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Abstract: Verifying the correctness of Bayesian computation is challenging. This is espe-
cially true for complex models that are common in practice, as these require sophisticated
model implementations and algorithms. In this paper we introduce simulation-based calibra-
tion (SBC), a general procedure for validating inferences from Bayesian algorithms capable
of generating posterior samples. This procedure not only identifies inaccurate computation
and inconsistencies in model implementations but also provides graphical summaries that can
indicate the nature of the problems that arise. We argue that SBC is a critical part of a
robust Bayesian workflow, as well as being a useful tool for those developing computational
algorithms and statistical software.

1. Introduction

Powerful algorithms and computational resources are facilitating Bayesian modeling in an increasing
range of applications. Conceptually, constructing a Bayesian analysis is straightforward. We first
define a joint distribution over the parameters, θ, and measurements, y, with the specification of a
prior distribution and likelihood,

π(y, θ) = π(y | θ)π(θ).

Conditioning this joint distribution on an observation, ỹ, yields a posterior distribution,

π(θ | ỹ) ∝ π(ỹ, θ),

that encodes information about the system being analyzed.
Implementing this Bayesian inference in practice, however, can be computationally challenging

when applied to large and structured datasets. We must make our model rich enough to capture the
relevant structure of the system being studied while simultaneously being able to accurately work
with the resulting posterior distribution. Unfortunately, every algorithm in computational statistics
requires that the posterior distribution possesses certain favorable properties in order to work as
desired. Consequently the overall performance of an algorithm is sensitive to the details of the model
and the observed data, and an algorithm that works well in one analysis can fail spectacularly in
another.

As we move towards adapting our models to particular problems, we place the algorithms in
our statistical toolbox under stress. Moreover, the complexity of these models provides abundant
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opportunity for mistakes in their specification. We must verify both that our code is implementing
the model we think it is and that our inference algorithm is able to perform the necessary compu-
tations accurately. While we always get some result from a given algorithm, we have no idea how
good it is without some form of validation.

Fortunately, the structure of the Bayesian joint distribution allows for the validation of any
Bayesian computational method capable of producing samples from the posterior distribution, or an
approximation thereof. This includes not only Monte Carlo methods but also deterministic methods
that yield approximate posterior distributions amenable to exact sampling, such as integrated nested
Laplace approximation (INLA) (Rue, Martino and Chopin, 2009; Rue et al., 2017) and automatic
differentiation variational inference (ADVI) (Kucukelbir et al., 2017). In this paper we introduce
simulation-based calibration (SBC), as demonstrated with a corrected implementation of the ideas
of Cook, Gelman and Rubin (2006) for validating these algorithms in a generic and straightforward
way within the scope of a given Bayesian joint distribution.

We begin in Sections 2 and 3 with a discussion of the natural self-consistency of samples from
the Bayesian joint distribution and previous validation methods that have exploited this behavior.
Next, Section 4 introduces the simulation-based calibration framework and examines the qualita-
tive interpretation of the SBC output, how it identifies how the algorithm being validated might
be failing, and how it can be incorporated into a robust Bayesian workflow. Finally, Section 5
consider some useful extensions of SBC, and Section 6 demonstrates the application of the pro-
cedure over a range of analyses. All code for this paper is at https://github.com/seantalts/

simulation-based-calibration.

2. Self-Consistency of the Bayesian Joint Distribution

The most straightforward way to validate a computed posterior distribution is to compare computed
expectations with the exact values. An immediate problem with this, however, is that we know the
true posterior expectation values for only the simplest models. These simple models, moreover,
typically have a different structure to the models of interest in applications. This motivates us to
construct a validation procedure that does not require access to the exact expectations or any other
property of the true posterior distribution.

A popular alternative to comparing the computed and true expectation values directly is to
define a ground truth θ̃, simulate data from that ground truth, ỹ ∼ π(y | θ̃), and then quantify how
well the computed posterior recovers the ground truth in some way. Unfortunately this approach is
flawed as demonstrated in a simple example.

Consider the model

y | µ ∼ N(µ, 12)

µ ∼ N(0, 12)

and an attempt at verification that uses the single ground truth value µ̃ = 0. If we simulate from
this model and draw the plausible, but extreme, data value ỹ = 2.1, then the true posterior will be
µ | ỹ ∼ N(1.05, 0.52). As µ̃ is more than two posterior standard deviations from the posterior mean,
we might be tempted to say that recovery has not been successful. On the other hand, imagine that
we accidentally used code that exactly fits an identical model but with the variance for both the
likelihood and prior set to 10 instead of 1. In this case, the incorrectly computed posterior would
be N(1.05, 52) and we might conclude that the code correctly recovered the posterior.

https://github.com/seantalts/simulation-based-calibration
https://github.com/seantalts/simulation-based-calibration
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Consequently, the behavior of the algorithm in any individual simulation will not characterize
the ability of the inference algorithm to fit that particular model in any meaningful way. In the
example above, it might lead us to conclude that the incorrectly coded analysis worked as desired,
while the correctly coded analysis failed. In order to properly characterize an analysis we need to
at the very least consider multiple ground truths.

Which ground truths, however, should we consider? An algorithm might be able to recover a
posterior constructed from data generated from some parts of the parameter space while faring
poorly on data generated from other parts. In Bayesian inference a proper prior distribution quan-
tifies exactly which parameter values are relevant and hence should be considered when evaluating
an analysis. This immediately suggests that we consider the performance of an algorithm over the
entire Bayesian joint distribution, first sampling a ground truth from the prior, θ̃ ∼ π(θ), and then
data from the corresponding data generating process, ỹ ∼ π(y | θ̃). We can then build inferences for
each simulated observation ỹ and then compare the recovered posterior distribution to the sampled
parameter θ̃.

