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Abstract

It is common in regression discontinuity analysis to control for third,

fourth, or higher-degree polynomials of the forcing variable. There ap-

pears to be a perception that such methods are theoretically justified,

even though they can lead to evidently nonsensical results. We argue

that controlling for global high-order polynomials in regression discon-

tinuity analysis is a flawed approach with three major problems: it

leads to noisy estimates, sensitivity to the degree of the polynomial,

and poor coverage of confidence intervals. We recommend researchers

instead use estimators based on local linear or quadratic polynomials

or other smooth functions.

Keywords: causal identification, policy analysis, polynomial regres-

sion, regression discontinuity, uncertainty

1. Introduction

1.1. Controlling for the forcing variable in regression discontinuity anal-

ysis

Causal inference is central to science, and identification strategies in observa-

tional studies are central to causal inference in aspects of social and natural

sciences when experimentation is not possible. Regression discontinuity de-

signs are a longstanding (going back to Thistlewaite and Campbell, 1960),

and recently increasingly popular, way to get credible causal estimates when

applicable. But implementations of regression discontinuity inference vary con-

siderably in the literature, with many researchers controlling for high-degree
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polynomials of the underlying continuous forcing variable. In this note we

make the case that global high-order polynomial regressions have poor prop-

erties and argue that they should not be used in these settings.

There are three, somewhat related, reasons why we think that high-order

polynomial regressions are a poor choice in regression discontinuity analyses:

1. An estimate based on a polynomial regression, with or without trim-

ming, can be interpreted as the difference between a weighted average of

the outcomes for the treated minus a weighted average of the outcomes

for the controls. Given the choice of estimator, the weights depend only

on the threshold and the values of the forcing variable, not on the values

for the outcomes. One can, and should in applications, inspect these

weights. We find that doing so in some applications suggests that the

weights implied by higher-order polynomial regressions can take on ex-

treme, prima facie unattractive, values, relative to the weights based on

local linear or quadratic regressions.

2. Results for the causal effects of interest based on global high order poly-

nomial regressions are sensitive to the order of the polynomial. Moreover,

we do not have good methods for choosing that order in a way that is

optimal for the objective of a good estimator for the causal effect of

interest. Often researchers choose the order by optimizing some global

goodness of fit measure (e.g., the methods suggested by Fan and Gij-

bels,1996), but that is not closely related to the research objective of

causal inference.
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3. Inference based on high-order polynomials is often poor. Specifically,

confidence intervals based on such regressions, taking the polynomial

as an accurate approximation to the conditional expectation, are often

misleading. Even if there is no discontinuity in the regression function,

high-order polynomial regressions can lead to confidence intervals that

fail to include zero with probability higher than the nominal Type 1 error

rate.

Based on these arguments we recommend researchers not use such methods,

and instead control for local linear or quadratic polynomials or other smooth

functions.

1.2. Theoretical framework

Regression discontinuity analysis has enjoyed a renaissance in social science,

especially in economics, as a credible way of estimating causal effects in settings

where unconfoundedness is not plausible; Imbens and Lemieux (2008), Van

Der Klaauw (2013), Lee and Lemieux (2010), DiNardo and Lee (2010), and

Skovron and Titiunik (2015) provide recent reviews.

Regression discontinuity analyses are used to estimate the causal effect of

a binary treatment on some outcome. Using the potential outcome approach

(e.g., Imbens and Rubin, 2015), let (yi(0), yi(1)) denote the pair of potential

outcomes for unit i and let wi ∈ {0, 1} denote the treatment. The realized

outcome is yobs
i = yi(wi). Although the same issues arise in fuzzy regression

discontinuity designs, for ease of exposition we focus on the sharp case where

the treatment received is a monotone, deterministic, function of a pretreatment
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variable xi, the forcing variable, with the threshold equal to zero:

wi = 1xi≥0.

Define

τ (x) = E(yi(1) − yi(0)|xi =x).

Regression discontinuity methods focus on estimating the average effect of the

treatment at the threshold (equal to zero here):

τ = τ (0).

Under some conditions, mainly smoothness of the conditional expectations of

the potential outcomes as a function of the forcing variable, this average effect

can be estimated as the discontinuity in the conditional expectation of yobs
i as

a function of the forcing variable, at the threshold:

τ = lim
x↓0

E(yobs

i |xi =x)− lim
x↑0

E(yobs

i |xi =x).

