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Abstract

We propose a new prior distribution for classical (non-hierarchical) logistic regres-
sion models, constructed by first scaling all nonbinary variables to have mean 0 and
standard deviation 0.5, and then placing independent Student-t prior distributions on
the coefficients. As a default choice, we recommend the Cauchy distribution with center
0 and scale 2.5, which in the simplest setting is a longer-tailed version of the distribu-
tion attained by assuming one-half additional success and one-half additional failure
in a logistic regression. We implement a procedure to fit generalized linear models in
R with this prior distribution by incorporating an approximate EM algorithm into the
usual iteratively weighted least squares algorithm. We illustrate with several examples,
including a series of logistic regressions predicting voting preferences and an imputation
model for a public health dataset.

We recommend this default prior distribution for routine applied use. It has the
advantage of always giving answers, even when there is complete separation in logistic
regression (a common problem, even when the sample size is large and the number
of predictors is small) and also automatically applying more shrinkage to higher-order
interactions. This can be useful in routine data analysis as well as in automated proce-
dures such as chained equations for missing-data imputation.

Keywords: Bayesian inference, generalized linear models, least squares, linear re-
gression, logistic regression, noninformative prior distribution

1 Introduction

Nonidentifiability is a common problem in logistic regression. In addition to the problem of

collinearity, familiar from linear regression, discrete-data regression can also become unsta-

ble from separation, which arises when a linear combination of the predictors is perfectly
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predictive of the outcome (Albert and Anderson, 1984, Lesaffre and Albert, 1989). Separa-

tion is surprisingly common in applied logistic regression, especially with binary predictors,

and, as noted by Zorn (2005), is often handled inappropriately. For example, a common

“solution” to separation is to remove predictors until the resulting model is identifiable,

but, as Zorn (2005) points out, this typically results in removing the strongest predictors

from the model.

An alternative approach to obtaining stable logistic regression coefficients, recommended

by is to use Bayesian prior distributions, as recommended by . . . is to use Bayesian

inference. Various prior distributions have been suggested for this purpose, most notably

a Jeffreys prior distribution (Firth, 1993), but these do not supply enough information to

ensure stable estimation. Here we propose a new, proper prior distribution that is still

vague enough to be used as a default in routine applied work.

2 The model

A challenge in setting up any default prior distribution is getting the scale right: for example,

suppose we are predicting vote preference given age (in years). We would not want the same

prior distribution if the age scale were shifted to months. But discrete predictors have their

own natural scale (most notably, a change of 1 in a binary predictor) that we would like to

respect.

On one hand, scale-free prior distributions such as Jeffreys’ do not include enough prior

information; on the other, what prior information can be assumed for a generic model? Our

key idea is that actual effects tend to fall within a limited range. For logistic regression, a

change of 5 moves a probability from 0.01 to 0.5, or from 0.5 to 0.99. We rarely encounter

situations where a shift in input x corresponds to the probability of outcome y changing from

0.01 to 0.99, hence we are willing to assign a prior distribution that assigns low probabilities

to changes of 10 on the logistic scale.

The model proceeds in two steps. We perform a standardization (Gelman, 2006):

• Binary input variables are shifted to have a mean of 0 and to differ by 1 in their lower

and upper conditions. (For example, if a population is 10% African-American and

90% other, we would define the centered “African-American” variable to take on the

values 0.9 and −0.1.)

• Other inputs are shifted to have a mean of 0 and scaled to have a standard deviation

of 0.5. This scaling puts continuous variables on the same scale as symmetric binary
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Figure 1: (solid line) Cauchy density function with scale 2.5, (dashed line) t7 density function
with scale 2.5, (dotted line) likelihood for θ corresponding to a single binomial trial of
probability logit−1(θ) with one-half success and one-half failure. All these curves favor
values below 5 in absolute value; we choose the Cauchy as our default model because it
allows the occasional probability of larger values.

inputs (which, taking on the values ±0.5, have standard deviation 0.5).

Following Gelman and Pardoe (2007), we distinguish between regression inputs and predic-

tors. For example, in a regression on age, sex, and their interaction, there are four predictors

(the constant term, age, sex, and age × sex), but just two inputs: age and sex. It is the

input variables, not the predictors, that are standardized.