Advantageously, this procedure also defines a natural condition for quantifying the faithfulness
of the computed posterior distributions, regardless of the structure of the model itself. Integrating
the exact posteriors over the Bayesian joint distribution returns the prior distribution,

π(θ) =

∫
dỹ dθ̃ π(θ | ỹ)π(ỹ | θ̃)π(θ̃). (1)

In other words, for any model, the average of any exact posterior expectation with respect to data
generated from the Bayesian joint distribution reduces to the corresponding prior expectation.

Consequently, any discrepancy between the data averaged posterior (the right-hand side of (1))
and the prior distribution indicates some error in the Bayesian analysis or computation. Well-defined
comparisons of the prior distribution to the data-averaged posterior distribution provides a generic
means of validating the analysis, at least within the scope of the modeling assumptions.

3. Existing Validation Methods Exploiting the Bayesian Joint Distribution

The self-consistency of the data-averaged posterior and the prior in (1) is not a novel observation.
This behavior has been exploited in at least two earlier methods for validating Bayesian computa-
tional algorithms.

Geweke (2004) proposed a Gibbs sampler targeting the Bayesian joint distribution that alter-
natively samples from the posterior, π(θ | y), and the likelihood, π(y | θ). If an algorithm can
generate accurate posterior samples, then this Gibbs sampler will produce accurate samples from
the Bayesian joint distribution, and the marginal parameter samples will be indistinguishable from
any sample of the prior distribution. The author recommended quantifying the consistency of the
marginal parameter samples and a prior sample with z-scores of each parameter mean, with large
z-scores indicating a failure of the algorithm to produce accurate posterior samples.

The main challenge with this method is that the diagnostic z-scores will be meaningful only
once the Gibbs sampler has converged. Unfortunately, the data and the parameters will be strongly
correlated in a generative model and the convergence of this Gibbs sampler will be slow, making it
challenging to identify when the diagnostics can be considered.

Cook, Gelman and Rubin (2006) avoided the auxiliary Gibbs sampler entirely by considering
cumulative distribution function (CDF) values (quantiles) approximated using samples from the
simulated posterior distribution. They use the notation θ to represent any scalar model parameter
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or function of parameters. They noted that if θ̃ ∼ π(θ) and ỹ ∼ π(y | θ̃) then the exact posterior
CDF values for each parameter,

q(θ̃) =

∫
dθ π(θ | ỹ) I[θ < θ̃],

will be uniformly distributed provided that the posteriors are absolutely continuous. Consequently
any deviation from the uniformity of the computed posterior CDF values indicates a failure in the
implementation of the analysis.

The authors suggest quantifying the uniformity of these CDF values by transforming them into
z-scores with an application of the inverse normal CDF. The absolute values of the z-scores can
then be visualized to identify deviations from normality and hence uniformity of the CDF values.
At the same time these deviations can be summarized with a χ2 statistic.

This procedure works well in certain examples, as demonstrated by Cook, Gelman and Rubin
(2006), but it can run into problems with MCMC samples as the empirical CDF values only asymp-
totically approach the true values. This makes it difficult to determine whether a deviation from
normality is due to pre-asymptotic behavior or error in the posterior computations. In addition the
description of the algorithm in Cook, Gelman and Rubin (2006) is incomplete in that it neglected
to mention the continuity correction used for its quantile computation, as implemented in Cook
(2006).

In particular, because there are only L + 1 positions in a posterior sample of size L in between
which the prior sample θ̃ can fall, an empirically approximated CDF value of the prior draw θ̃
within the posterior sample (θ1, . . . , θL),

q =
1

L

L∑
l=1

I[θl < θ̃],

is fundamentally discrete, taking one of L + 1 evenly spaced values on [0, 1]. This discretization
causes artifacts when visualizing the CDF values and it requires some continuity corrections for the
finite instances where the estimated CDF value equals 0 or 1. At the same time, autocorrelation in
the simulations modifies the distributions of test statistics that were worked out implicitly assum-
ing independence, a point recognized in the recent correction (Gelman, 2017). With attempts at
smoothing, we may fix visual artifacts but we have found no exact proofs of distribution for these
continuous estimators.

4. Simulation-Based Calibration

We can work around the discretization artifacts of Cook, Gelman and Rubin (2006) by considering
a similar consistency criterion that is immediately compatible with sampling-based algorithms.
In this section we introduce simulation-based calibration (SBC) based on comparing histograms of
rank statistics to the discrete uniform distribution that would arise if the analysis has been correctly
implemented.

SBC requires just one assumption: that we have a generative model for our data. Given such a
model, we can run any given algorithm over many simulated observations and the self-consistency
condition (1) provides a target to verify that the algorithm is accurate over that ensemble, and hence
sufficiently calibrated for the assumed model. This calibration ensures that certain one dimensional
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test statistics are correctly distributed under the assumed model and is similar to checking the
coverage of a credible interval under the assumed model.

Importantly, this calibration is limited exclusively to the computational aspect of our analysis.
It offers no guarantee that the posterior will cover the ground truth for any single observation or
that the model will be rich enough to capture the truth at all. Understanding the range of posterior
behaviors for a given observation requires a more careful sensitivity analysis while validating the
model assumptions themselves requires a study of predictive performance, such as posterior predic-
tive checks (PPCs, e.g., Gelman et al. (2013), chapter 6). Where SBC uses samples from the joint
prior distribution π(θ, y), PPCs use the posterior predictive distribution for predicting new data ỹ,
π(ỹ|y). We view both of these checks as a vital part of a robust Bayesian workflow.

