
The difference between “significant” and “not significant” is

not itself statistically significant∗

Andrew Gelman† Hal Stern‡

December 19, 2005

Abstract

A common error in statistical analyses is to summarize comparisons by declarations
of statistical significance or non-significance. There are a number of difficulties with
this approach. First is the oft-cited dictum that statistical significance is not the same
as practical significance. Another difficulty is that this dichotomization into significant
and non-significant results encourages the dismissal of observed differences in favor of
the usually less interesting null hypothesis of no difference.

Here, we focus on a less commonly noted problem, namely that changes in statistical
significance are not themselves significant. By this, we are not merely making the
commonplace observation that any particular threshold is arbitrary—for example, only
a small change is required to move an estimate from a 5.1% significance level to 4.9%,
thus moving it into statistical significance. Rather, we are pointing out that even large
changes in significance levels can correspond to small, non-significant changes in the
underlying variables. We illustrate with a theoretical and an applied example.
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1 Introduction

A common statistical error is to summarize comparisons by statistical significance and to

draw a sharp distinction between significant and non-significant results. The approach of

summarizing by statistical significance has a number of pitfalls, most of which are covered

in standard statistics courses but one that we believe is less well known.

Among the well known pitfalls are the oft-cited point that statistical significance does

not equal practical significance. For example, if the estimated effect of a drug is to decrease

blood pressure by 0.10 with a standard error of 0.03, this would be statistically significant
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but probably not practically significant (or so we suppose, given our general knowledge that

blood pressure values are typically around 100). Conversely, an estimated effect of 10 with

a standard error of 10 would not be statistically significant, but it has the possibility of

being practically significant.

A second problem with the automatic use of a binary significant/non-significant decision

rule is that it encourages practitioners to ignore potentially important observed differences

in favor of the usually less interesting null hypothesis.

Related to this last point is the lesser-known problem, which is the topic of this article,

that changes in statistical significance are not themselves significant. By this, we are not

merely making the commonplace observation that any particular threshold is arbitrary—for

example, only a small change is required to move an estimate from a 5.1% significance level

to 4.9%, thus moving it into statistical significance. Rather, we are pointing out that even

large changes in significance levels can correspond to small, non-significant changes in the

underlying variables. We illustrate with two examples.

2 Theoretical example: comparing the results of two exper-

iments

Consider two independent studies with effect estimates and standard errors of 25 ± 10 and

10 ± 10. The first study is statistically significant at the 1% level, and the second is not

at all statisticall significant, being only one standard error away from 0. Thus it would

be tempting to conclude that there is a large difference between the two studies. In fact,

however, the difference is not even close to being statistically significant: the estimated

difference is 15, with a standard error of
√

102 + 102 = 14.

Assessing the statistical significance of the differences between study results is not merely

an academic curiosity. Consider a third independent study with much larger sample size

that yields an effect estimate of 2.5 with standard error of 1.0. This third study attains the

same significance level as the first study, yet the difference between the two is itself also

significant! Both find a difference but the magnitude of that difference is much different.

Does the third study replicate the first study? If we restrict attention only to judgments

of significance we might say yes, but if we think about the effect being estimated we would

say no, as noted by Utts (1991). In fact, the third study finds an effect size much closer to

that of the second study but now because of the sample size it attains significance.
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Figure 1: (a) Estimated effects of electromagnetic fields on calcium efflux from chick brains,
shaded to indicate different levels of statistical significance, adapted from Blackman et al.
(1988). A separate experiment was performed at each frequency. (b) Same results presented
as estimates ± standard errors. As discussed in the text, the first plot, with its emphasis
on statistical significance, is misleading.

3 Applied example: comparison of several related experi-

ments

The issue of comparisons between significance and non-significance is of even more concern

in the increasingly-common setting where there are a large number of comparisons. We

illustrate with an example of a laboratory study with public health applications.

In the wake of concerns about the health effects of low-frequency electric and magnetic

fields, Blackman et al. (1988) performed a series of experiments to measure the effect of

electromagnetic fields at various frequencies on the functioning of chick brains. At each of

several frequencies of electromagnetic fields (1 Hz, 15 Hz, 30 Hz, . . . , 510 Hz), a randomized

experiment was performed to estimate the effect of exposure, compared to a control con-

dition of no electromagnetic field. The estimated treatment effect (the average difference

between treatment and control measurements) and the standard error at each frequency

were reported.

Blackman et al. (1988) summarized the estimates at the different frequencies by their

statistical significance, using a graph similar to Figure 1a with different shading indicating

results that are more than 2.3 standard errors from zero (that is, statistically significant at

the 99% level), between 2.0 and 2.3 standard errors from zero (statistically significant at the

95% level), and so forth. The researchers used this sort of display to hypothesize that one

process was occurring at 255, 285, and 315 Hz (where effects were highly significant), another
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Figure 2: Multilevel estimates and standard errors for the effects of magnetic fields, partially
pooled from the separate estimates displayed in Figure 1. The standard errors of the original
estimates were large, and so the multilevel estimates are pooled strongly toward the common
average which is near of 0.1.

at 135 and 225 Hz (where effects were only moderately significant), and so forth. The

estimates are all of relative calcium efflux, so that an effect of 0.1, for example, corresponds

to a 10% increase compared to the control condition.

The researchers in the chick-brain experiment made the common mistake of using statis-

tical significance as a criterion for separating the estimates of different effects, an approach

does not make sense. At the very least, it is more informative to show the estimated treat-

ment effect and standard error at each frequency, as in Figure 1b. This display makes the

key features of the data clear. Though the size of the effect varies it is just about always

positive and typically not far from 0.1.

One way to handle the multiple-comparisons aspect of this problem is to fit a multilevel

model of the sort used in meta-analysis. If at each frequency j, we label the estimated effect

and standard error as yj and σj, then the simplest multilevel model is yj ∼ N(θj, σ
2

j ), θj ∼
N(µ, τ2), and the resulting Bayesian estimates for the effects θj are partially pooled toward

the average of all the data (see, for example, Gelman et al., 2003, chapter 5). The posterior

estimates and standard errors are shown in Figure 2.

The multilevel model can be seen as a way to estimate the effects at each frequency j,

without setting “non-significant” results to zero. Some of the apparently dramatic features

of the original data as plotted in Figure 1a—for example, the negative estimate at 480 Hz

and the pair of statistically-significant estimates at 405 Hz—do not stand out so much in the

multilevel estimates, indicating that these features could be easily explained by sampling
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variability and do not necessarily represent real features of the underlying parameters.

4 Discussion

It is standard in applied statistics to evaluate inferences based on their statistical significance

at the 5% level. There has been a move in recent years toward reporting confidence intervals

rather than p-values, and the centrality of hypothesis testing has been challenged (see

Krantz, 1999, for a review of these issues), but even when using confidence intervals it is

natural to check whether they include zero. Statistical significance, in some form, is a way

for us to assess the reliability of statistical findings. However, as we have seen, comparisons

of the sort, “X is statistically significant but Y is not” can be misleading.
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