The second step of the model is to define prior distributions for the coefficients of

the predictors. We use independent Student-t prior distributions with mean 0, degrees-of-

freedom parameter ν, and scale s, with ν and s chosen to provide minimal prior information

to constrain the coefficients to lie in a reasonable range. One way to pick a default value of

ν and s is to consider the baseline case of one-half of a success and one-half of a failure for

a single binomial trial with probability p = logit−1(θ)—that is, a logistic regression with

only a constant term. The corresponding likelihood is eθ/2/(1 + eθ), which is very close

to a t density function with 7 degrees of freedom and scale 2.5. We will choose a slightly

more conservative choice, the Cauchy, or t1, distribution, again with a scale of 2.5. Figure

1 shows the three density functions: they all give preference to values less than 5, with the

Cauchy allowing the occasional possibility of very large values (a point to which we return

in Section 5).

We assign independent Cauchy prior distributions with center 0 and scale 2.5 to each

of the coefficients in the logistic regression except the constant term. When combined with

the standardization, this implies that the absolute difference in logit probability should be
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less then 5, when moving from one standard deviation below the mean, to one standard

deviation above the mean, in any input variable.

If we were to apply this prior distribution to the constant term as well, we would be

stating that the success probability is probably between 1% and 99% for units that are

average in all the inputs. Depending on the context (for example, epidemiologic modeling

of rare conditions, as in Greenland, 2001), this might not make sense, so as a default we

apply a weaker prior distribution—a Cauchy with center 0 and scale 10, which implies that

we expect the success probability for an average case to be between 10−9 and 1 − 10−9.

An appealing byproduct of applying the model to rescaled predictors is that it auto-

matically implies more stringent restrictions on interactions. For example, consider three

symmetric binary inputs, x1, x2, x3. From the rescaling, each will take on the values ±1/2.

Then any two-way interaction will take on the values ±1/4, and the three-way interaction

can be ±1/8. But all these coefficients have the same default prior distribution, so the total

contribution of the three-way interaction (for example) is 1/4 that of the main effect. (That

is, going from the low value to the high value in any given three-way interaction is, in the

model, unlikely to change the logit probability by more than 5 · (1/8 − (−1/8)) = 5/4 on

the logit scale.)

3 Computation

In principle, logistic regression with our prior distribution can be computed using the

Metropolis algorithm, as is now standard with Bayesian models (see, for example, Car-

lin and Louis, 2001, and Gelman et al., 2003). In practice, however, it is desirable to have

a quick calculation that returns a point estimate of the regression coefficients and standard

errors. Such an approximate calculation fits in better with routine statistical practice, and,

in addition, recognizes the approximate nature of the model itself.

We consider three computational settings:

1. Classical (non-hierarchical) logistic regression, using our default prior distribution in

place of the usual flat prior distribution on the coefficients.

2. Multilevel (hierarchical) modeling, in which some the default prior distribution is ap-

plied only to the subset of the coefficients that are not otherwise modeled (sometimes

called the “fixed effects”).

3. Chained imputation, in which each variable with missing data is modeled conditional

on the other variables with a regression equation, and these models are fit and random
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imputations inserted iteratively (Van Buuren and Oudshoom, 2000, Raghunathan,

Van Hoewyk, and Solenberger, 2001).

In any of these cases, our default prior distribution has the purpose of stabilizing (regular-

izing) the estimates of otherwise unmodeled parameters. In the first scenario, we typically

only want point estimates and standard errors (unless the sample size is so small that the

normal approximation to the posterior distribution is inadequate). In the second scenario,

it makes sense to embed the computation within the full Markov chain simulation. In the

third scenario of missing-data imputation, we would like the flexibility of quick estimates for

simple problems with the potential for Markov chain simulation as necessary. Also, because

of the automatic way in which the component models are fit in a chained imputation, we

would like a computationally stable algorithm that returns reasonable answers.

Incorporating the prior distribution into classical logistic regression com-

putations

In the calculation of point estimates and standard errors, the usual logistic regression al-

gorithm proceeds by approximately linearizing the derivative of the log-likelihood, solving

using weighted least squares, and then iterating this process, each step evaluating the deriva-

tives at the latest estimate of β (see, for example, McCullagh and Nelder, 1989). A normal

prior distribution for β can be effortlessly included in this algorithm by simply altering the

least-squares step, augmenting the approximate likelihood with the information from the

prior distribution.