In this section we first demonstrate the expected behavior of rank statistics under a proper anal-
ysis and construct the SBC procedure to exploit this behavior. We then demonstrate how deviations
from the expected behavior are interpretable and help identify the exact nature of implementation
error.

4.1. Validating Consistency With Rank Statistics

Consider the sequence of samples from the Bayesian joint distribution and resulting posteriors,

θ̃ ∼ π(θ)

ỹ ∼ π(y | θ̃)
{θ1, . . . , θL} ∼iid π(θ | ỹ). (2)

The relationship (1) implies that the prior sample, θ̃, and an exact posterior sample, {θ1, . . . , θL},
will be distributed according to the the same distribution. We will study coherence of parameters
or unidimensional summaries one at a time. For any one-dimensional function of parameters, h :
Θ→ R, the rank statistic of the prior sample relative to the posterior sample,

r({h(θ1), . . . , h(θL)}, h(θ̃)) =

L∑
l=1

I[h(θl) < h(θ̃)], (3)

will be uniformly distributed across the integers {0, 1, . . . , L}.

Theorem 1. Let θ̃ ∼ π(θ), ỹ ∼ π(y | θ̃), and {θ1, . . . , θL} ∼ π(θ | ỹ) for any joint distribution
π(y, θ). The rank statistic of any one-dimensional random variable over θ is uniformly distributed
over the integers {0, 1, . . . , L}.

The proof is given in Appendix B.
There are many ways of testing the uniformity of the rank statistics, but the SBC procedure,

outlined in Algorithm 1, exploits a histogram of rank statistics for a given random variable to enable
visual inspection of uniformity (Figure 1). We first draw a sample of size N from the Bayesian
joint distribution. For each replicated generated dataset we then sample L exact samples from
the posterior distribution and compute the corresponding rank statistic. We then bin the L rank
statistics in a histogram spanning the L+ 1 possible values, {0, . . . , L}. If only correlated posteriors
samples can be drawn then the procedure can be modified as discussed in Section 5.1.

In order to help identify deviations, each histogram is complemented with a gray band indicating
99% of the variation expected from a uniform histogram. Formally, the vertical extent of the band
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Algorithm 1 SBC generates a histogram from an ensemble of rank statistics of prior samples rela-
tive to corresponding posterior samples. Any deviation from uniformity of this histogram indicates
that the posterior samples are inconsistent with the prior samples. For a multidimensional problem
the procedure is repeated for each parameter or quantity of interest to give multiple histograms.

Initialize a histogram with bins centered around 0, . . . , L.

for n in N do
Draw a prior sample, θ̃ ∼ π(θ)
Draw a simulated data set, ỹ ∼ π(y | θ̃)
Draw posterior samples {θ1, . . . , θL} ∼ π(θ | ỹ)
for each scalar summary h do

Compute the rank statistic r({h(θ1), . . . , h(θL)}, h(θ̃)) as defined in (3)
Increment the histogram with r({h(θ1), . . . , h(θL)}, | h(θ̃))

Analyze the histogram for uniformity.

extends from the 0.005 to the 0.995 quantiles of the binomial(N, (L + 1)−1) distribution so that
under uniformity we expect that, on average, the counts in only one bin in a hundred will deviate
outside this band.

In complex problems computational resources often limit the number of replications, N , and
hence the sensitivity of the resulting SBC histogram. In order to reduce the noise from small
replications it can be beneficial to uniformly bin the histogram, for example by pairing neighboring
ranks together into a single bin to give B = L/2 total bins. Our experiments have shown that
keeping N/B ≈ 20 lead to a good tradeoff between the expressiveness of the binned histogram and
the necessary variance reduction. Choosing L + 1 to be divisible by a large power of 2 makes this
re-binning easier; for example, instead of generating a sample of size 1000 in a problem with known
computational limitations, one could generate a sample of size 1024− 1 = 1023 from the posterior
distributions.

Regardless of the binning, however, it will be difficult to identify sufficiently small deviations in
the SBC histogram and it can be useful to consider alternative visualizations of the rank statistics.
We consider this in Section 5.2.

4.2. Interpreting SBC

What makes the SBC procedure particularly useful is that the deviations from uniformity in the
SBC histogram can indicate how the computed posteriors are incorrect. We follow an observation
from the forecast calibration literature (Anderson, 1996; Hamill, 2001), which suggests that the way
the rank histogram deviates from uniformity can indicate bias or mis-calibration of the computed
posterior distributions.

An illustrative histogram without any appreciable deviations is shown in Figure 1. The histogram
of rank statistics is consistent with the expected uniform behavior, here shown with the 99% interval
in light gray and the median in dark gray.

Figure 2 illustrated the deviation from uniformity exhibited by correlated posterior samples. The
correlation between the posterior samples causes them to cluster relative to the proceeding prior
sample, biasing the ranks to extremely small or large values. We describe how to process correlated
posterior samples generated from Markov chain Monte Carlo algorithms in Section 5.1.

Next, consider a computational algorithm that produces, on average, posteriors that are under-
dispersed relative to the true posterior. When averaged over the Bayesian joint distribution this
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Fig 1. Uniformly distributed rank statistics are con-
sistent with the ranks being computed from indepen-
dent samples from the exact posterior of a correctly
specified model.

 0  2  4  6  8  10

Rank Statistic

Fig 2. The spikes at the boundaries of the SBC his-
togram indicate that the procedure is not creating
independent samples from the posterior distribution
consistent with the prior simulations.
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Computed
Data-Averaged Posterior

f(θ)
(a)

 0  2  4  6  8  10

Rank Statistic

(b)

Fig 3. A symmetric ∪ shape indicates that the computed data-averaged posterior distribution (dark red) is under-
dispersed relative to the prior distribution (light red). This implies that on average the computed posterior will be
narrower than the true posterior.



