, and (4) a

stratification by age group. We benchmarked the performance of various

implementations of two of these features (2 and 3). For the second feature, we used

SARS-CoV-2 data from the canton of Geneva (Switzerland) and found that a

quasi-Poisson distribution is the most suitable sampling distribution for describing the

overdispersion in the observed laboratory-confirmed cases. For the third feature, we

implemented three methods: Brownian motion, B-splines, and approximate Gaussian

processes (aGP). We compared their performance in terms of the number of effective

samples per second, and the error and sharpness in estimating the time-varying

transmission rate over a selection of ordinary differential equation solvers and tuning

parameters, using simulated seroprevalence and laboratory-confirmed case data. Even

though all methods could recover the time-varying dynamics in the transmission rate

accurately, we found that B-splines perform up to four and ten times faster than

Brownian motion and aGPs, respectively. We validated the B-spline model with

simulated age-stratified data. We applied this model to 2020 laboratory-confirmed

SARS-CoV-2 cases and two seroprevalence studies from the canton of Geneva. This

resulted in detailed estimates of the transmission rate over time and the case

ascertainment. Our results illustrate the potential of the presented workflow including

stratified transmission to estimate age-specific epidemiological parameters. The

workflow is freely available in the R package HETTMO, and can be easily adapted and

applied to other surveillance data.

Author summary

Mathematical models are a central tool for understanding the spread of infectious

diseases. These models can be fitted to surveillance data such as the number of

laboratory-confirmed cases and seroprevalence over time. To provide insightful

information for managing an epidemic, the models require several crucial features. In

our study, we compare the performance of several implementations of two such features.

First, we find that a quasi-Poisson distribution describes best how the number of
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laboratory-confirmed cases of SARS-CoV-2 from the canton of Geneva (Switzerland) are

sampled from the total incidence of the infection. Second, we conclude that a B-spline

based implementation of time-variation in the transmission rate performs better than a

Brownian motion or approximate Gaussian processes based model. Moreover, we

confirm that the B-spline based model can recover time-varying transmission also in an

age-stratified population. This structural comparison of methods results in a Bayesian

workflow. Such a comprehensive workflow is crucial to move the field of mathematical

modeling for infectious disease dynamics forward and make methods widely applicable.

Introduction 1

Epidemic theory provides mathematical expressions for biological concepts that are 2

fundamental to understanding the spread of infectious diseases, such as contagion, 3

incubation and immunity. Compartmental models based on ordinary differential 4

equations (ODEs) implement these concepts within a unified, manageable framework, 5

and have taken a central position in the field of infectious disease modeling. While 6

initially used to formalize and develop theoretical notions such as reproductive numbers 7

or immunity thresholds [1], or to simulate epidemics under specific constraints [2], [3], 8

compartmental transmission models have been increasingly applied to practical 9

questions about infectious disease transmission, especially during the SARS-CoV-2 10

pandemic [4]–[6]. These applications often rely upon fitting custom-made models to 11

surveillance data such as counts of laboratory-confirmed cases, and use various methods 12

of statistical inference. Among these, Bayesian inference with Markov chain Monte Carlo 13

(MCMC) is gaining ground, fueled by improvements in computing power and sampling 14

algorithms [7], and by efficient software implementations [8]–[10]. This approach offers 15

many advantages, including parameter inference, full propagation of uncertainty, 16

principled integration of prior knowledge and high flexibility in model specification [11]. 17

Still, even the most basic situations require models of relatively high complexity, with 18

many options available for each model feature, and difficulties of implementation and 19

computational inefficiency limit the widespread adoption of these tools. Therefore, there 20

is a growing demand for readily available Bayesian workflows, which have been through 21

the process of model building, validation and comparison of different models [12]. 22
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We identified four essential features for a Bayesian workflow aimed at studying the 23

transmission of SARS-CoV-2 (or other respiratory viruses) in a population over a 24

relatively short time period based on counts of laboratory-confirmed cases: (1) an 25

adjustment for incomplete case ascertainment, (2) an adequate sampling distribution of 26

laboratory-confirmed cases, (3) a flexible, time-varying transmission rate, and (4) a 27

stratification by age group. First, incomplete and unrepresentative ascertainment plays 28

a key role in the generation of surveillance data. Indeed, laboratory-confirmed cases are 29

only an unrepresentative subset of the actual population of newly infected individuals, 30

that is highly dependent on testing activity (how many tests are performed) and 31

targeting (which part of the population is prioritized for or has access to testing), both 32

of which can vary over time [13]–[15]. The identification of the ascertainment rate, 33

however, requires additional data such as point estimates of population seroprevalence 34

[11]. Second, the sampling distribution must be suitable to generate counts of 35

laboratory-confirmed cases. Common options include Poisson, quasi-Poisson and 36

negative binomial distributions, but no systematic comparison in this context has been 37

conducted to date [16], [17]. The third feature, flexible time-varying transmission, is 38

critical, as it models the variations in transmission caused by drivers such as 39

non-pharmaceutical interventions (NPIs), alterations of behaviors, and environmental 40

determinants. These drivers can impact both components of the transmission rate: the 41

rate of contact between individuals (e.g., mandatory work from home) and the 42

probability of transmission upon contact (e.g., mandatory face masks). As these factors 43

may vary over time, any model aimed at disentangling and understanding the drivers of 44

SARS-CoV-2 transmission must incorporate a time-varying transmission rate. Several 45

approaches have been proposed using predefined functional shapes [18]–[21] or more 46

flexible approaches based on step functions [5], cubic splines [22]–[24] or Brownian 47

motion [25]–[27]. A systematic comparison of these methods in the context of 48

compartmental transmission models is currently lacking. Fourth, the stratification by 49

age group is now considered standard practice in transmission models of respiratory 50

infections [28]. Indeed, age influences every step of the infection course of SARS-CoV-2 51

and other respiratory viruses including contact patterns, adherence to NPIs, probability 52

of testing and probability of severe outcome [27], [29]–[31]. While other individual 53

factors like gender and socio-economic position may certainly influence transmission 54
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[32], age is generally considered as the most important, justifying this first choice for 55

stratification. 56

In this work, we present a Bayesian workflow for a compartmental transmission 57

model to analyze the transmission of respiratory viruses that includes these four 58

essential features. To this aim, we assess the statistical accuracy and computational 59

efficiency of several versions of the model, including three sampling distributions 60