With a t prior distribution, we can program a similar procedure, using the βk ∼ N(0, σ2

k)

formulation and averaging over the σk’s at each step, treating them as missing data and

performing one step of the EM algorithm. We initialize the algorithm by setting each σk

to the value s (the scale of the prior distribution). This allows us to perform a step of

the logistic regression algorithm and obtain an (approximate) estimate for each βk; call

these β̂k. Then at each step of the algorithm, the vector β is updated by maximizing the

expected value of the (approximate) log-posterior density, which is simply the approximate

log-likelihood (as computed using the standard generalized linear model computation), plus

a sum of terms of the form, − 1

2σ2

k

β2

k:

• E-step: To average over the σk’s in the EM algorithm, we replace 1/σ2

k in this ex-

pression by E(1/σ2

k), with the expectation evaluated conditional on the most recent

iteration of β. From the χ2 distribution, we get E(1/σ2

k) = (ν + 1)/(νs2 + β̂2

k).
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• Approximate M-step: We simply augment the data matrix by including a pseudo-data

point for each coefficient k with mean 0 and variance (νs2 + β2

k)/(ν − 1). Performing

least-squares on the augmented data matrix yields a new estimated vector of coeffi-

cients, β̂, which we can then use for the next E and M step.

We have implemented these computations by altering the glm function in R, creating

a new function, bayesglm, which finds the posterior mode using the above iteration. The

bayesglm function allows the user to specify independent prior distributions for the coef-

ficients in the t family, by default using the Cauchy distribution with center 0 and scale

2.5. Furthermore, the standardize function in R automatically rescales regression inputs

by centering and dividing by two standard deviations (Gelman, 2006), and so using these

two functions together performs our recommended procedure automatically.

Full Bayesian computation

In the full Bayesian setting, we can throw in the prior distribution and then perform the

Metropolis algorithm as before, simply using the new posterior distribution. Another option

is to expand the t model if a regression coefficient βk has a tν distribution with mean 0

and scale s, we can break this into two distributions: βk ∼ N(0, σ2

k) and σ2

k ∼ Inv-χ2(ν, s2).

The hyperparameters ν and s here are specified in the model, and the Gibbs-Metropolis

steps can be expanded to update the scale parameters σk as well as the coefficients βk.

Depending on how the original logistic regression has been programmed, this expansion can

be computationally efficient.

4 Examples

A series of regressions predicting vote preferences

Regular users of logistic regression know that separation can occur in routine data analyses,

even when the sample size is large and the number of predictors is small. The left column

of Figure 2 shows the estimated coefficients for logistic regression predicting probability

of Republican vote for President given sex, race, and income, as fit separately to data

from the National Election Study from 1952, 1956, . . . , 2000. (We have followed our

general procedure of centering the binary inputs (female and black) to have means of

0, and rescaling the numerical input (income) to have mean 0 and standard deviation 0.5.)

The estimates look fine except in 1964, where there is complete separation, with all black

respondents supporting the Democrats. (Fitting in R actually yields finite estimates, as
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Figure 2: The left column shows the estimated coefficients (±1 standard error) for a logis-
tic regression predicting probability of Republican vote for President given sex, race, and
income, as fit separately to data from the National Election Study from 1952, 1956, . . . ,
2000. (The binary inputs female and black have been centered to have means of zero,
and the numerical variable income (originally on a 1–5 scale) has been centered and then
rescaled by dividing by two standard deviations.)
There is complete separation in 1964 (with none of black respondents supporting the Re-
publican candidate, Barry Goldwater), leading to a coefficient estimate of −∞ that year.
(The particular finite values of the estimate and standard error are determined by the num-
ber of iterations used by glm function in R before stopping, are determined by the number
of iterations used by the glm function in R.)
(other columns) Estimated coefficients (±1 standard error) for the same model fit each year
using independent Cauchy, t7, and normal prior distributions, each with center 0 and scale
2.5. All three prior distributions do a reasonable job at stabilizing the estimates for 1964,
while leaving the estimates for other years essentially unchanged.
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Dose, xi Number of Number of
(log g/ml) animals, ni deaths, yi

−0.86 5 0
−0.30 5 1
−0.05 5 3

0.73 5 5

# from glm:

coef.est coef.se

(Intercept) -0.1 0.7

z.x 10.2 6.4

n = 4, k = 2

residual deviance = 0.1, null deviance = 15.8 (difference = 15.7)

# from bayesglm (Cauchy priors, scale 10 for const and 2.5 for other coef):

coef.est coef.se

(Intercept) -0.2 0.6

z.x 5.4 2.2

n = 4, k = 2

residual deviance = 1.1, null deviance = 15.8 (difference = 14.7)

Figure 3: Data from a bioassay experiment, from Racine et al. (1986), and estimates from
classical maximum likelihood and Bayesian logistic regression with the recommended default
prior distribution. The big change with the prior distribution may seem surprising at first,
but upon reflecion we prefer the smaller estimate, which is based on downweighting the
most extreme possibilities that are allowed by the likelihood.

displayed in the graph, but these are essentially meaningless, being a function of how long

the iterative fitting procedure goes before giving up.)