S. Talts et al./Simulation-Based Calibration 8

Prior

Computed
Data-Averaged Posterior
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(b)

Fig 4. A symmetric, ∩-shaped distribution indicates that the computed data-averaged posterior distribution (dark
red) is overdispersed relative to the prior distribution (light red). This implies that on average the computed posterior
will be wider than the true posterior.

results in a data-averaged posterior distribution (1) that is underdispersed relative to the prior dis-
tribution (Figure 3a), and hence rank statistics that are biased towards the middle that manifests
as a ∪-shaped histogram (Figure 3b).

Conversely, an algorithm that computes posteriors that are, on average, overdispersed relative
to the true posterior produces a histogram of rank statistics with a ∩ shape (Figure 4). For exam-
ple, this is commonly assumed to happen when using variational inference with Kullback-Leibler
divergence computed from the true distribution to the approximate (mass covering behavior), or
can happen with a bug in MCMC algorithm implementation.

Finally, we might have an algorithm that produces posteriors that are biased above or below
the true posterior. For example, this can happen when MCMC algorithm has difficulties reaching
narrow parts of the posterior, or when normal approximation is used for skewed posterior. This bias
results in a data-averaged posterior distribution biased in the same direction relative to the prior
distribution (Figure 5a) and rank statistics that are biased in the opposite direction (Figure 5b).
For example, posterior samples biased to smaller values results in higher rank statistics, whereas
posterior samples biased to larger values results in lower rank statistics.

A misbehaving analysis can in general manifest many of these deviations at once. Because each
deviation is relatively distinct from the others, however, in practice the systematic deviations are
readily separated into the different behaviors if they are large enough.

4.3. Simulation-Based Calibration Plays a Vital Role in a Robust Bayesian
Workflow

SBC is one of the few tools for evaluating the critical but frequently unexamined choice of computa-
tional method made in any Bayesian analysis. We have already argued that performance on a single
simulated observation is, at best, a blunt instrument. Moreover, while most theoretical results only
provide asymptotic comfort, SBC adapts to the specific model design under consideration.

Furthermore, because SBC validates accuracy through one-dimensional random variables, it can
make sense to use carefully chosen random variables to make targeted assessments of an analysis



S. Talts et al./Simulation-Based Calibration 9

Prior
Computed

Data-Averaged Posterior

f(θ)
(a)

 0  2  4  6  8  10

Rank Statistic

(b)

Fig 5. Asymmetry in the rank histogram indicates that the computed data-averaged posterior distribution (dark red)
will be biased in the opposite direction relative to the prior distribution (light red). This implies that on average the
computed posterior will be biased in the same opposite direction.

based on our inferential needs and priorities. For example, in a model for election forecasting such
as Heidemanns, Gelman and Morris (2020), it would make sense to look at coverage for predictions
of the Electoral College total and key swing states. As needs and priorities change we can run SBC
again using the same posterior samples to verify the analysis anew.

The downside of using SBC in practice is that it is expensive; instead of fitting a single observation
we have to fit N simulated observations before even considering the measured data. These fits,
however, are embarrassingly parallel, which makes it possible to leverage access to computational
resources through multicore personal computers, computing clusters, and cloud computing. For
example, all of the examples in Section 6 were run on clusters and took, at most, a few hours.

The procedure can be sped up further by reducing the number of independent samples, producing
a cruder test that can still catch gross problems in an analysis.

5. Extending Simulation-Based Calibration

SBC provides a straightforward procedure for validating simulation-based algorithms applied to
Bayesian analyses, but the procedure can be limited in a few circumstances. In this section we discuss
some small modifications that allow SBC to remain useful in some common practical circumstances.

5.1. Mitigating the Effect of Autocorrelation

The confidence bands we have shown in histogram plots (and also the confidence bands later shown
in ECDF difference plots) are based on assumption of independence. SBC histograms can become
lumpy if the posterior samples are dependent, making the confidence bands uncalibrated (Säilynoja,
Bürkner and Vehtari, 2021) which makes it difficult to assess bias in the samples. As the mixing
efficiency of Markov chains can vary in different parts of the parameter space (Vehtari et al., 2021),
the amount of lumpiness in different parts of histogram can also vary. Thus there is no general
characteristic shape of the histogram due to the dependencies (although, for example, slow mixing
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in tails can increase lumpiness specifically in edges of the histograms, increasing the probability
of accidental ∪-shape). As taking into account the full dependency would be very challenging, we
instead thin the Markov chains to obtain samples with negligible dependence.

The amount of dependency over the chain is commonly measured using autocorrelation time esti-
mates and corresponding effective sample size (ESS) estimates (see, e.g., Vehtari et al., 2021). When
autocorrelation time is negligible, ESS is close to the nominal sample size. The autocorrelation time
and ESS depend on h. As the mixing efficiency can be different in different parts of the parameter
space, and the rank statistic is closely related to cumulative distribution function P (h(θ) ≤ h∗),
we suggest computing minimum ESS with h∗ being empirical quantiles of h(θ) (e.g.,19 equispaced
quantiles; see Vehtari et al. (2021) for examples). Ranks are MCMC estimators of probabilities.
Autocorrelation in the Markov chains induces varying and correlated errors in those probability
estimators which invalidate confidence bands that assume uncorrelated samples. We could keep
thinning until ESS is close to the thinned nominal sample size. In practice, we have observed that
when ESS is the minimum ESS over the empirical quantiles, thinning by dL/ESSe reduces the
autocorrelation sufficiently to produce samples that are well suited for the SBC. When running the
SBC procedure over multiple quantities of interest we suggest thinning the chain just once using
the largest thinning value determined with the above procedure over all quantities. This approach
works also for antithetic Markov chains (not rare with dynamic Hamiltonian Monte Carlo) which
have negative autocorrelations for even lags. Antithetic chains may have the effective sample size
larger than the nominal size for some quantiles, but not for all.