The question is how to estimate the two limits of the regression function at

the threshold:

µ+ = lim
x↓0

E(yobs
i |xi =x), and µ− = lim

x↑0
E(yobs

i |xi =x).

We focus in this note on two approaches researchers have commonly taken to

estimating µ+ and µ−. Typically researchers are not confident that the two

conditional means µ+(x) = E(yobs
i |xi = x, x > 0) and µ−(x) = E(yobs

i |xi =

x, x<0) can be well approximated by a global linear function. One approach

researchers have taken is to use a global high-order polynomial approach. Lee
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and Lemieux (2008) write: “From an applied perspective, a simple way of

relaxing the linearity assumption is to include polynomial functions of x in

the regression model.” In this approach, researchers choose some integer K,

possibly in a data-dependent way, and estimate the regression function,

yobs

i =

K
∑

k=0

xk
i β+j + ε+i,

on the N+ units with values xi ≥ 0 and repeat the same procedure using the

N− units with values xi < 0. The discontinuity in the value of the regression

function at zero is then estimated as,

τ̂ = µ̂+ − µ̂− = β̂+0 − β̂−0.

In practice, researchers often use up to fifth or sixth order polynomials, often

using statistical information criteria or cross-validation to choose the degree

K of the polynomial.

The second commonly-used approach is local linear or sometimes local

quadratic approximation. In that case researchers discard the units with xi

more than some bandwidth h away from the threshold and estimate a linear

or quadratic function on the remaining units; see Hahn, Todd, and Van Der

Klaauw (2001) and Porter (2003). Imbens and Kalyanaraman (2012) suggest

a data driven way for choosing the bandwidth in connection with a local linear

specification. Calonico, Cattaneo, and Titiunik (2014) suggest an algorithm

for a data dependent bandwidth with a quadratic specification for the regres-

sion function.

The main point of the current paper is that we think the approach based

on high order global polynomial approximations should not be used, and that
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instead, inference based on local low order polynomials (local linear or lo-

cal quadratic) is to be preferred. In the next three sections we discuss three

arguments in support of this position and illustrate these in the context of

some applications. We should note that these are not formal results. If a

researcher is confident that the conditional means can be described with suf-

ficient accuracy by a fifth order polynomial, than that would be a perfectly

sensible method to use. However, in practice it is unlikely that a researcher is

confident about this, and the approximation results available for polynomial

approximations do not imply that in practical settings these methods will lead

to reasonable results. We will attempt to make the case that in fact, they do

not, and that local methods do better in empirically relevant settings.

2. Argument 1: Noisy weights

Our first argument against using global high-order polynomial methods focuses

on the interpretation of linear estimators for the causal estimand as weighted

averages. More precisely, these estimators can be written as the difference

between the weighted averages of the outcomes for the treated and controls,

with the weights a function of the forcing variable. This is true for both

global and local polynomial methods, and we can therefore base comparisons

of these methods on the form and values of these weights. We show that

for global polynomial methods these weights can have unattractive properties.

This is related to what is known in the approximation literature as Runge’s

phenomenon, that given a set of N pairs (xi, yi) on a compact interval [a, b], the

N −1th order polynomial that goes through all the pairs becomes increasingly
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erratic, as the number of points increases, close to the boundary of the interval,

especially when there are relatively few points close to the boundary (Dahlquist

and Bjork, 1974). See also Calonico, Cattaneo, and Titiunik, R. (2015).

2.1. The weighted average representation of polynomial regressions

The starting point is that polynomial regressions, whether global or local,

lead to estimators for µ+ and µ− that can be written as weighted averages.

Focusing on µ̂+, the estimator for µ+, we can write µ̂+ as a weighted average

of outcomes for units with xi ≥ 0:

µ̂+ =
1

N+

∑

i:xi≥0

wi y
obs

i ,

where the weights wi have been normalized to have a mean of 1 over all N+

units with a value of the forcing variable exceeding the threshold. The weights

are an estimator-specific function of the full set of values x1, . . . , xN for the

forcing variable that does not depend on the outcome values yobs
1 , . . . , yobs

N .

Hence we can write the weights as

(w1, . . . , wn) = w(x1, . . . , xN).

