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Abstract

It is standard in regression discontinuity analysis to control for third- or fifth-degree polynomi-
als of the assignment variable. Such models can overfit, leading to causal inferences that are
substantively implausible in which variation is somewhat arbitrarily attributed to high-degree
polynomial or the discontinuity. We discuss in the context of two examples: first, a recent study
of the effect on air pollution and life expectancy coming from a coal-heating policy in China; sec-
ond, an example of Green et al. in which regression discontinuity was used to recover estimated
treatment effects relative to an experimental benchmark. In successful regression discontinuity
analyses, the underlying relation between the assignment variable and the outcome tends to be
strong, monotonic, and with a clear substantive justification. Without such a clear underlying
pattern, the validity estimated coefficient from the discontinuity is much less clear. We recom-
mend that (a) researchers recognize these problems which can be exacerbated by controlling for
higher-order polynomials; and (b) that journals recognize that quantitative analyses of policy
issues are often inconclusive and relax the implicit rule under which statistical significance is a
condition for publication.

Keywords: identification, policy analysis, polynomial regression, regression discontinuity,
uncertainty

1. Regression discontinuity analysis

Regression discontinuity (RD) methods are one of the standard techniques used in statistics and
econometrics to obtain causal inference from observational data. But implementations of regression
discontinuity can have serious problems in practice, especially with the often-standard approach
of controlling for high-degree polynomials of the underlying continuous predictor. In a companion
paper (Gelman and Imbens, 2014) we present evidence that controlling for high-order polynomials
in RD analysis results in noisy estimates with poor statistical properties and confidence intervals
with poor coverage. In the present paper we discuss evident practical problems with these estimates
and how they interact with pathologies of the current system of scientific publication.

We demonstrate with a recent well-publicized example in public health where a high-degree
polynomial control in a RD analyses led to implausible conclusions. In addition to implying that
researchers should show much more caution with such models, this experience suggests a rethinking
of conventional ideas of robustness to model specification.

Regression discontinuity analysis, introduced by Thistlewaite and Campbell (1960), has recently
enjoyed a renaissance, especially in economics; Lee and Lemieux (2010) provide an influential
review. In their words, RD is “a way of estimating treatment effects in a nonexperimental setting
where treatment is determined by whether an observed ‘assignment’ variable (also referred to in
the literature as the ‘forcing’ variable or the ‘running’ variable) exceeds a known cutoff point.”
To the extent that the assignment depends (perhaps stochastically) only on this rule, and to the
extent that there are no systematic pre-treatment differences between the items below and above
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the cutoff, the RD design can be interpreted as a quasi-experiment and the resulting inferences can
be interpreted causally.

Lemieux and Lee continue: “RD designs require seemingly mild assumptions compared to those
needed for other nonexperimental approaches. . . . the belief that the RD design is not ‘just another’
evaluation strategy, and that causal inferences from RD designs are potentially more credible than
those from typical ‘natural experiment’ strategies . . . This notion has a theoretical justification . . . ”

One way to see the appeal of RD is to consider the threats to validity that arise with five other
methods used for causal inference in observational studies: simple regression, matching, selection
modeling, difference in differences, and instrumental variables. These competitors to RD all have
serious limitations: regression with many predictors becomes model dependent (using the least
squares approaches that are traditional in econometrics, it is difficult to control for large numbers
of predictors, while nonparametric approaches such as Bart (Hill, 2013) have not yet gained wide
acceptance); matching, like linear or nonlinear regression adjustment, leans on the assumption that
treatment assignment is ignorable conditional on the variables used to match; selection modeling
is sensitive to untestable distributional assumptions; difference in differences requires an additive
model that is not generally plausible; and instrumental variables, of course, only work when there
happens to be a good instrument related to the causal question of interest.

For all these reasons, in practice causal analyses often seem to flow from identification oppor-
tunities to inferences of interest (Gelman, 2009), a view that contrasts with the usual textbook
presentation in which the research question comes first and then the analyst finds an identification
strategy to attack the problem at hand.

Many of the challenges of applying an identification strategy arise in the data analysis. Sample
sizes can be small (especially in areas such as political science or economics where one cannot simply
augment a dataset by instigating a few more wars, scandals, or recessions), and theoretical results
of unbiasedness do not always help much, first because low bias has no practical meaning in the
presence of high variance, and second because datasets are typically constructed by pooling over
different subpopulations or different time periods or different sorts of cases, so that any claims of
unbiased estimates typically apply only to aggregates that are not directly relevant to the ultimate
questions of interest.