Algorithm 2 Simulation-based calibration can be applied to the correlated posterior samples
generated by a Markov chain provided that the Markov chain can be thinned to L near-independent
samples at each iteration.

Initialize a histogram with bins centered around 0, . . . , L.

for n in N do
draw a prior sample θ̃ ∼ π(θ)
draw a simulated data set ỹ ∼ π(y | θ̃)
run a Markov chain for L′ iterations to generate the correlated posterior samples,

{θ1, . . . , θL′} ∼ π(θ | ỹ)
compute the effective sample size, ESS[h] of {θ1, . . . , θL′} for the one-dimensional summary h
if ESS[h] < 0.95L then

rerun the Markov for L′ · dL/ESS[h]e iterations

uniformly thin the correlated sample to L states and truncate any leftover samples at L
compute the rank statistic r({h(θ1), . . . , h(θL)}, h(θ̃)) as defined in (3)
increment the histogram with r({h(θ1), . . . , h(θL)}, h(θ̃))

Analyze the histogram for uniformity.

Although some autocorrelation will remain in a sample that has been thinned by Algorithm 2,
if 0.95L < ESS[h] < 1.05L, the effect of the dependency in assessing uniformity is small (Säilynoja,
Bürkner and Vehtari, 2021). If desired, more conservative thinning strategies such as the truncation
rules of Geyer (1992) can remove autocorrelation completely from the sample. A sample thinned
with these rules is typically much smaller than the sample achieved by thinning based on the effective
sample size, and we have not seen any significant benefit for SBC from the increased computation
time needed for these more elaborate thinning methods to date.

Deviations that cannot be mitigated by thinning provide strong evidence that the Markov chain
Monte Carlo estimators do not follow a central limit theorem or follow it with a very slow conver-



S. Talts et al./Simulation-Based Calibration 11

gence rate so that the Markov chains are not adequately exploring the target parameter space. This
is particularly useful given that establishing central limit theorems for particular Markov chains
and particular target distributions is a notoriously challenging problem even in relatively simple
circumstances.

5.2. Simulation-Based Calibration for Small Deviations

The SBC histogram provides a general and interpretable means of identifying deviations from
uniformity of the rank statistics and hence inaccuracies in our posterior computation, at least
when the inaccuracies are large enough. For small deviations, however, the SBC histogram may
not be sensitive enough for the deviations to be evident and other visualization strategies may be
advantageous.

One option is to bin the SBC histogram multiple times to see if any deviation persists regardless of
the binning. This approach, however, is ungainly to implement when there are many parameters and
can be difficult to interpret. In particular, considering multiple histograms introduces a vulnerability
to multiple testing biases.

Another approach is to pair the SBC histogram with the empirical cumulative distribution func-
tion (ECDF) which reduces variation at small and large ranks, making it easier to identify devia-
tions around those values (Figure 6b). The deviation of the empirical CDF away from the expected
uniform behavior is especially useful for identifying these small deviations (Figure 6c). Säilynoja,
Bürkner and Vehtari (2021) present an efficient way to compute simultaneous confidence bands for
ECDF difference plots.

More subtle deviations can be isolated by considering more particular summary statistics, such
as ranks quantiles or averages. While these have the potential to identify small biases they can
also be harder to interpret and not as sensitive to the systematic deviations that manifest in the
SBC histogram. Identifying a robust suite of diagnostic statistics is an open area of research and
at present we recommend using the SBC histogram whenever possible.

6. Experiments

In this section we consider the application of SBC on a series of examples that demonstrates the
utility of the procedure for identifying and correcting incorrectly implemented analyses. For each
example we implement the SBC procedure using a posterior sample of size L = 100 so that, if the
algorithm is properly calibrated, then the rank statistics will follow a discrete uniform distribution
on {0, 1, . . . , 100}. The experiments in Section 6.1 through Section 6.3 used N = 10, 000 replicated
observations while the experiment in Section 6.4 used N = 1000 replicated observations.

6.1. Misspecified Prior

Let’s first consider the case where we build our posterior using a different prior than that which we
use to generate prior samples. This is not an uncommon mistake, even when models are specified
in probabilistic programming languages.

Consider the linear regression model, yi ∼ N(α + βxi, 1.2
2), i = 1, . . . , n (Listing 2 in the Ap-

pendix) but with the prior on β modified to N(0, 12). With the prior samples still drawn according to
N(0, 102), we expect that the posterior for β will be underdispersed relative to the prior even when
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Fig 6. In order to emphasize small deviations at low and large ranks we can pair the (a) SBC histogram with
the corresponding (b) empirical cumulative distribution function (dark red) along with the variation expected of the
empirical cumulative distribution function under uniformity. (c) Deviations are often easier to identify by subtracting
the expected uniform behavior from the empirical cumulative distribution function.

the computation is exact. This should then lead to the deviation demonstrated in Figure 3 and,
indeed, we see a ∪ shape in the SBC histogram (using Algorithm 2 to account for autocorrelation
in the sample for β (Figure 7).