The other three columns of Figure 2 show the coefficient estimates using our default

Cauchy prior distribution for the coefficients, along with the t7 and normal distributions.

(In all cases, the prior distributions are centered at 0, with scale parameters set to 10 for the

constant term and 2.5 for all other coefficients.) All three prior distributions do a reasonable

job at stabilizing the estimated coefficient for race for 1964, while leaving the estimates for

other years essentially unchanged. This example illustrates how we could use our Bayesian

procedure in routine practice.

A small bioassay experiment

We next consider a small-sample example in which the prior distribution makes a difference

for a coefficient that is already identified. The example comes from Racine et al. (1986), who

used a problem in bioassay to illustrate how Bayesian inference can be applied with small

samples. The top part of Figure 3 presents the data, from twenty animals that were exposed
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to four different doses of a toxin. The bottom parts of Figure 3 show the resulting logistic

regression, as fit first using maximum likelihood and then using our default Cauchy prior

distributions with center 0 and scale 10 (for the constant term) and 2.5 (for the coefficient of

dose). Following our general procedure, we have rescaled dose to have mean 0 and standard

deviation 0.5.

With such a small sample, the prior distribution actually makes a difference, lowering

the coefficient of standardized dose from 10.2±6.4 to 5.4±2.2. This might seem disturbing,

but for the reasons discussed above, we would doubt the effect to be as large as 10 on the

logistic scale, and the analysis shows these data to be consistent with the much smaller

effect size of 5. The large amount of shrinkage simply confirms how weak the information

is that gave the maximum likelihood estimate of 10.

A set of chained regressions for missing-data imputation

Multiple imputation (Rubin, 1987, 1996) is another context in which regressions with many

predictors are fit in an automatic way. Van Buuren and Oudshoom (2000) and Raghu-

nathan, Van Hoewyk, and Solenberger (2001) discuss implementations of the chained equa-

tion approach, in which variables with missingness are imputed one at a time, each condi-

tional on the imputed values of the other variables, in an iterative random process that is

used to construct multiple imputations. In chained equations, logistic regressions or similar

models can be used to impute binary variables, and when the number of variables is large,

separation can arise. Our prior distribution yields stable computations in this setting, as

we illustrate in with example from our current applied research.

Separation occurred in the case of imputing virus loads in a longitudinal sample of HIV-

positive homeless persons (Messeri et al., 2006). The imputation analysis incorporated a

large number of predictors, including demographic and health-related variables, and often

with high rates of missingness. Inside the multiple imputation chained equation procedure,

logistic regression was used to impute the binary variables. It is generally recommended to

include a rich set of predictors when imputing missing values (Rubin, 1996). However, in

this example, including all the dichotomous predictors leads to many instances of separation.

For one example from our analysis, separation arose when estimating, for each HIV-

positive persons in the sample, the probability of attendance in a group therapy called

haart. The top part of Figure 4 shows the model as estimated using the glm function in R

fit to the observed cases in the first year of the dataset: the coefficient for nonhaartcombo.W1

is essentially infinity, and the regression also gives an error message indicating nonidenti-
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# from glm:

coef.est coef.sd coef.est coef.sd

(Intercept) 0.07 1.41 h39b.W1 -0.10 0.03

age.W1 0.02 0.02 pcs.W1 -0.01 0.01

mcs37.W1 -0.01 0.32 nonhaartcombo.W1 -20.99 888.74

unstabl.W1 -0.09 0.37 b05.W1 -0.07 0.12

ethnic.W3 -0.14 0.23 h39b.W2 0.02 0.03

age.W2 0.02 0.02 pcs.W2 -0.01 0.02

mcs37.W2 0.26 0.31 haart.W2 1.80 0.30

nonhaartcombo.W2 1.33 0.44 unstabl.W2 0.27 0.42

b05.W2 0.03 0.12 h39b.W3 0.00 0.03

age.W3 -0.01 0.02 pcs.W3 0.01 0.01

mcs37.W3 -0.04 0.32 haart.W3 0.60 0.31

nonhaartcombo.W3 0.44 0.42 unstabl.W3 -0.92 0.40

b05.W3 -0.11 0.11

n = 508, k = 25

residual deviance = 366.4, null deviance = 700.1 (difference = 333.7)