The various estimators differ in the way the weights depend on value of the

forcing variable. Moreover, we can inspect, for a given estimator, the func-

tional form for the weights. Suppose we estimate a K-th order polynomial

approximation using all units with xi less than the bandwidth h (where h can

be ∞ so that this includes global polynomial regressions). Then the weight
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for unit i in the estimation of µ+, µ̂+ =
∑

i:xi≥0
wi y

obs
i /N+, is

wi = 10≤xi<h · e′K1


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,

where eK1 is the K-component column vector with all elements other than the

first equal to zero, and the first element equal to one.

There are two important features of these weights. First, the values of

the weights have nothing to do with the actual shape of the conditional ex-

pectation function, whether it is constant, linear, or anything else. Second,

one can inspect these weights based on the values of the forcing variable in

the sample, and compare them for different estimators. In particular we can

compare, before seeing the outcome data, the weights for different values of

the bandwidth h and the order of the polynomial K.

2.2. Example: Matsudaira data

To illustrate, we first inspect the weights for various estimators for an analysis

by Matsudaira (2008) of the effect of a remedial summer program on sub-

sequent academic achievement. Students were required to participate in the

summer program if they score below a threshold on either a mathematics or

a reading test, although not all students did so, making this a fuzzy regres-

sion discontinuity design. We focus here on the discontinuity in the outcome

variable, which can be interpreted as an intention-to-treat estimate. There

are 68,798 students in the sample. The forcing variable is the minimum of the

mathematics and reading test scores normalized so that the threshold equals

0. Its range is [−199, 168]. The outcome we look at here is the subsequent
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Order of Normalized weight for
global polynomial individual with xi = 168

1 −4.5
2 17.1
3 −16.3
4 8.3
5 −3.7
6 1.3

Table 1: Normalized weight for individuals with xi = 168 for

different orders of global polynomial, compared to average

weight of 1.

mathematics score. There are 22,892 students with the minimum of the test

scores below the threshold, and 45,906 with a test score above.

In this section we discuss estimation of µ+ only. Estimation of µ− raises

the same issues. We look at weights for various estimators. First, we consider

global polynomials up to sixth-degree. Second, we consider local linear meth-

ods. The bandwidth for the local linear regression is 27.6, calculated using

the Imbens and Kalyanaraman (2012) bandwidth selector. This leaves 22,892

individuals whose value for the forcing variable is positive and less than 27.6,

out of the 45,906 with positive values for the forcing variable. We estimate

the local linear regression using a triangular kernel.

Figures 1a–c and Table 1 present some of the results relevant for the discus-

sion on the weights. Figure 1a gives the weights for the six global polynomial

regressions, as a function of the forcing variable. Figure 1b gives the weights

for the local linear regression with rectangular and triangular kernels, and the

bandwidth equal to 27.6, again as a function of the forcing variable. Figure 1c
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presents a histogram of the distribution of the forcing variable for individuals

with a value for the forcing variable greater than 0. In Table 1 we present

the weights for the individuals with the largest value for the forcing variable,

xi = 168, for the six polynomial regression specifications. Because this ex-

treme value of 168 is outside the bandwidth, the weight for the local linear

regression for individuals with such a value for xi would be 0. Recall that the

average value of the weights is 1 for individuals with a value of the forcing

variable exceeding zero.

Figure 1a shows that the weight for the individuals with large values for the

forcing variable are quite sensitive to the order of the polynomial. Based on

these figures, we would not be comfortable with any of these six specifications.

Figure 1b shows the weights for the local linear regression, which appear more

attractive: most of the weight goes to the individuals with values for xi close to

the threshold, and individuals with xi > 27.6 have weights of 0 (by definition

of the threshold).

Table 1 also shows the unattractiveness of the high order polynomial re-

gressions. Whereas one would like to give little or zero weight to the indi-

viduals with extreme values for xi, the global polynomial regressions attach

large weights, sometimes positive, sometimes negative, to these individuals,

and often substantially larger than the average weight of one, whereas the

local linear estimator attaches zero weight to these individuals.
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2.3. Jacob-Lefgren data

In Figures 2a–c, we repeat these analyses for another dataset. Here the in-

terest is also in the causal effect of a summer school program. The data were

previously analyzed by Jacob and Lefgren (2004). There are observations on

70,831 students. The forcing variable is the minimum of a mathematics and

reading test, with the range equal to [−0.9, 6.8]. Out of the 70,831 students,

29,900 score below the threshold of 2.75 on at least one of the tests, and so are

required to participate in the summer program. The Imbens-Kalyanaraman

bandwidth here is 0.57. As a result the local polynomial estimators are based

on 31,747 individuals out of the full sample of 70,831, with 16,011 required

and 15,736 not required to participate in summer school. Again the weights

for the individuals with large values for the forcing variable are quite sensitive

to the order of the polynomial.