6.2. Biased Markov chain Monte Carlo

Hierarchical models implemented with a centered parameterization (Papaspiliopoulos, Roberts and
Sköld, 2007) are known to exhibit a challenging geometry that can cause MCMC algorithms to
return biased posterior samples. While some algorithms, such as Hamiltonian Monte Carlo (Neal
et al., 2011; Betancourt and Girolami, 2013), allow for diagnostics capable of identifying this prob-
lem, these diagnostics are not available for general MCMC algorithms. Consequently the SBC
procedure should be particularly useful in hierarchical models if it can identify this problem.

Here we consider a hierarchical model of the eight schools problem (Rubin, 1981; Gelman
et al., 2013) using a centered parameterization (Listing 3 in the Appendix): yj ∼ N(θj , σ

2
j ), θi ∼
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Fig 7. When the data are simulated using a much wider prior than was used to fit the model, the SBC histogram
for a regression parameter β exhibits a ∪ shape.
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Fig 8. Histograms show SBC for (a) θ[1] and (b) τ in the 8 schools centered parameterization of Section 6.2, after
thinning the MCMC sample. These plots demonstrate problems with this Hamiltonian Monte Carlo implementation.

N(µ, τ2), j = 1, . . . , J , with the vectors y and σ known. In this example, the centered parameteri-
zation exhibits a classic funnel shape that contracts into a region of strong curvature around small
values of τ , making it difficult for most Markov chain methods to adequately explore.

As shown in Figure 8, the SBC rank histogram for τ produced from Algorithm 1 clearly demon-
strates that the posterior samples from Stan’s dynamic Hamiltonian Monte Carlo extension of the
NUTS algorithm (Hoffman and Gelman, 2014; Betancourt, 2017) are biased below the prior samples,
consistent with the known pathology (Figure 9b). Here we used Algorithm 1 instead of 2 because
the algorithm’s unfaithfulness is evident over the deviation caused by the autocorrelation. More-
over, the extra computation required to return an effective sample size of L = 100 post-thinning is
impractical here as the centered parameterization, among other failing HMC diagnostics, has a low
effective sample size per sample rate.

The corresponding non-centered parameterization, yi ∼ N(θj , σ
2
j ), θj = µ+τ θ̃j , θ̃j ∼ N(0, 1), j =

1, . . . , J, should behave much better: the mathematical model is unchanged, but when the data are
consistent with values of τ near zero (as in the eight schools example), the geometry is such that
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Fig 9. Once thinned (a), the SBC histogram for τ from the 8 schools non-centered parameterization in Section 6.2
show no evidence of bias. Without thinning, the SBC histogram for τ in the same model, (b), exhibits characteristic
signs of autocorrelation in the posterior sample.

sampling is much more efficient on the space of (θ̃, µ, τ) than on the original space of (θ, µ, τ). And,
indeed, the SBC histogram thinned using Algorithm 2 (Figure 9) shows no deviation from uniformity
as we expected given that Hamiltonian Monte Carlo is known to yield accurate computation for
this analysis. If the SBC histogram is computed without thinning (Figure 9), the autocorrelation
manifests as a large spikes at L = 100, consistent with the discussion in Section 5.1.

6.3. ADVI can fail for simple models

We next consider automatic differentiation variational inference (ADVI) applied to a simple linear
regression model (Listings 1 and 2 in the Appendix). In particular, we run the implementation of
ADVI in Stan 2.17.1 that returns exact samples from a variational approximation to the posterior.
Here we use Algorithm 1 again because we know that ADVI does not produce autocorrelated
posterior samples.

As shown in Figure 10, SBC immediately reveals that the variational approximation found by
ADVI drastically underestimates the posterior for the slope, β. Compare this with the results from
Hamiltonian Monte Carlo (Figure 11), which yields a rank histogram consistent with uniformity.

6.4. INLA is slightly biased for spatial disease prevalence mapping

Finally let’s consider a sophisticated spatial model for HIV prevalence fit to data from the 2003
Demographic Health Survey in Kenya (Corsi et al., 2012). We follow the experimental setup of
Wakefield, Simpson and Godwin (2016) and fit the model using INLA.

The data were collected by dividing Kenya into 400 enumeration areas and in the ith area
randomly sampling mi households, with the jth household containing Nij people. Both mi and
Nij are chosen to be consistent with the Kenya DHS 2003 AIDS recode. The number of positive
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Fig 10. The SBC histogram resulting from applying
ADVI on the simple linear regression model indi-
cates that the algorithm is strongly biased towards
larger values of β in the true posterior.

 0  20  40  60  80  100

Rank Statistic

Fig 11. SBC Algorithm 2 applied to a linear regres-
sion analysis indicates no issues as the empirical
rank statistics (red) are consistent with the variation
expected of a uniform histogram (gray).

responses yij is modeled as

yij ∼ binomial(Nij , pij)

pij = logit−1(β0 + S(xi) + εij),

where S(·) is a Gaussian process, xi is the centroid of the ith area, and εij are iid Gaussian error
terms with standard deviation τ . Following the computation reasoning of Wakefield, Simpson and
Godwin (2016) we approximate S(·) using the stochastic partial differential equation approximation
(Lindgren, Rue and Lindström, 2011) to a Gaussian process with isotropic covariance function

c(x1, x2; ρ, σ) =

√
8σ2

ρ
‖x1 − x2‖K1

(√
8

ρ
‖x1 − x2‖

)
,

where ρ is the distance at which the spatial correlation between points is approximately 0.1, σ is
the pointwise standard deviation, and K1(·) is a modified Bessel function of the second kind.