# from bayesglm (Cauchy priors, scale 10 for const and 2.5 for other coefs):

coef.est coef.sd coef.est coef.sd

(Intercept) -0.84 1.15 h39b.W1 -0.08 0.03

age.W1 0.01 0.02 pcs.W1 -0.01 0.01

mcs37.W1 -0.10 0.31 nonhaartcombo.W1 -6.74 1.22

unstabl.W1 -0.06 0.36 b05.W1 0.02 0.12

ethnic.W3 0.18 0.21 h39b.W2 0.01 0.03

age.W2 0.03 0.02 pcs.W2 -0.02 0.02

mcs37.W2 0.19 0.31 haart.W2 1.50 0.29

nonhaartcombo.W2 0.81 0.42 unstabl.W2 0.29 0.41

b05.W2 0.11 0.12 h39b.W3 -0.01 0.03

age.W3 -0.02 0.02 pcs.W3 0.01 0.01

mcs37.W3 0.05 0.32 haart.W3 1.02 0.29

nonhaartcombo.W3 0.64 0.40 unstabl.W3 -0.52 0.39

b05.W3 -0.15 0.13

Figure 4: A logistic regression fit for missing-data imputation using maximum likelihood
(top) and Bayesian inference with default prior distribution (bottom). The classical fit
resulted in an error message indicating separation; in constrast, the Bayes fit (using inde-
pendent Cauchy prior distributions with mean 0 and standard deviation 10 for the intercept
and 2.5 for the other coefficients) produced stable estimates. We would not usually sum-
marize results using this sort of table; however this gives a sense of how the fitted models
look on the computer console.
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fiability. The bottom part of Figure 4 shows the fit using our recommended Bayesian

procedure (this time, for simplicity, not recentering and rescaling the inputs, most of which

are actually binary).

In the chained imputation procedure, the classical glm fits were nonidentifiable at many

places, none of which presented any problem when we switched to bayesglm. We also

tried the brlr function in R, which implements the Jeffreys prior distribution of Firth

(1993). Unfortunately, we still encountered problems in achieving convergence and obtaining

reasonable answers, several times obtaining an error message indicating nonconvergence of

the optimization algorithm. We suspect this problem arises because brlr uses a geneneral-

purpose optimization algorithm that, when fitting regression models, is less stable than

iteratively weighted least squares.

5 Data from a large number of logistic regressions

In the spirit of Stigler (1977), we wanted to see how large are the logistic regression co-

efficients in some general population, to get a rough sense of what would be a reasonable

default prior distribution. One way to do this is to fit many logistic regressions to available

datasets and estimate the underlying distribution of coefficients.

Figure 5a shows the result of fitting separate logistic regressions to the hundreds of

datasets from the ** archive; each of these had typically dozens of binary predictors, yielding

a total of xxxx estimated coefficients. (We excluded the intercepts from this analysis.) The

distribution is sharply peaked about zero but with long tails. However, these are raw

estimates. We can get a better sense of the distribution by shrinking these toward a model

with hyperparameters estimated from the data (that is, empirical Bayes). For simplicity, we

do this here by implementing one step of a Gibbs sampler . . . [Aleks will supply more details

here]. The result appears in Figure 5b. We are unsurprised to see that the vast majority of

the coefficients are below 5 in absolute value. This suggests that our Cauchy distribution

with scale 2.5 may in fact be overly conservative, relative to the possible logistic regression

coefficients that might be encountered in real data. Given the current default (maximum

likelihood) has no shrinkage at all, however, it seems to make sense to be conservative in

our prior distribution.
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Distribution of betas across datasets with a flat prior (+zeros)
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Figure 5: Distribution of thousands of estimated logistic regression coefficients as fitted
to hundreds of examples, each with dozens of binary predictors. (a) Histogram of raw
estimates, (b) Histogram of random posterior draws obtained by assuming an underlying
Cauchy distribution of parameter values and estimating its scale using a simple hierarchical
Bayes compuation. The two graphs are on different scales. Data come from the ** archive.
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6 Discussion

We recommend using, as a default prior model, independent Cauchy distributions on all

logistic regression coefficients, each centered at 0 and with scale parameter 10 for the con-

stant term and 2.5 for all other coefficients. Before fitting this model, we center each binary

input to have mean 0 and rescale each numeric input to have mean 0 and standard devi-

ation 0.5. When applying this procedure to classical logistic regression, we fit the model

using an adaptation of the standard iteratively weighted least squares computation, using

the posterior mode as a point estimate and the curvature of the log-posterior density to

get standard errors. More generally, the prior distribution can be used as part of a fully

Bayesian computation in more complex settings such as hierarchical models.