2.4. Lee data

In Figures 3a–c, we repeat these analysis for a third dataset, previously ana-

lyzed by Lee (2008). Lee analyzes the effect of one party winning an election

on the voting shares in the next election, using data from congressional district

elections. The Imbens-Kalyanaraman bandwidth here is 0.28. There are 3818

elections where the Democrats won, and 2740 where the Republicans won.

Again we find that the weights far from the threshold can be quite sensitive

to the order of the polynomial chosen to approximate the regression function.

An additional feature of these data is that there are a fair number of elections

that are uncontested, which clearly should have low weight in estimating the

11



effect for close elections.

2.5. General recommendation

Most, if not all, estimators for average treatment effects used in practice can be

written as the difference between two weighted averages, one for the treated

units and one for the control units. This includes estimators in regression

discontinuity settings. In those cases it is useful to inspect the weights in the

weighted average expression for the estimators to assess whether some units

receive excessive weight in the estimators.

3. Argument 2: Estimates that are highly sensitive to the

degree of the polynomial

The second argument against the high order global polynomial regressions is

their sensitivity to the order of the polynomial. We illustrate that here using

three applications of regression discontinuity designs.

3.1. Matsudaira data

We return to the Matsudaira data. Here we use the outcome data and directly

estimate the effect of the treatment on the outcome for units close to the

threshold. To simplify the exposition, we look at the effect of being required

to attend summer school, rather than actual attendance, analyzing the data

as a sharp, rather than a fuzzy, regression discontinuity design. We consider

global polynomials up to order six and local polynomials up to order two. The

bandwidth is 27.6 for the local polynomial estimators, based on the Imbens-

Kalyanaraman bandwidth selector, leaving 37,580 individuals in the sample.
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Order of Matsudaira Jacob-Lefgren Lee
polyn. est. (s.e.) est. (s.e.) est. (s.e.)

global 1 −0.167 (0.008) −0.024 (0.009) 0.118 (0.006)
global 2 0.079 (0.010) −0.176 (0.012) 0.052 (0.007)
global 3 0.112 (0.011) −0.209 (0.015) 0.112 (0.009)
global 4 0.077 (0.013) −0.174 (0.018) 0.077 (0.011)
global 5 0.069 (0.016) −0.164 (0.021) 0.043 (0.013)
global 6 0.104 (0.018) −0.197 (0.025) 0.067 (0.015)
std [0.025] [0.024] [0.017]

local 1 0.080 (0.012) −0.196 (0.018) 0.080 (0.008)
local 2 0.063 (0.017) −0.176 (0.027) 0.067 (0.012)
std [0.012] [0.014] [0.009]

Table 2: Sensitivity of estimates to the order of the polynomial.

The table reports estimates of the magnitude of the discontinu-

ity in the conditional expectation of the outcome as a function

of the forcing variable at the threshold.

Local linear or quadratic regression is based on a triangular kernel.

The first two numerical columns in Table 2 display the point estimates and

standard errors. The variation in the global polynomial estimates over the

six specifications is much bigger than the standard error for any of these six

estimates, suggesting that the standard errors do not capture the full amount

of uncertainty about the causal effects of interest. The estimates based on

third, fourth, fifth, and sixth order global polynomials range from 0.069 to

0.112, whereas the range for the local linear and quadratic estimates is 0.063

to 0.080, substantially narrower.

For the Matsudaira data we also present in Figures 4a and 4b the esti-

mated regression functions based on the various specifications. From those

figures there appears to be relatively little difference between the estimated
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regression functions over most of the range of values where the observations

are. Nevertheless, these small differences matter for the estimated difference

in the two regression functions.