For this reasons, the Lee and Lemieux paper is welcome in that it continually returns to practical
issues of estimation. Particularly relevant for the purposes of our discussion here are two of their
recommendations:

• “From an applied perspective, a simple way of relaxing the linearity assumption is to include
polynomial functions of X in the regression model. . . . it is advisable to try and report a
number of specifications to see to what extent the results are sensitive to the order of the
polynomial.”

• “Graphical presentation of an RD design is helpful and informative but the visual presentation
should not be tilted toward either finding an effect or finding no effect.”

Both these pieces of advice seem reasonable (although, in the first case, we would prefer a spline
or Gaussian process or some other such smooth model, as indeed has been suggested by some
econometricians). The challenge is what to do after following this advice.
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2. Example: A claim that coal heating is reducing lifespan by 5 years for half a billion
people

We discuss in the context of a paper by Chen et al. (2013) that received a lot of attention with the
following claim:

This paper’s findings suggest that an arbitrary Chinese policy that greatly increases
total suspended particulates (TSPs) air pollution is causing the 500 million residents of
Northern China to lose more than 2.5 billion life years of life expectancy. The quasi-
experimental empirical approach is based on China’s Huai River policy, which provided
free winter heating via the provision of coal for boilers in cities north of the Huai River
but denied heat to the south. Using a regression discontinuity design based on distance
from the Huai River, we find that ambient concentrations of TSPs are about 184 µg/m3
[95% confidence interval (CI): 61, 307] or 55% higher in the north. Further, the results
indicate that life expectancies are about 5.5 y (95% CI: 0.8, 10.2) lower in the north
owing to an increased incidence of cardiorespiratory mortality.

Before going on, let us just say that, if you buy this result, you should still be interested in
it even if the 95% confidence intervals had happened to include zero. There is an unfortunate
convention that “p less than .05” results are publishable while “non-significant” results are not.
The life expectancy of 500 million people is important, and it’s inappropriate to wait on statistical
significance to make policy decisions in this area.

Getting to the details, though, we are far less than 97.5% sure that the effects are in the
direction that the authors claim (recall that 97.5% is the posterior probability of a positive effect
given p = 0.05, under a flat prior). And, for the usual proper-prior Bayesian reasons, we would
guess that this “2.5 billion years of life expectancy” is an overestimate: great swathes of the 95%
confidence interval represent very large effects that seem a priori unlikely.

We have reproduced the key graph of Chen et al. as Figure 1 here. It is a beautiful graph,
showing the model and the data together and following the advice or Lee and Lemieux reported
above. One particular admirable aspect of this particular graph is that, just looking at it, you can
see how odd the model is. Or, at least, how odd it looks to an outsider. A third-degree polynomial
indeed! It is hard to see any reason why one would think it reasonable to model life expectancy
as a third-degree polynomial of latitude. And it looks like that’s where the claim of 5 years of life
expectancy came from. We remain a little confused still, because the interval is [1.3, 8.1] in the
graph and [0.8, 10.2] in the abstract, so there must be something else going on, but this seems like
the basic story.

In particular, the big discontinuity at 0 appears to be a sort of reaction to the estimated curve’s
strong upward slope starting just below 0 and continuing to about 10 degrees north of the river.
And this steep slope is itself required to fit the mass of the data in the context of the outliers at
10 degrees south and 9 degrees north. In short, the estimated discontinuity relies strongly on the
fitted model, which is itself a noisy function of the data.

Table S.9 in the supplemental material gives the authors’ results trying other models. The cubic
adjustment gave an estimated effect of 5.5 years with standard error 2.4. A linear adjustment gave
an estimate of 1.6 years with standard error 1.7. Figure 2 here shows the relevant part of the table.

Our point here is not to argue that the linear model is correct—the authors in fact supply
data-based reasons for preferring the cubic—but rather that the headline claim, and its statistical
significance, is highly dependent on a model choice that has no particular scientific (as distinguished
from data-analytic) basis. Figure 1 above indicates to us that neither the linear nor the cubic nor
any other polynomial model is appropriate here; that there are other variables not included in
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Figure 1: Key graph from Chen et al. (2013) showing their regression discontinuity analysis. Each
circle represents the average from a set of locations in China.