To complete the model, we must specify priors on β0, ρ, σ, and τ . We specify a N(−2.5, 1.52) prior
on the logit baseline prevalence β0. This prior is based on the national HIV prevalence across the
world ranges from 0.3% to 20% (Central Intelligence Agency, 2018). We use penalized complexity
priors (Simpson et al., 2017; Fuglstad et al., 2019) on the remaining parameters tuned to ensure
Pr(ρ < 0.1) = Pr(σ > 1) = Pr(τ > 1) = 0.1.

One of the quantities of interest for this model is the average prevalence over a subregion A of
Kenya,

1

|A|

∫
A

logit−1(β0 + S(x)) dx.

Wakefield, Simpson and Godwin (2016) suggested fitting this model using the R-INLA package to
speed up the computation. As the quantity of interest is a nonlinear transformation of a number
of parameters, we need to use R-INLA’s approximate posterior sampler, which is a relatively recent
feature (Seppä et al., 2019).
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Fig 12. (a) The SBC histogram for the average prevalence of a spatial model doesn’t exhibit any obvious deviations,
although the large span of the expected variation (gray) suggests that this test maybe too noisy to capture some
potentially important discrepancies. (b) The empirical cumulative distribution function (dark red), however, shows
that there is a small deviation at low ranks beyond the variation expected from a uniform distribution (gray). (c)
The deviation is more evident by looking at the difference between the empirical cumulative distribution function
and the stepwise-linear behavior expected of a discrete uniform distribution.
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Figure 12a shows the SBC histogram for N = 1000 replications. The histogram shows that all of
the ranks fall within the gray bars, but the large span of the bars indicates that the visual diagnostic
may be too noisy to capture some potentially important discrepancies. In our tests, we saw that
it’s common for deviations from a uniform distribution to be sufficiently severe that this histogram
will still exhibit the signs of a poorly fitting procedure. Hence for a more fine-scale view of the fit
we follow the recommendation in Section 5.2 and consider the ECDF (Figure 12b, c). Here we see
that low ranks are seen slightly more often in the computed ranks than we would expect from a
uniform distribution.

It is not surprising that INLA exhibits some bias in this example. Binomial data with low
expected counts does not contain much information, which poses some problems for the Laplace
approximation. Even though this feature is only present when the observed values of yij/Nij are
close to zero, the SBC procedure is a sufficiently sensitive instrument to identify the problem.
Overall, we would view INLA as a good approximation in a country like Kenya where the national
prevalence is around 5.4%, while it would be inappropriate in Australia where the prevalence is
0.1% (Central Intelligence Agency, 2018). If we repeated this type of survey in a country with only
0.1% prevalence, however, then we would end up with too many zero observations for the method
to be useful.

7. Discussion

In this paper, we introduce simulation-based calibration (SBC), a readily-implemented procedure
that can identify sources of poorly implemented analyses, including biased computational algorithms
or incorrect model specifications. The visualizations produced by the procedure allow us to not only
identify that a problem exists but also to learn how the problem will affect resulting inferences.
The ability to both identify and interpret these issues makes SBC an important step in a robust
Bayesian workflow.

Our reliance on interpreting the SBC diagnostic through visualization, however, can be a lim-
itation in practice, especially when dealing with models featuring a large number of parameters.
One immediate direction for future work is to develop reliable numerical summaries that quantify
deviations from uniformity of each SBC histogram and provide automated diagnostics that can flag
certain parameters for closer inspection.

The SBC histograms are only able to assess the calibration of one-dimensional posterior sum-
maries, although this problem can somewhat be addressed by using summaries such as h(θ) = θ1θ2.
Alternatively, the fraction of posterior samples in a multidimensional subset A can be compared
with the prior probability π(A). This is just using an indicator function as the SBC random variable.
An interesting extension of these ideas would be to incorporate some of the advances in multivariate
calibration of probabilistic forecasts (Gneiting et al., 2008; Thorarinsdottir, Scheuerer and Heinz,
2013).

Global summaries, such as a χ2 goodness-of-fit test of the SBC histogram with respect to a
uniform response, are natural options, but we found they did not perform particularly well in the
above examples. The reason for this is that the deviation from uniformity tends to occur in only a
few systematic ways, as discussed in Section 4.2, whereas these tests consider only global behavior
and hence do not exploit these known failure modes. A potential alternative is to report a number
of summaries that are designed to be sensitive to the specific types of deviation from uniformity we
might expect to see.



S. Talts et al./Simulation-Based Calibration 18

Going beyond SBC, another future direction is to examine approximate calibration based on
only one or two prior predictive replications, which in practice can be enough to catch many of
computational problems, often arising from poorly identified models or bugs in our code.

A limitation of SBC is the requirement of a generative model: the prior π(θ) should be a proper
distribution and one should be able to sample from the joint model π(θ, y). These conditions apply
in many but not all Bayesian models in practice. Another concern is the behavior when the prior
is very weak relative to the likelihood, so that a huge number of replications would be needed to
test the computation in the relevant region of parameter space. This could cause problems if the
computation works well for some parameter values but not for others.

As discussed in Gelman et al. (2020), it is common in practice to use weak priors, out of some com-
bination of respect for non-Bayesian tradition and concern about missing important data features
by oversmoothing. When priors are very weak, prior predictive simulation can result in datasets
that result in computational challenges (for example, discrete data that are nearly all zeroes) which
in turn can cause problems with SBC even if the algorithm in question would perform well on
more realistic datasets. More generally, there is a tension between the goal of using SBC—or any
validation procedure—to test a general algorithm, and the goal of checking that it works well for a
particular example.
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Appendix A: Code Listings

We advise the reader to keep in mind that the Stan modeling language parameterizes the normal
distribution using the mean and standard deviation whereas we have used a mean and variance
parameterization throughout this text.