3.2. Jacob-Lefgren and Lee data

We repeat these analyses for the Jacob-Lefgren and Lee data sets. The second

pair of numerical columns in Table 2 reports the corresponding estimates for

the Jacob-Lefgren dataset. Again the estimates based on the global polyno-

mials have a wider range than the local linear and quadratic estimates. The

third pair of numerical columns in Table 2 reports the corresponding estimates

for the Lee congressional election dataset. Here the estimated effect based on

a third order polynomial is 0.112, almost three times that based on a fifth

order polynomial, 0.43. The local linear and local quadratic estimates are

substantially closer, 0.080 and 0.067.

4. Argument 3: Inferences that do not achieve nominal cov-

erage

Our third point is that conventional inference for treatment effects in regression

discontinuity settings can be misleading, in the sense that that conventional

confidence intervals have lower than nominal coverage. We make that point

by constructing confidence intervals for discontinuities in an artificial setting

where we expect no discontinuities to be present.

We illustrate this point with two different datasets. The first contains

information on yearly earnings in 1974, 1975, and 1978 for 15,992 individuals

for whom there is information from the Current Population Survey. (These
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data were previously used for different purposes in work by Lalonde (1986)

and Dehejia and Wahba (1999)). We look at the conditional expectation of

earnings in 1978 in thousands of dollars (the outcome yi) given the average of

earnings in 1974 and 1975 (the predictor xi, in tens of thousands of dollars so

that the coefficients of the higher powers are on a reasonable scale). Figure

5a gives a simple, histogram-based estimate of the conditional expectation,

with a histogram of the marginal distribution of the conditioning variable in

Figure 5b. Unsurprisingly, the conditional expectation looks fairly smooth and

increasing. Overlaid with the histogram estimator are a first to sixth order

polynomial approximations, with all approximations other than the sixth order

one in dashes, and the sixth order one in a solid line. All approximations

appear fairly accurate.

Now suppose we pretend the median of the average of earnings in 1974 and

1975 (equal to 14.65) was the threshold, and we estimate the discontinuity in

the conditional expectation of earnings in 1978. We would expect to find an

estimate close to zero. Doing so, for global and local polynomials of different

degree, we find the estimates in Table 3. All estimates are in fact reasonably

close to zero, with the nominal 95% confidence interval in most cases including

zero. This exercise on its own is not particularly informative, because the

estimates based on the different specifications are highly correlated. However,

in the next step we assess whether the coverage found for this single case is

typical. We do the following exercise. 20,000 times we randomly pick a single

point from the empirical distribution of xi between the 0.25 and 0.75 quantile

that will serve as a pseudo threshold. We pretend this randomly drawn value
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Order of
polynomial Estimate (se)

global 1 −0.02 (0.25)
global 2 0.71 (0.25)
global 3 −0.98 (0.53)
global 4 0.24 (0.66)
global 5 −1.22 (0.80)
global 6 −0.13 (0.93)
local 1 0.02 (0.37)
local 2 −0.39 (0.55)

Table 3: Estimates of effect of pseudo treatment: Single repli-

cation on Lalonde data with pseudo threshold equal to 14.65.

of xi is the threshold in a regression discontinuity design analysis. In each of

the 20,000 replications we then draw M = 1,000 individuals randomly from

the full sample of 15,992 individuals. Given this sample of size 1,000 and the

randomly chosen threshold we then estimate the average effect of the pseudo

treatment, its standard error, and check whether the implied 95% confidence

interval excludes zero. There is no reason to expect a discontinuity in this

conditional expectation at these threshold, and so we should see that only

5% of the times we randomly pick a threshold the corresponding confidence

interval should not include zero.

We do this exercise for the six global and the two local polynomial regres-

sions. If, say, the regression functions on both sides of the threshold are truly

linear, than the estimator based on linearity should be approximately unbiased

for the average treatment effect (which is zero here), and the corresponding

95% confidence interval should include zero 95% of the time. If, on the other
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hand, the regression function is not truly linear, the confidence intervals based

on linearity are likely to include the true value of zero less than 95% of the

time. For the local linear and local quadratic regressions we drop observations

with values of x more than h away from the threshold (where the distance h is

chosen using the Imbens-Kalyanaram bandwidth procedure). The results are

in Table 4. The rejection rates for the global polynomials are substantially

above the nominal rejection rate of 5%. In contrast the rejection rates for

the local linear and local quadratic estimators are fairly close to the nominal

rejection rate. Moreover, the median standard errors for the global estimators

are substantially larger than the standard errors for the local estimators. Thus

the global estimators combine large standard errors with under coverage for

the confidence intervals, so that clearly the local polynomial estimators are

superior in this setting.