Figure 2: Excerpts of a table from the supplemental material for Chen et al. (2013). Our problem
with all these models is that they do not include other predictors and the residual errors are large
(see Figure 1), hence the causal estimate based on regression discontinuity is highly sensitive to the
assumption that the other factors (represented by a combination of the nonlinearity and the error
term in the regression model) are uncorrelated with the discontinuity.
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Figure 3: Graph from Green et al. (2009) showing a missing-data construction used to study the
performance of regression discontinuity estimates: “The red circles depict average voting rates
among observed voters, grouped by year of age, which has been rescaled so that zero (age 55) is the
point of discontinuity. The blue circles depict average voting rates among counterfactual voters [who
were artificially removed from the dataset]. The red circles to the left of the age cutoff (where age
equals 0) represent the treatment group, which received the experimental mailings. The red circles
to the right of the cutoff represent the control group, which received no experimental mailings. The
size of the circles is proportional to the number of observations in each age group.”

the model that distinguish the circles in the graph. A multilevel model might be a good idea;
of course that would increase standard errors in its own way. Or one could try some less model-
based approach such as the robust regression discontinuity method of Calonico, Cattaneo, and
Titiunik (2014). We prefer modeling because, for us, the model-building step meshes with the goal
of increasing substantive understanding. But we recognize that different philosophies can converge
to similar results. In any case, we would like to abandon that approach of estimating high-degree
polynomials.

3. Reanalysis of regression discontinuity models fit to data from a voter mobilization
experiment

The above example illustrates a particular example where the fitted high-degree polynomial gives a
highly unstable adjustment which has the effect of adding noise to the discontinuity coefficient. As
Green et al. (2009) put it, the standard error reported when you run a discontinuity regression does
not account for systematic error in the fitted model (in this case, the high-degree polynomial) and
thus represents a lower bound on uncertainty. Similarly, Gelman and Imbens (2014) demonstrate
that RD inferences can have much worse than nominal coverage (for example, p-values of 0.05
occurring more than 10% of the time) in the presence of systematic error in the fitted curve.

When a single model is being fit to data, it is not always so apparent how noisy the estimate
can be. We demonstrate the problem here in an example of a randomized experiment in which an
RD structure is artificially created by removing data. We are elaborating on an example of Green
et al. (2009), who take data from a randomized experiment of Gerber, Green, and Larimer (2008)
conducted on potential voters and create an artificial discontinuity, removing all the treated people
in the sample who were below the age of 55 and removing all the controls who were 55 and older.
Green et al. (2009) then had the full data, the randomized experiment which they could use to
estimate the treatment effect, and a partial dataset with a discontinuity, for which they could use
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Figure 4: Regression discontinuity estimates of the effects of the voter mobilization treatment, based
on replicating the procedure of Green et al. (2009) separately, for each age cutoff from 40 to 70.
At each age, the graphs show the estimate and 95% confidence interval from the fitted regression,
controlling for a third or fifth-order polynomial. The red bar shows the result at the age cutoff of
55, which was used by Green et al. as illustrated in Figure 3, and the horizontal dotted line at
0.097 corresponds to the estimated average treatment effect from the full data from the randomized
experiment. The RD estimates are noisy, especially when controlling for the fifth-degree polynomial.

RD methods to estimate the effect at age 55. Figure 3 shows the observed (in red) and missing (in
blue) data for this analysis.

The broken line in Figure 3 shows a fitted fourth-degree polynomial with a discontinuity at age
55; in this case, the fitted curve looks reasonable (if perhaps a bit too sharply sloped just on the
right-hand side of the breakpoint) and the estimated jump at the discontinuity yields a treatment
effect estimate that is consistent with that obtained from the full data from the randomized study
(as can be seen via comparison of regression coefficients, or more informally by noticing the average
gap between the red and blue dots throughout the age ranges).

But the reasonable performance of this high-degree polynomial estimate depends a lot on the
breakpoint that is chosen, as we can see by repeating the discontinuity analysis at a range of
potential cutpoints: each age from 40 through 70.

Figure 4 shows the regression discontinuity estimates as a function of the age discontinuity,
along with 95% error bounds from the estimated regressions. These graphs do not display fitted
curves; rather, each point on each graph shows the coefficient estimate and uncertainty from a
single regression discontinuity model.