(Poisson, quasi-Poisson, and negative binomial) and three methods for implementing a 61

time-varying transmission rate (Brownian motion, B-splines, and approximate Gaussian 62

processes). For these assessments, we use both simulated data and real-world data from 63

SARS-CoV-2 in Geneva, Switzerland. We release the Bayesian workflow in an R 64

package called HETTMO (“heterogeneous transmission model”), with the objective of 65

promoting and facilitating access to this type of methods. 66

Materials and methods 67

In accordance with best scientific practices and open science, we preregistered our 68

methodology for this study on the Open Science Framework (OSF). This 69

pre-registration document can be accessed at 70

https://osf.io/n73gu/?view_only=4e469db4a58d428f99682e38c81f0d58. 71

Transmission model 72

At its core, the compartmental infectious disease transmission model follows a 73

Susceptible-Exposed-Infected-Removed (SEIR) structure (Figure 1). We extended this 74

model by allowing the transmission rate to vary over time. The model definition is 75

shown in Equation 1, where ⇢(t) is the time-dependent factor that describes the change 76

in the transmission rate over time relative to a baseline. The probability of a 77

transmission event upon contact is �, ⌧ is the inverse of the average incubation period, 78

� the inverse of the average infectious time and c is the average number of contacts an 79

individual has per day. The total population is N = S + E + I +R. Both ⌧ and � are 80

fixed, such that the generation time is 5.2 days, with this time equally distributed 81

between the exposed and infected compartments [33]–[35]. Since our study period was 82

less than a year, we could assume that there is no waning of immunity and that the 83
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total population size is constant. 84

dS

dt
= ��⇢(t)cS

1

N

dE

dt
= �⇢(t)cS

1

N
� ⌧E

dI

dt
= ⌧E � �I (1)

dR

dt
= �I

S E I R
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Data: 
laboratory-confirmed 
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ascertainment rate (π)
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R(t)

Data: 
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Fig 1. Schematic overview of the SEIR transmission model for SARS-CoV-2 and the
steps to generate the number of laboratory confirmed cases and the observed
seroprevalence.

Feature 1: Adjustment for incomplete case ascertainment using 85

seroprevalence data From a given set of parameter values and initial conditions, the 86

SEIR model generates the total number of newly recovered individuals in the population 87

by unit of time (i.e. the true incidence by our definition, see Figure 1) as follows: 88

H(t) = R(t+ 1)�R(t). 89

Only a fraction of this incidence will be ascertained as a laboratory-confirmed cases by 90

testing positive (A(t)). The ascertainment rate ⇡ determines what fraction of the true 91

incidence is observed: A(t) = ⇡H(t). It is influenced by many determinants including 92

testing activity and targeting, and may thus also vary over time. In this context the 93

ascertainment rate is not statistically identifiable without the support of external data, 94
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such as a seroprevalence estimate. The seroprevalence is a measure of the number of 95

recovered individuals in the population at a given time (if antibody waning and 96

vaccination can be ignored), and thus informs about the cumulative true incidence over 97

a period of time. Assuming that ascertainment is stable for that period of time, 98

seroprevalence data can be used to estimate the ascertainment rate and anchor the 99

model. In practice, we assume that the SEIR model also generates the cumulative 100

number of removed individuals in the population at time t (from the R compartment), 101

which is linked to seroprevalence data at time t using a simple binomial sampling 102

distribution. We thus define periods bounded by seroprevalence studies, and estimate 103

one ascertainment for each period. We also correct the seroprevalence data for imperfect 104

testing [13]. 105

Feature 2: Sampling distribution for weekly laboratory-confirmed cases We 106

account for process noise in the transmission and observational noise in the 107

ascertainment of cases by introducing a sampling distribution generating counts of 108

laboratory-confirmed cases given the ascertained incidence. Process noise results from 109

overdispersion of cases due to stochastic processes that are not captured by the 110

compartmental transmission model, and observational noise from sampling of cases. 111

Here, we compare several options based on data from the Swiss canton of Geneva in 112

2020. First, we try a Poisson distribution, where the variance is equal to the mean �. 113

We then consider two distributions that include an additional overdispersion parameter 114

✓: a quasi-Poisson model, where the variance is a linear function of the mean (✓�) and a 115

negative binomial distribution, where the variance is a quadratic function of the mean 116

(�+ �
2
✓) [16]. 117

Feature 3: Flexible, time-varying transmission In the compartmental 118

transmission model, time-variation in transmission is controlled by the forcing function 119

⇢(t), which applies to the contact rate c and the probability of transmission upon 120

contact � at the same time. Therefore, time variation in these two components is 121

considered together, and it is not possible to disentangle between them. We compare 122

the performance and efficiency of three different methods to implement the time-varying 123

transmission: Brownian motion, B-splines, and approximate Gaussian processes: 124
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A We implemented Brownian motion as a Gaussian random walk similar to Bouranis 125

et al (2022) with weekly time-steps; see Equations 2 and 3, taken from Bouranis et 126

al (2022) [27]. In these equations, t is the discrete weekly time step, and W a 127

random process whose elements are normally distributed with mean 0 and 128

variance s. This value s is estimated from the data given a normal prior. This 129

approach creates prior functions for ⇢(t) with increasing variance over time [36]: 130

⌘(t+ 1) = ⌘(t) +Wt and ⌘(0) = W0, (2)