Listing 1. Data generating process for linear regression:

1 data {

2 int <lower=1> N;

3 real X[N];

4 }

5 generated quantities {

6 real beta;

7 real alpha;

8 real y[N];

9 beta = normal_rng (0, 10);

10 alpha = normal_rng (0, 10);

11 for (n in 1:N)

12 y[n] = normal_rng(X[n] * beta + alpha , 1.2);

13 }

Listing 2. Inference model for linear regression:

1 data {

2 int <lower=1> N;

3 vector[N] X;

4 vector[N] y;

5 }

6 parameters {

7 real beta;

8 real alpha;

9 }

10 model {

11 beta ∼ normal(0, 10);

12 alpha ∼ normal(0, 10);

13 y ∼ normal(X * beta + alpha , 1.2);

14 }

Listing 3. 8 schools, centered parameterization:

1 data {

2 int <lower=0> J;

3 real y[J];

4 real <lower=0> sigma[J];

5 }

6 parameters {

7 real mu;

8 real <lower=0> tau;

9 real theta[J];

10 }

11 model {

12 mu ∼ normal(0, 5);
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13 tau ∼ normal(0, 5);

14 theta ∼ normal(mu, tau);

15 y ∼ normal(theta , sigma);

16 }

Listing 4. 8 schools, non-centered parameterization:

1 data {

2 int <lower=0> J;

3 real y[J];

4 real <lower=0> sigma[J];

5 }

6 parameters {

7 real mu;

8 real <lower=0> tau;

9 real theta_tilde[J];

10 }

11 transformed parameters {

12 real theta[J];

13 for (j in 1:J)

14 theta[j] = mu + tau * theta_tilde[j];

15 }

16 model {

17 mu ∼ normal(0, 5);

18 tau ∼ normal(0, 5);

19 theta_tilde ∼ normal(0, 1);

20 y ∼ normal(theta , sigma);

21 }

Appendix B: Proof of Theorem 2

Theorem 2. Let θ̃ ∼ π(θ), ỹ ∼ π(y | θ̃), and {θ1, . . . , θL} sampled independently from π(θ | ỹ) for
any joint distribution π(y, θ). The rank statistic of any scalar summary of θ is uniformly distributed
over the integers {(0, 1, . . . , L}.

Proof. Consider the scalar summary h : Θ → R and let h̃ = h(θ̃) be its evaluation with respect to
the prior sample with hl = h(θl) the evaluation of the random variable with respect to one draw
from the posterior sample. Similarly let π(h) and π(h | ỹ) denote the probability density function
of the prior density function and posterior density function, respectively.

Without loss of generality, relabel the elements of the posterior sample such that they are ordered
with respect to the random variable,

h1 ≤ h2 ≤ . . . ≤ hL−1 ≤ hL.
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We can then write the probability mass function of the prior rank statistic as

π(r) =

∫
dh̃dy π(ỹ, h̃)

L!

r!(L− r)!
P
[
hl < h̃

]
· P
[
hl ≥ h̃

]
=

L!

r!(L− r)!

∫
dh̃dy π(ỹ, h̃)P

[
hl < h̃

]
· P
[
hl ≥ h̃

]
=

L!

r!(L− r)!

∫
dh̃dy π(ỹ, h̃)

[
r∏

l=1

∫ h̃

−∞
dhl π(hl | h̃, ỹ)

][
L∏

l=r+1

∫ ∞
h̃

dhl π(hl | h̃, ỹ)

]

=
L!

r!(L− r)!

∫
dh̃dy π(ỹ, h̃)

[∫ h̃

−∞
dhl π(hl | h̃, ỹ)

]r [∫ ∞
h̃

dhl π(hl | h̃, ỹ)

]L−r

=
L!

r!(L− r)!

∫
dh̃dy π(ỹ, h̃)

[∫ h̃

−∞
dhl π(hl | h̃, ỹ)

]r [
1−

∫ h̃

0

dhl π(hl | h̃, ỹ)

]L−r
Once we condition on the simulated observation ỹ the posterior samples are independent of the

prior sample and
π(hl | h̃, ỹ) = π(hl | y).

Consequently

π(r) =
L!

r!(L− r)!

∫
dh̃dy π(ỹ, h̃)

[∫ h̃

−∞
dhl π(hl | y)

]r [
1−

∫ h̃

0

dhl π(hl | y)

]L−r

=
L!

r!(L− r)!

∫
dh̃dy π(h̃ | y)π(y)

[∫ h̃

−∞
dhl π(hl | y)

]r [
1−

∫ h̃

0

dhl π(hl | y)

]L−r

=
L!

r!(L− r)!

∫
dy π(y)

∫
dh̃ π(h̃ | y)

[∫ h̃

−∞
dhl π(hl | y)

]r [
1−

∫ h̃

0

dhl π(hl | y)

]L−r

Moreover because the model from which θ̃ and ỹ are simulating is the same as the model used
to construct the posterior

π(hl | y) = π(h̃ | y).

We can then consider the change of variables

u(y) =

∫ h̃

−∞
dθ π(θ | y)
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which gives

π(r) =
L!

r!(L− r)!

∫
dy π(y)

∫
du [u]

r
[1− u]

L−r

=
L!

r!(L− r)!

∫
dy π(y)

r!(L− r)!
(L+ 1)!

=
L!

r!(L− r)!
r!(L− r)!
(L+ 1)!

∫
dy π(y)

=
1

L+ 1

∫
dy π(y)

=
1

L+ 1
,

consistent with a uniform distribution over ranks, as desired.
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