The RD analysis is only intended to recover a local treatment effect and so, to be fair, we
should compare not tot an average treatment effect but rather to a local average treatment effect,
as estimated from the full data from the randomized experiment. Such an analysis yields an average
treatment effect that is stable at around 0.0965 (that is, a nearly 10 percentage point increase in
voter turnout) for most of the range of ages, with some evidence that the effect rises to around 0.15
above age 65. So the increase in the discontinuity estimates at the high end of the age range are
plausible. That said, the RD estimates are very noisy and in several places highly misleading (for
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example, at ages 43, 47, and 67). The estimate at age 55 happens to look good but this seems to
be largely a matter of luck. And, for many age cutoffs, the corresponding fitted models are noisy
and implausible with dramatic up and down swings, chasing the data in a manner reminiscent of
Figure 1.

The point here is not that RD with high-order polynomials always gives bad answers but rather
that, without some constraint on the smoothness of the fitted functions, we do not recommend
simply fitting such a model and running with it, as the fitted model can fail terribly, dragging the
estimated discontinuity coefficient along with it.

4. Discussion

4.1. Publication of speculative findings on particulate pollution and life expectancy

There might well be good reasons for expecting an effect of even more than 5 years of life expectancy
from this policy—we are not experts on particulate pollution and health—but, from the above data
alone, the claim of 5 years looks artifactual. And, there also seems to be an implication that, in
those northern areas with life expectancy around 80, that people would be living to 85 in the
absence of the policy (see Sumner, 2013, for a further discussion of this point). But an average
lifespan as high as 85 seems like a strong conclusion to come to, if it’s being driven by this data
analysis alone. Which is what Chen et al. seem to be doing, in that they’re just taking their
estimated regression coefficient and considering it as a treatment effect.

We are not saying that particulate matter doesn’t kill, or that this topic shouldn’t be studied,
or that these findings shouldn’t be published in a high-profile journal. The accompanying article by
Pope and Dockery (2013) considers why Chen et al.’s conclusions might be scientifically plausible.

Rather, what we are suggesting is a two-step: the authors retreat from their strongly model-
based claim of statistical significance, and the journal accept that non-statistically-significant find-
ings on important topics are still worth publishing.

The underlying relationship in Figure 1 is not anything close to smooth; the locations differ
in their mortality rates in important ways not related to latitude. This in turn points to a cru-
cial problem with the RD analysis: the “natural experiment” can in fact be strongly correlated
with important unobserved (and non-random) city-level predictors. And thus, absent a plausible
underlying relationship of y on x, RD shares all the difficulties of any observational study in that
inferences for the causal coefficient of interest are strongly sensitive to the assumed model. Condi-
tional on having an assignment variable that is strongly predictive of the outcome, we would like
to see something monotonic and with a clear substantive justification.

4.2. Plausibility of a regression discontinuity estimate in the context of the model

At a more technical level, we understand the appeal of controlling for high-order polynomials
of the assignment variable, following the general principle that it is safest to control for potential
confounders. The usual story is that including one more background variable in the regression model
reduces bias with the only cost being a possible increase in variance. Researchers are generally more
concerned about bias than variance (especially in a setting such as the one discussed here where
estimates are more than two standard errors from zero; see Figure 2), hence it can seem like the
conservative choice to control for higher-order polynomials, to reduce whatever bias might arise
from curvature in the response function near the discontinuity point.

This reasoning in terms of bias, however, does not always work. And, more to the point,
problems can be apparent in particular cases. Again, return to Figure 1, which reveals how much of
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the estimated discontinuity arises from the steep gradient estimated in life expectancy with latitude
near the discontinuity. It would seem to be difficult to understand the purported discontinuity
without understanding the gradient (and understanding why that gradient is so strong only in a
zone near the boundary).

In many other regression discontinuity studies, the underlying predictive effect of the assignment
variable is more clear. For example, in the Lee (2008) study of incumbent party and elections, it
makes perfect sense that there will be an approximately linear relation between Democratic or
Republican shares in one election and the next; and in the Berger and Pope (2011) study of
motivation in basketball, the probability of winning the game is unsurprisingly strongly, smoothly,
and monotonically predicted by the score differential at halftime. Also in both these cases, the fit
from a cubic polynomial is not far from a straight line on the original or logistic scale. Thus, the
higher-order polynomial has the effect of slightly modifying and improving the fit of the natural
linear model. In contrast, the scale of both the curve and the discontinuity in Figure 1 lack face
validity and raise the possibility of large effects, not accounted for in the model, that happen to
have strong statistical dependence with the assignment variable.