131

⇢(t) = exp ⌘(t) (3)

B Our implementation of the B-splines relies on the functions provided by 132

Kharratzadeh [37]. B-splines are uniquely defined by the degree of the 133

polynomials and the predefined set of knots. To be able to use the splines within 134

the ODE system, without recomputing them every time the ODE is evaluated 135

(that is, multiple times per MCMC iteration), we calculated the value of the 136

B-splines for degree-1 points between two consecutive knots. Based on these 137

values, we calculated the coefficients of a polynomial based on the degree of the 138

B-spline using the Lagrange algorithm. These coefficients are then used as an 139

input variable for the ODE model. For each iteration in the MCMC, a set of 140

coefficients is sampled that defines how the B-splines must be combined to create 141

the transmission rate function over time. In addition, this approach requires 142

setting values for the knots. We consider five different sets of knots (Table 1) all 143

in combination with cubic splines. 144

C Gaussian processes (GPs) are powerful and flexible fitting tools for modeling time 145

series that are increasingly used in the field [38], [39]. We use a Gaussian process 146

with an exponentiated quadratic covariance function, which, to our knowledge, 147

has not yet been applied to compartmental transmission models. To reduce the 148

computational cost, our implementation follows the proposition of Riutort-Mayol 149

et al. (2020), using a basis function approximation via Laplace eigenfunctions, 150

itself based on the mathematical theory developed by Solin and Särkkä (2020) 151

[40], [41]. This low-rank Bayesian approximation requires several tuning 152
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parameters, most importantly the number of basis functions M and the boundary 153

factor c, that determines the interval at which the approximation of the GP is 154

valid. This interval is then given by the range of values at which the data is 155

observed multiplied with the boundary factor. Both M and c influence the 156

accuracy and the efficiency of the algorithm [40]. We test and compare the 157

performance of the algorithm for a set of boundary factors and increasing number 158

of basis-functions to find optimal values for the type of function we expect in our 159

epidemiological data. Besides the number of basis functions and the boundary 160

factor, the GP approximation also requires a parameter for the length scale (L, 161

controlling the sinuosity of the basis-functions) and the marginal variance (A). As 162

the length scale and the marginal variance both influence the smoothness of the 163

function, they are unidentifiable in our set-up. We therefore fix the marginal 164

variance to 0.5 and estimate the length scale from the data. 165

We note that both the Brownian motion and the B-splines are special cases of a 166

Gaussian process given a specific kernel. However, our implementation of these methods 167

differs from the implementation of the approximate Gaussian processes (aGPs). 168

Table 1. Knot sequences

Knot sequence identifier Location of first knot Period between knots
1: true knots 4 weeks 4 weeks
2: 8 weeks 8 weeks 8 weeks
3: 12 weeks 12 weeks 12 weeks
4: 4 weeks shifted 6 weeks 4 weeks
5: 8 weeks shifted 6 weeks 8 weeks

Overview of different sequences of knots used for the B-spline method to analyze time-dependent transmission rates in an
compartmental infectious disease transmission model.

Feature 4: Stratification by age group We consider three age groups in order to 169

limit the computational cost: 0-19 years old, 20-64 years old and 65 and older. The 170

stratification is implemented by replacing the contact rate c with a 3x3 contact matrix 171

that indicates the average number of contacts an index case of a given age group (in the 172

column) has with individuals of the other age groups (rows). We use a synthetic contact 173

matrix as our pre-COVID baseline, as empirical data for Switzerland is lacking for this 174

time period (Supplementary table 5). For this, we rely on the work of Prem et al. 175
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(2021) and rescale their suggested social contact matrix for Switzerland to match the 176

age-distribution in our defined age groups in the canton of Geneva [42]. Stratification 177

also applies to the processes of ascertainment, time-varying transmission and sampling 178

that now occur independently by age group, hereby multiplying the number of 179

parameters to estimate by three. 180

Bayesian inference 181

We consider the models in a Bayesian framework, with the objective of estimating �, 182

⇢(t), ⇡t, and where relevant, ✓, from two data sources: weekly counts of 183

laboratory-confirmed cases of SARS-CoV-2 infection (this would also apply to any other 184

respiratory virus) and one or more seroprevalence estimates. When relevant, these data 185

need to be stratified by age group in the same way. We use weakly informative prior 186

distributions for these parameters (Supplementary methods). The different versions of 187

the model are implemented in Stan, a platform for Bayesian inference [8], [43]. Stan 188

allows for coding a large variety of model features, relying on a few principles to 189

optimize computational efficiency. For a detailed description of how to implement and 190

scale-up ODE-based models, see Grinztajn et al. (2021) [11]. A key aspect here is the 191

choice of the numerical ODE solver. To continue with our objective of identifying the 192

most optimal implementation of the model in this type of situation, we compared all 193

forward sensitivity solvers currently available in Stan: “rk45” (4th and 5th order 194

Runge–Kutta-Fehlberg [44], [45]), “adams” (Adams-Moulton formula [46], [47]), “bdf” 195

(backward differentiation formula [46], [47] and “ckrk” (fourth and fifth order explicit 196

Runge-Kutta method for non-stiff and semi-stiff systems [45], [48]). We also compare to 197

a simple solver that uses the trapezoidal rule to approximate the solution of the system 198

as described in Bouranis et al [27]. For the trapezoidal solver, we use twenty equidistant 199

time steps within each (weekly) time step in the model. Besides the solver itself, we also 200

test different tuning values for the solver tolerance (1e-4, 1e-5 and 1e-6; not relevant for 201

the trapezoidal solver) and the number of warmup-iterations (300 and 500). All 202

combinations are run for 8 chains with 250 MCMC sampling-iterations. 203
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Simulated data 204