We repeat this exercise for a second dataset. In this exercise we use a census

data and consider the regression of years of education on earnings. This has

the advantage that the data set is large, and the forcing variable is close to

continuous. Substantively of course the regression is not of interest. However,

qualitatively we find the same results: the global polynomial methods combine

relatively poor coverage rates with substantially larger standard errors.

5. Discussion

Regression discontinuity designs have become increasingly popular in social

sciences in the last twenty years as a credible method for obtaining causal

estimates. One implementation relies on using global high-order polynomial
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Lalonde data Census data
N = 15, 992, M = 1, 000 N = 320, 274, M = 1, 000

Order of Rejection Median Rejection Median
polynomial rate s.e. rate s.e.

global 1 0.095 1.07 0.473 0.296
global 2 0.084 1.66 0.058 0.493
global 3 0.069 2.25 0.089 0.393
global 4 0.081 2.81 0.064 0.590
global 5 0.075 3.36 0.060 0.689
global 6 0.093 3.89 0.059 0.786
local 1 0.064 1.42 0.064 0.381
local 2 0.057 2.07 0.052 0.542

Table 4: Rejection rates for nominal 5% test under the null hy-

pothesis of no true discontinuity. Contrary to naive intuition,

rejection rates can be much higher than 5%, especially for the

global fits.

approximations to the conditional expectation of the outcome given the forc-

ing variable. Such models can give poor results in practice (see discussion from

Gelman and Zelizer, 2015). This motivates the present paper in which we lay

out the specific problems with the method and why we recommend against

using high-order polynomials in regression discontinuity analyses. We present

three arguments for this position: the implicit weights for high order polyno-

mial approximations are not attractive, the results are sensitive to the order of

the polynomial approximation, and conventional inference has poor properties

in these settings. We recommend that instead researchers use local low order

polynomial methods (local linear or local quadratic) as discussed by Hahn,

Todd, and VanderKlaauw (2001), Porter (2003), and Calonico, Cattaneo, and

Titiunik (2014). In addition we recommend that researchers routinely present

the implicit weights in the estimates of the causal estimands.

18



We present the arguments in the context of sharp regression discontinuity

designs. The same arguments apply to fuzzy regression discontinuity designs,

where we would recommend using local linear or quadratic methods for both

the outcome and treatment received. In regression kink designs (e.g., Card,

Lee, Pei, Z., and Weber, 2015, Dong, 2010), where the focus is on estimating

a derivative of, rather than the level of the regression function at a point, one

may wish to use local quadratic methods. The results in this paper suggest that

such approaches would be superior to using global polynomial approximations.

Given all these problems, as well as the non-intuitive nature of high-degree

polynomial fits, the natural question arises: what was the appeal of high-degree

polynomials in the first place? We suspect this comes from three sources. First,

the fact that high order polynomials can approximate any smooth function on

a compact set arbitrarily well. While true, this does not address the issue that

a high-order polynomial based on least square fit may not give a good approxi-

mation, especially close to the boundary. Second, in many of the paradigmatic

examples of regression discontinuity analysis, the relation between the forcing

variable and the outcome is very strong, so that even when a high-degree

polynomial is fit to data, that fit is smooth and monotonic, in which case such

polynomials can do less damage than they can in examples where the forc-

ing variable is not a good predictor at all (as discussed in Gelman and Zelizer,

2015). The third implicit justification for high-degree polynomials, we suspect,

is the recommendation given in many textbooks that, when performing causal

inference, it is safest to include as many pre-treatment background variables

as possible. The idea is that including relevant predictors should reduce bias,
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while including noise predictors will only induce slight increases in variance

due to reduction in degrees of freedom. Thus when sample size is large, it can

seem safe to include high-degree polynomial terms on the right hand side of

the regression–especially if the coefficient on the discontinuity term is statis-

tically significant, in which case the cost in increased variance would seem, in

retrospect, minor in comparison to the gain in safety from including the more

flexible predictor set. The flaw in this reasoning is that polynomials of the

forcing term are not simply noise predictors and can induce bias as well as

variance, thus damaging coverage, as discussed in section 4 of our paper.
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