In criticizing the use of high-degree polynomials in RD adjustments, we are not recommending
global linear adjustments as an alternative. In some settings a linear relationship can make sense
(for example in data with a simple before-after structure), but in general our concerns about
systematic error will not disappear with the use of a simpler form. What we are warning against
is the appealing but misguided view that users can correct for arbitrary dependence on the forcing
variable by simply including several polynomial terms in a regression. We recommend that any
RD analysis include a plot such as Figure 1 showing data and fitted model, and that users be wary
of any resulting inferences based on fits that don’t make substantive sense. Our message is also
consistent with that of Green et al. (2009), who recommend comparing observational studies to
controlled experiments where possible.

4.3. Skepticism without nihilism

The claims of Chen et al. regarding air pollution and life expectancy are somewhat supported by
data but far from proven. As noted above, we believe that if the results in question are worth
publishing, then they would be worth publishing even if they were not statistically significant at
the 5% level. The current rules of publication seem to us to be simultaneously too loose (in the
sense of accepting the highly questionable analysis indicated in Figure 1) and too restrictive (in
essentially demanding statistical significance, obtained some way or another, as a condition for
acceptance).

One might reply that the scientific literature is self-correcting and so we should not worry so
much about imperfect or erroneous methods; shaky findings are unlikely to show up on replication.
Unfortunately, things do not always work out so well; once researchers know what to expect,
they can continue finding it, given all the degrees of freedom available in data processing and
analysis (Simmons, Nelson, and Simonsohn, 2011, Gelman and Loken, 2014). As we have written
earlier (Gelman, 2013) in the context of a different set of controversial claims, the systematic
publication of statistically significant overestimates can lead to “a boom-and-bust cycle of hype
and disappointment or, worse, an explaining-away of failed replications if too much trust is placed
in the original finding.”

And, in the meantime, speculations are presented as fact. For example, the China air pollution
study was featured in a New York Times article (Wong, 2013) that referred unquestioningly to
“the 5.5-year drop in life expectancy in the north,” as well as in a New Yorker article by a Pulitzer
prizewinning reporter (Johnson, 2013) who simply wrote that a study “noted that pollution from
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coal reduces average life expectancy in northern China by five and a half years,” with no indication
that the “five and a half years” number was just a point estimate, even setting aside questions
about the validity of that estimate.

We need a way of handling such claims that falls between acceptance and dismissal. And we
also are glad that Chen et al. produced Figure 1, which made the problems with their study so
clear. We would not want criticisms such as ours to serve as a disincentive for authors to display
the fit of their models to data. Better for problems to be out in the open than swept under the rug.
What the authors did right was to be transparent about their model choices and the implications
and then create a plot that made this easy for the reader to digest. But there is an inherent problem
with incentives in publication and publicity of research such that the desire to achieve statistically
significant results can lead to the acceptance of modeling choices that are supported by neither
theory nor data.

Respiration is important. Increasing lifespan is important. There’s lots of evidence that air
pollution is bad for you. Policies matter. Environmental policies and environmental outcomes can
and should be studied by quantitative researchers. Data are never perfect but we still need to
move forward. Subject-matter researchers spend decades of their life establishing subject-matter
expertise, and they don’t always have full statistical expertise. That is fine. There is a division
of labor. As researchers in statistics and political science, we don’t have much subject-matter
knowledge about environmental epidemiology, even though we have published papers in the area.
Regression discontinuity is a great idea. Causal inference from observational data is difficult but
still needs to be done. There’s often no easy way to control for background variables in a quasi-
experiment. These researchers did the best they could. The sign of their conclusions is consistent
with much of the literature and their paper was accepted in a leading scientific journal. Even if
their work is imperfect it should not be dismissed. We focus on a statistical concern with this
paper because statistics is what we do. We suspect that an improved analysis of these data would
yield a lower point estimate and a higher level of uncertainty, leading to 95% intervals that contain
zero. This would not mean that the true effect is zero, it just means there is a high level of
uncertainty in the effect given an analysis based only on the data at hand. We are skeptical about
an effect of 5 years of life but we could be wrong. We think it would be fine for the journal to
publish an article just like this one, but without the global cubic polynomial and with a smaller
and non-statistically-significant estimate of the effect.

We have the impression that research journals have an implicit rule that under normal cir-
cumstances they will publish this sort of quantitative empirical paper only if it has statistically
significant results. That’s a discontinuity right there, and researchers in various fields (for example,
Button et al., 2013) have found evidence that it introduces endogeneity in the selection variable.
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