We validate and compare the different versions of the model with simulated data of an 205

epidemic of a respiratory pathogen. The simulation study is conducted in two steps. In 206

the first step, we assume that the population is well-mixed, and ignore the age 207

stratification. We simulate data of laboratory-confirmed cases for 45 weeks and 100, 000 208

individuals, with two successive epidemic waves. We also simulate seroprevalence data 209

after 20 weeks and at the end of the simulation, thus defining two periods with 210

ascertainment ⇡1 and ⇡2, respectively. The transmission process is modeled with a 211

probability of transmission per contact of � = 8.5%, a baseline of c = 11 contacts per 212

day [42] and a time-varying component based on a spline of degree 3 and a knot every 4 213

weeks. We set ascertainment at ⇡1 = 0.3 and ⇡2 = 0.5. Supplementary Table 1 provides 214

an overview of all parameter values chosen to create the simulated data. We generate 215

one simulated dataset and apply all model versions to these data. We evaluate 216

predictive performance by computing the root mean squared error between the 217

estimated and true value of ⇢(t), and evaluate computational performance by comparing 218

the number of effective samples per second. In a second step, we select the best 219

performing model version from step 1, add the stratification by age, and validate again 220

on stratified simulated data. We modify several parameters to simulate a stratified 221

dataset with three age classes (S6 Table). The simulated data are available in the 222

HETTMO R package. 223

Data from the canton of Geneva in 2020 224

Finally, we apply the best performing model version to weekly counts of 225

laboratory-confirmed cases of SARS-CoV-2 infection in the canton of Geneva in 2020 226

(data from the Federal Office of Public Health). During this time period, we could 227

reasonably assume that there was no waning of immunity and that vaccination did not 228

yet influence transmission dynamics. Moreover, in Geneva, two seroprevalence surveys 229

were performed during this time period: the first one from April 6th until May 10th 230

[13], and the second from November 23th until December 23st [49]. The results are 231

summarized in Table S8. Both surveys use the EuroImmune IgG test (Euroimmun; 232

Lübeck, Germany #EI 2606-9601 G), which has a sensitivity of 93% and a specificity of 233
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100% for the cutoff suggested by the manufacturer [50]. We aggregate all data according 234

to the age groups used in the first serosurvey (0-19 years old, 20-64 years old and 65 and 235

older). As the second serosurvey uses a different grouping, we reallocated the results in 236

age group 18-24 to age groups 0-19 and 20-59 assuming a uniform distribution of age. 237

The data for the canton of Geneva in 2020 are available in the HETTMO R-package. 238

Software implementation 239

We use R version 4.2.1 [51]. We published a R package called HETTMO that contains 240

all functions needed to perform the analysis and run the models. The package is based 241

on Stan (version 2.21.7) [43] and the cmdstanr package (version 0.5.3) [52]. HETTMO 242

is available on GitHub at https://github.com/JudithBouman2412/HETTMO. 243

Results 244

We propose a Bayesian workflow for a compartmental transmission model aimed at 245

analyzing the transmission of a respiratory virus in a population over a time period 246

short enough so that immunity waning can be ignored (a few months or years). We 247

focus on four aspects, representing four features deemed as essential in this situation. 248

First, we validate in a simulation study that our models, jointly fitted to both 249

laboratory-confirmed cases and seroprevalence data, are able to provide accurate and 250

unbiased estimates of the ascertainment rate by periods of time bounded by serosurvey 251

estimates (feature 1). We find that the appropriate handling of uncertainty in these 252

models is largely influenced by the choice of sampling distributions (feature 2). We 253

investigate the most adequate sampling distributions for laboratory-confirmed cases of 254

SARS-CoV-2 using real data from the canton of Geneva (Switzerland). Whereas the 255

Poisson and negative-binomial distribution under- and overestimates the variability in 256

laboratory-confirmed cases, respectively, we found that the quasi-Poisson distribution, 257

with the variance scaling linearly with the mean, better fits the variability of the data 258

(Figure 2A). 259

We then benchmark several implementations of the time-varying transmission in a 260

simulation study (feature 3). These different approaches all use flexible 261

parameterizations of forcing functions, estimated from data. In a systematic 262
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comparison, we confirm that implementations based on Brownian motion, B-splines, 263

and aGPs lead to very similar model fits (Figure 2B). The estimation of the variation in 264

transmission over time ⇢(t) is accurate and unbiased under all three approaches (Figure 265

2C), but the Brownian motion approach overestimates the uncertainty. The estimation 266

of the ascertainment rate ⇡t is accurate under all three approaches, with a small 267

overestimation in the first epidemic wave (Figure 2D). 268

Benchmarking the tuning parameters (the type of ODE solver, tolerance of the 269

solver, and number of warm-up iterations) of the time-varying models in the simulation 270

study highlights the importance of the ODE solver (Supplementary figure S1-S4). The 271

choice of the solver can result, in some cases, in a factor of 1, 000 difference in 272

performance (comparing Adams and trapezoidal solvers, S1 Fig). In terms of accuracy, 273

the trapezoidal solver performs best for each time-varying model. However, with 274

B-splines and aGPs, the average performance is increased by approximately 25%, with 275

the ckrk solver. With aGPs, the performance also heavily depends on the choice of 276

hyperparameters. Figure S3 shows the performance for a selection of number of basis 277

functions and boundary factors. Across methods, 300 warm-up iterations appear 278

sufficient for accurate model fits. For the comparison of the time-varying transmission 279

rate models, we select the trapezoidal solver (Brownian motion) and the ckrk solver 280

(B-splines and aGPs) and use 300 warm up iterations. 281

While leading to similar results, the three approaches differ in their computational 282

performance measured by effective sample size (ESS) per second (Figures 2E-F). 283

Depending on the pre-specified knot sequence, B-splines perform up to ten times faster 284

than GPs in our example (average of GPs implementations compared to B-splines with 285

knot sequence 3) and up to four times faster than Brownian motion (average of 286

Brownian motion implementations compared to B-splines with knot sequence 3). While 287

the error in the estimates is similar between B-splines and Brownian motion (Figure 288

2E), the width of the 95% credible interval of the estimation of ⇢(t) is smaller for the 289

Brownian motion model (Figure 2F). On the other hand, the width of the credible 290

interval for ⇢(t) was similar between aGPs and B-splines (Figure 2F), and the error in 291

the estimate is smaller for aGPs compared to B-splines (Figure 2E). For our model and 292

simulated data, B-splines perform best in terms of statistical accuracy and 293

computational efficiency. 294
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Fig 2. Result from unstratified models. (A) Posterior predictive plot for
laboratory-confirmed cases (left y-axis, green ribbon) and cumulative incidence (right
y-axis, gray ribbon) of SARS-CoV-2 in the canton of Geneva, Switzerland, for three
iterations of the model with different sampling distributions (Poisson, quasi-Poisson and
negative-binomial). Circles are weekly counts of laboratory-confirmed cases and pluses
are estimates of seroprevalence at two time points. (B-D) Comparison of three methods
of implementation of time-varying transmission on simulated data of a SARS-CoV-2
epidemic (posterior predictive plot, time-varying transmission ⇢(t), and ascertainment
rate by period). (E-F) Benchmark of different implementations of time-varying
transmission on simulated data of a SARS-CoV-2 epidemic, with performance expressed
in effective sample size (ESS) per second, error defined as the difference between the
median posterior and true ⇢(t), and the width of the 95% credible interval of ⇢(t) as a
measure for precision. See Table 1 1 for details about the knot sequence.

Building on the best performing model specification identified with non-stratified 295

simulated data – ascertainment by period, quasi-Poisson sampling distribution, and 296

B-spline implementation of time-varying transmission with the aforementioned tuning 297
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parameters – we consider the fourth feature of our model: age-stratification. Again, we 298

first validate using simulated data of an epidemic of a respiratory infection with known 299

parameters. In this case, both the laboratory-confirmed case data and the 300

seroprevalence data are stratified in three age groups: 0-19 years, 20-64 years and 65+, 301

modeling the interactions between these age groups with a synthetic contact matrix. We 302

assume that each age group can have a different ascertainment rate per period. The 303

model correctly captures the laboratory-confirmed cases as well as the seroprevalence 304

data, and the estimates of the age- and time-specific ascertainment rates are accurate 305

and precise (S5 Fig). The estimation of the time-variation in the transmission rate ⇢(t) 306

is in close correspondence with the true values when sufficient data are available. Larger 307

deviations occur when the observed number of laboratory-confirmed cases is low. 308

In a last step, we apply the final iteration of the model, including all four essential 309

features, to age-stratified laboratory-confirmed cases and seroprevalence data from the 310

canton of Geneva, Switzerland, in 2020. The SARS-CoV-2 epidemic in Geneva in 2020, 311

as in the rest of Switzerland, was characterized by a first wave in spring, low case counts 312

in summer, followed by a severe second wave starting in the fall. Two serosurveys were 313

conducted, once after each wave. The model is able to capture the dynamics of 314

laboratory-confirmed cases and seroprevalence in each age group (Figure 3A). The 315

dynamics of transmission as measured by ⇢(t) are very similar across age groups during 316

the first wave, but we observed a divergence from July 2020 onwards (Figure 3B). 317

Around this time, transmission decreased in the 65+ while remaining high all summer 318

in the other age groups. There was then a temporary rise in transmission during fall 319

that happened simultaneously in all age groups, but was the largest in magnitude in the 320

20-59 age group. Looking at ascertainment rates, we observe a clear improvement 321

between spring and fall/winter, from 2.9% (95% CrI: 1.7� 4.9%) to 23.2% (95% CrI: 322

18.0� 31.1%) in age group 0-19, from 12.4% (95% CrI: 10.2� 15.0%) to 60.7% (95% 323

CrI: 52.4� 70.9%) in age group 20-64 and from 37.8% (95% CrI: 25.1� 58.1%) to 77.5% 324

(95% CrI: 59.9� 94.4%) in age group 65+. 325
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Fig 3. Modelled SARS-CoV-2 epidemic in Geneva, Switzerland, in 2020. (A)
Posterior predictive plot for laboratory-confirmed cases (left y-axis, collored ribbon) and
cumulative incidence (right y-axis, gray ribbon) per age group. Circles are weekly counts
of laboratory-confirmed cases and pluses are estimates of seroprevalence at two time
points. (B) Estimates of the time-varying change in transmission rate per age group
using B-splines. (C) Estimates of the ascertainment rate per age group and time period.

Discussion 326

Compartmental transmission models based on ODEs offer a principled and flexible way 327

to study epidemics, but their implementation, handling, and computational efficiency 328

for parameter inference using surveillance data can be challenging. With this study, we 329

promote and facilitate access to methods that allow for reliable parameter inference, full 330

propagation of uncertainty and integration of prior knowledge in compartmental 331

transmission models. For this purpose, we developed a Bayesian workflow aimed at 332

studying the spread of respiratory viruses such as SARS-CoV-2 in a population over a 333
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period of time where immunity waning can be ignored, with two commonly available 334

data sources: laboratory-confirmed case and point estimates of seroprevalence. This 335

workflow includes four main features deemed as essential for this task: adjustment for 336

incomplete and differential case ascertainment across age groups, adequate sampling 337

distribution, time-varying transmission rate and stratification by age. The exact 338

implementation of two of these features, the sampling distribution and time-varying 339

transmission, are the result of a benchmark and comparison of several methods using 340

real and simulated data. We then apply this approach to real data on SARS-CoV-2 in 341

the canton of Geneva in 2020. We also release the workflow as an out-of-the-box R 342

package, where all model variations are available 343

(https://github.com/JudithBouman2412/HETTMO). 344

Our work provides important methodological insights into fitting compartmental 345

transmission models to surveillance data. First, we find that the variability in 346

laboratory-confirmed case counts for SARS-CoV-2 was best described with a 347

quasi-Poisson distribution, which is more commonly used in ecology to describe 348

overdispersed data [16], [17]. The correct choice of this sampling distribution is critical 349

for both inference and short-term forecasting of epidemic dynamics and can depend on 350

the epidemiological situation. Further research could provide additional insights into 351

how the process noise due to stochastic transmission and superspreading in combination 352

with the observational noise from variations in testing results in this particular 353

distribution. Second, we add to the existing literature on time-varying transmission 354

rates for infectious diseases, by bringing empirical evidence that forcing functions based 355

on B-splines appear to be the most effective way to implement flexible time-varying 356

transmission in such models, with a clear advantage over Brownian motion and aGPs 357

[25], [27]. Choosing good tuning parameters can increase performance by up to a factor 358

of 1, 000 in some cases. Our comparison includes many different specifications regarding 359

tuning parameters, allowing us to conclude with high confidence on this open question. 360

Third, we demonstrate that a compartmental transmission model implemented in a 361

Bayesian framework combined with MCMC is able to handle relatively high levels of 362

complexity, with time-varying transmission and age-stratification, thereby highlighting 363

its potential for future methodological developments. 364

The application of the model to the situation of the SARS-CoV-2 epidemic in the 365
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canton of Geneva, Switzerland, in 2020 highlights the practical advantages of our 366

proposed approach. In the rather specific but critical situation of a newly-emerging 367

respiratory pathogen circulating in a population, understanding the true level of 368

transmission over time is of crucial importance to inform the public health response, but 369

is generally concealed by the incomplete and unrepresentative ascertainment of cases. 370

By combining information from laboratory-confirmed cases and serosurveys, our 371

approach allows to estimate the ascertainment rate per age group by period bounded by 372

seroprevalence estimates (or the emergence where seroprevalence is assumed to be null), 373

and simultaneously to remove the effect of the ascertainment bias and determine the 374

actual incidence of infection (with full uncertainty propagation). In the canton of 375

Geneva, the overall ascertainment rate was estimated to be 8.6% during the first wave 376

and 37% (95% CrI: 32� 43%) during the second wave [13], [49]. These estimates from 377

seroprevalence studies are somewhat lower than the across age group estimates from our 378

model; (12.0% (95% CrI: 9.6� 14.8%) and 54.7% (95% CrI: 47.4� 64.1%)), respectively, 379

because our second estimate includes all data since the end of the first serosurvey, 380

whereas Stringhini et al. (2021) calculate ascertainment for the second wave based on 381

data between September first and December 8th only. The large differences in 382

age-specific case ascertainment during different periods of the pandemic highlight the 383

importance of considering age-stratified models to monitor the epidemic dynamics of 384

viral respiratory infections. Our estimates of the time-varying change in transmission 385

allow us to compare variation in transmission due to changes in behavior, environment 386

and NPIs across age groups while accounting for all other aspects included in the model 387

(such as under-ascertainment and the accumulation of natural immunity). We found a 388

consistent reduction in the transmission rate in all age groups after the implementation 389

of strong NPIs in spring 2020. During summer 2020, the relative transmission in 390

65+-year-olds was somewhat lower compared to the other age groups which could be a 391

result of more careful social contact behavior as reported laboratory-confirmed cases 392

numbers started to increase. At the beginning of the second wave in fall 2020, the 393

comparatively higher transmission in 20-64 year olds compared to 0-19-year-olds is in 394

favor of an epidemic relapse that can be attributed more to working people. 395

This work also has a number of limitations. First, the benchmark results are specific 396

to our simulated data and our choice of prior distributions. We chose weakly-specific 397
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priors, only limiting the range of possible observations to plausible values [53], [54]. A 398

prior predictive check is shown in Supplementary Figure S5. Second, it is possible that 399

the relative performance of the three presented methods differs for distinct datasets, for 400

instance for data collected during a longer time-period, different epidemic dynamics or a 401

different infectious disease. The publication of our workflow in the HETTMO R 402

package allows users to apply all presented methods and evaluate which one is the most 403

suitable for their data. Third, for the approximate Gaussian process model, 404

performance depends heavily on the choice of the hyperparameters (S3 Fig). 405

Additionally, when applying the B-spline based method from this package, one should 406

be aware that the performance of this method depends on the choice of the knots 407

(Figure 2). A sufficient number of knots can be identified by subsequently increasing 408

their number until the estimate of the transmission rate does not change any more. 409

Fourth, our benchmark focuses on the ability of the different methods to estimate the 410

time-varying transmission rate during the period for which data were available. We did 411

not compare the precision for short-term forecasting. However, based on the 412

characteristics of the methods, we would advise to use either the Brownian motion or 413

aGP model for prediction, because for these method the variance increases with time. 414

In contrast, B-splines are known to be at risk of error in extrapolations. Fifth, the 415

current version of HETTMO is only useful in a limited range of situations, i.e. in a 416

relatively short period of time following the emergence of a respiratory virus, in order to 417

fulfill different assumptions (entirely susceptible population at the start, no vaccination, 418

no waning of immunity and negligible changes in population sizes). However, it provides 419

a starting point for extensions relaxing these assumptions. 420

While enormous amounts of data have been generated during the early stages of the 421

SARS-CoV-2 pandemic, the complexity involved, with differential under-ascertainment, 422

transmission and immunity all varying in time, creates various challenges in their 423

interpretation. Approaches from the field of infectious disease modeling can bring 424

invaluable insights in situations of epidemics, but require adequate, validated and 425

efficient tools. By combining the structure of ODE based compartmental transmission 426

models and the power of full Bayesian inference, HETTMO provides such a tool, in the 427

form of a Bayesian workflow, for relatively simple situations: a newly-emerging 428

respiratory virus spreading in a population before vaccination and immunity waning can 429
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play a role. While individual features of our workflow have been described in the 430

literature, prior studies have not conducted a comprehensive comparison of various 431

implementation methods to develop a complete Bayesian workflow for this specific 432

problem. The further development of infectious disease models that can be fitted to 433

various data sources in a Bayesian framework will promote their use for real-time 434

monitoring, short-term forecasting, and policy making. 435
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Supporting information 436

S1 Fig. 437
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Benchmark for Brownian motion model. Comparison of computational
performance for the Brownian motion model of the time-varying transmission rate of
SARS-CoV-2 for simulated, non-stratified data for various tuning parameters: tolerance,
ODE solver and number of warmup iterations. (A) The root mean square error (RMSE)
in estimating the time-variation in the transmission. (B) The sharpness (size of the 90%
confidence interval) of the time-variation in the transmission.
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S2 Fig. 438
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Benchmark for B-spline model. Comparison of computational performance for the
B-spline model of the time-varying transmission rate of SARS-CoV-2 for simulated,
non-stratified data for various tuning parameters: tolerance, ODE solver and number of
warmup iterations. (A) The root mean squared error (RMSE) in estimating the
time-variation in the transmission. (B) The sharpness (size of the 90% confidence
interval) of the time-variation in the transmission.
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approximate Gaussian Processes based time-varying transmission model of SARS-CoV-2
using simulated data. The number of warm up and sampling iterations are both fixed to
300 and the trapezoidal solver is used.
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S4 Fig. 440
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(A) The root mean squared error (RMSE) in estimating the time-variation in the
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time-variation in the transmission.
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S5 Fig. 441
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Model results for stratified simulated data. (A) Posterior predictive plot for
laboratory-confirmed cases (left y-axis, collored ribbon) and cumulative incidence (right
y-axis, gray ribbon) per age-group using the B-spline based age-stratified model applied
to simulated data. Crosses are weekly simulated counts of laboratory-confirmed cases
and pluses are simulated estimates of seroprevalence at two time points. (B) Estimates
of the time-varying change in transmission rate per age group using B-splines. Crosses
represent the true, simulated values. (C) Estimates of the ascertainment rate per age
group and time period. Crosses represent the true, simulated values.
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S6 Table 442

Parameter Value Explanation Estimated/fixed
N 100, 000 Total population size Fixed
S(0) 0 Initial value Fixed
E(0) 0 Initial value Fixed
I(0) 3 Initial value Fixed
R(0) 0 Initial value Fixed
� 8.5% Probability of infection

upon contact [55]
Fixed

c 11 per day Contact rate [42] Fixed
� 2.7 days Average stay in compart-

ment E [33]–[35]
Fixed

⌧ 2.7 days Average stay in compart-
ment I [33]–[35]

Fixed

⇡1 30% Ascertainment rate during
first time period

Estimated

⇡2 50% Ascertainment rate during
second time period

Estimated

t1 20 weeks Time of transition between
time period 1 and 2

Fixed

✓ 5 Overdispersion parameter
of quasi-Poisson distribu-
tion

Estimated

t 45 weeks Total duration of simula-
tion

Fixed

Ns 5, 000 Number of seroprevalence
tests simulated

Fixed

Parameters for simulating unstratified data using the B-splines model.
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S7 Table 443

Parameter Value Explanation Estimated/fixed
N 0-19 years: 105 867

20-64 years: 315 080
65+ years: 82 677

Total population size per
age group, based on pop-
ulation in the canton of
Geneva

Fixed

� 10.0% Probability of infection
upon contact [55]

Fixed

c see Table S8 Contact matrix [42] Fixed
⇡1 0-19 years: 10% 20-

64 years: 15% 65+
years: 40%

Ascertainment rate during
first time period

Estimated

⇡2 0-19 years: 10% 20-
64 years: 50% 65+
years: 80%

Ascertainment rate during
second time period

Estimated

Ns 0-19 years: 3, 000
20-64 years: 6, 000
65+ years: 6, 000

Number of seroprevalence
tests simulated per age
group

Fixed

Parameters adapted from the unstratified model for simulating stratified data using the
B-splines.

S8 Table 444

Age group Number of
tests performed,
spring 2020

Number of posi-
tive tests, spring
2020

Number of
tests performed,
fall/winter 2020

Number of
positive tests,
fall/winter 2020

0-19 years 455 33 1083 224
20-64 years 1942 171 2439 545
65+ years 369 15 478 51

Seroprevalence data from the canton of Geneva, obtained from Stringhini et al (2020)
and Stringhini et al (2021) [13], [49].

S9 Table 445

Age of contact:
0-19 years 9.3 6.9 0.9
20-64 years 2.2 10.6 1.2
65+ years 1.0 4.4 1.8

Age of index case: 0-19 years 20-64 years 65+ years

Contact matrix indicating the average number of contacts per day of an index case
(column) with individuals in three defined age groups. This matrix was constructed
using Prem et al (2021) and is adjusted for the population structure of the canton of
Geneva [42]. This matrix is used both for simulating stratified SARS-CoV-2 data and
for analysing the data from the canton of Geneva.
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Supplementary methods 446

Definition of priors We chose a weakly-informative gamma prior on the initial basic 447

reproduction number (R0) of the model, where we set the mean and variance to 2.5 448

(shape =2.5 and scale = 1, corresponding to an expected R0 between 0.4 and 6.4 based 449

on the 2.5% and 97.5% percentiles). This basic reproduction number then defines the 450

initial probability of transmission by the relationship derived from the ODE 451

system:�0 = R0⇤�
c , where c and � are assumed to be fixed and known. For the initial 452

number of infected individuals (I(0)), we also took a gamma distribution (mean = 0.25, 453

variance=0.25). For the ascertainment rate, we took a beta(2,2) distribution. The prior 454

for the overdispersion parameter of the quasi-Poisson model (✓) is exponential 455

distribution with mean 0.1. For the negative binomial model, we use a exponential 456

distribution with � = 1 as the prior on the inverse of the dispersion parameter (�). 457

Priors specific for Brownian motion model The prior on the parameters 458

specific for the Brownian motion model are defined such that the weekly transmission 459

rate (⌘weekly) is distributed as ⌘iweekly ⇠ norm(⌘i�1
weekly,�BM ). Where the prior on BM 460

is a normal distribution with a zero mean and standard deviation equal to 0.1. 461

Priors specific for B-splines model For the spline model, we took a gamma 462

prior with shape equal to 2.5 and scale equal to 5, resulting in 0.083 and 1.28 as the 463

2.5% and 97.5% percentiles. 464

Priors specific for approximate Gaussian processes model The regression 465

weights are standard normally distributed. The prior on the length scale parameter is a 466

normal distribution with mean equal to 0 and the standard deviation of 3 and for the 467

marginal variance we use an exponential distribution with a rate parameter of 5. 468

Acknowledgments 469

We warmly thank Andrew Gelman, Seth Flaxman, Elizaveta Semenova, Samir Bhatt, 470

and David Ginsbourger for helpful advice at various stages of this project. 471

October 6, 2023 28/34

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 9, 2023. ; https://doi.org/10.1101/2023.10.09.23296742doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.09.23296742
http://creativecommons.org/licenses/by/4.0/


References

[1] W. O. Kermack and A. G. McKendrick, “A contribution to the mathematical

theory of epidemics,” Proceedings of the royal society of london. Series A,

Containing papers of a mathematical and physical character, vol. 115, no. 772,

pp. 700–721, 1927.

[2] J. Arino, F. Brauer, P. Van Den Driessche, J. Watmough, and J. Wu, “A model

for influenza with vaccination and antiviral treatment,” Journal of theoretical

biology, vol. 253, no. 1, pp. 118–130, 2008.

[3] N. M. Ferguson, D. A. Cummings, C. Fraser, J. C. Cajka, P. C. Cooley, and

D. S. Burke, “Strategies for mitigating an influenza pandemic,” Nature, vol. 442,

no. 7101, pp. 448–452, 2006.

[4] C. Viboud, O. N. Bjørnstad, D. L. Smith, L. Simonsen, M. A. Miller, and

B. T. Grenfell, “Synchrony, waves, and spatial hierarchies in the spread of

influenza,” science, vol. 312, no. 5772, pp. 447–451, 2006.

[5] M. J. Keeling, E. M. Hill, E. E. Gorsich, et al., “Predictions of covid-19 dynamics

in the uk: Short-term forecasting and analysis of potential exit strategies,” PLoS

computational biology, vol. 17, no. 1, e1008619, 2021.

[6] B. Tepekule, A. Hauser, V. N. Kachalov, et al., “Assessing the potential impact of

transmission during prolonged viral shedding on the effect of lockdown relaxation

on covid-19,” PLoS computational biology, vol. 17, no. 1, e1008609, 2021.

[7] M. D. Hoffman, A. Gelman, et al., “The no-u-turn sampler: Adaptively setting

path lengths in hamiltonian monte carlo.,” J. Mach. Learn. Res., vol. 15, no. 1,

pp. 1593–1623, 2014.

[8] B. Carpenter, A. Gelman, M. D. Hoffman, et al., “Stan: A probabilistic

programming language,” Journal of statistical software, vol. 76, 2017.

[9] D. Phan, N. Pradhan, and M. Jankowiak, “Composable effects for flexible and

accelerated probabilistic programming in numpyro,” arXiv preprint

arXiv:1912.11554, 2019.

October 6, 2023 29/34

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 9, 2023. ; https://doi.org/10.1101/2023.10.09.23296742doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.09.23296742
http://creativecommons.org/licenses/by/4.0/


[10] H. Ge, K. Xu, and Z. Ghahramani, “Turing: A language for flexible probabilistic

inference,” pp. 1682–1690, 2018. [Online]. Available:

http://proceedings.mlr.press/v84/ge18b.html.

[11] L. Grinsztajn, E. Semenova, C. C. Margossian, and J. Riou, “Bayesian workflow

for disease transmission modeling in stan,” Statistics in medicine, vol. 40, no. 27,

pp. 6209–6234, 2021.

[12] A. Gelman, A. Vehtari, D. Simpson, et al., “Bayesian workflow,” arXiv preprint

arXiv:2011.01808, 2020.

[13] S. Stringhini, A. Wisniak, G. Piumatti, et al., “Seroprevalence of anti-sars-cov-2

igg antibodies in geneva, switzerland (serocov-pop): A population-based study,”

The Lancet, vol. 396, no. 10247, pp. 313–319, 2020.

[14] J. Perez-Saez, S. A. Lauer, L. Kaiser, et al., “Serology-informed estimates of

sars-cov-2 infection fatality risk in geneva, switzerland,” The Lancet Infectious

Diseases, vol. 21, no. 4, e69–e70, 2021.

[15] T. W. Russell, N. Golding, J. Hellewell, et al., “Reconstructing the early global

dynamics of under-ascertained covid-19 cases and infections,” BMC medicine,

vol. 18, no. 1, p. 332, 2020.

[16] J. M. Ver Hoef and P. L. Boveng, “Quasi-poisson vs. negative binomial regression:

How should we model overdispersed count data?” Ecology, vol. 88, no. 11,

pp. 2766–2772, 2007.

[17] A. Lindén and S. Mäntyniemi, “Using the negative binomial distribution to model

overdispersion in ecological count data,” Ecology, vol. 92, no. 7, pp. 1414–1421,

2011.

[18] G. Chowell, N. W. Hengartner, C. Castillo-Chavez, P. W. Fenimore, and

J. M. Hyman, “The basic reproductive number of ebola and the effects of public

health measures: The cases of congo and uganda,” Journal of theoretical biology,

vol. 229, no. 1, pp. 119–126, 2004.
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