Related work

Our key idea is to use minimal prior knowledge, specifically that a typical change in an

input variable would be unlikely to correspond to a change as large as 10 on the logistic

scale (which would move the probability from 0.01 to 0.99). This is related to the method

of Bedrick, Christensen, and Johnson (1996) of setting a prior distribution by eliciting the

possible distribution of outcomes given different combinations of regression inputs, and

the method of Witte, Greenland, and Kim (1998) and Greenland (2001) of assigning prior

distributions by characterizing expected effects in weakly informative ranges (“probably

near null,” “probably moderately positive,” and so on). Our method differs from these

related approaches in being more of a generic prior constraint rather than information

specific to a particular analysis. As such, we would expect our prior distribution to be

more appropriate for automatic use, with these other methods suggesting ways to add more

targeted prior information when necessary. One approach for going further, discussed by

MacLehose et al. (2006) and Dunson, Herring, and Engel (2006), is to use mixture prior

distributions for logistic regressions with large numbers of predictors. These models use

batching in the parameters, or attempt to discover such batching, in order to identify more

important predictors and shrink others.

This paper has focused on logistic regression, but the same idea could be used for other

generalized linear models. For Poisson regression and other models with the logarithmic

link, again, we would not expect effects larger than 10 on the logarithmic scale, and so

the prior distributions given here would seem like a reasonable default choice. For linear

regression, the scale of the outcome is arbitrary, so we would preprocess by rescaling the
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outcome variable to have mean 0 and standard deviation 0.5 before applying the default

prior distributions.

In the other direction, our approach (which, in the simplest logistic regression that

includes only a constant term, is close to adding one-half success and one-half failure; see

Figure 1) can be seen as a generalization of the work of Agresti and Coull (1988) on using

Bayesian techniques to get point estimates and confidence intervals with good small-sample

frequency properties. As we have noted earlier, similar penalized likelihood methods using

the Jeffreys prior have been proposed by Firth (1993), Heinze and Schemper (2003), and

Zorn (2005); Heinze (2006) evaluates the frequency properties of estimates and tests using

method. Our approach is similar but is parameterized in terms of the coefficients and thus

allows us to make use of prior knowledge on that scale. In simple cases the two methods

can give similar results (for example, identical to the first decimal place in the example in

Figure 3).

Concerns

A theoretical concern is that our prior distribution is improper: being defined on centered

and scaled input variables, the model implicitly depends on the data. As more data arrive,

the linear transformations used in the centering and scaling will change, thus changing the

implied prior distribution as defined on the original scale of the data. A natural extension

here would be to formally make the procedure hierarchical, for example defining the k-

th input variable Xik as having a population mean µk and standard deviation σk, then

defining the prior distributions for the corresponding predictors in terms of scaled inputs

of the form Zik = (Xik − µk)/(2σk). We did not go this route, however, because modeling

all the input variables corresponds to a potentially immense effort which is contrary to the

spirit of this method, which is to be a quick automatic solution. In practice, we do not see

the impropriety of our prior distribution as a major concern, although we imagine it could

cause difficulties when sample sizes are very small.

The situation of modeling the coefficient of a scaled variable is analogous to parame-

terizing a simple regression through the correlation, which depends on the distribution of

x as well as the regression of y on x. Changing the values of x can change the correlation,

and thus the implicit prior distribution, even though the regression is not changing at all

(assuming an underlying linear relationship). That said, this is the cost of having an infor-

mative prior distribution: some scale must be used, and the scale of the data seems like a

reasonable default choice.
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Finally, one might argue that the Bayesian procedure, by always giving an estimate,

obscures nonidentifiability and could lead the user into a false sense of security. To this

objection we would reply (following Zorn, 2005): first, one is always free to also fit using

maximum likelihood, and second, separation corresponds to information in the data, which

is ignored if the offending predictor is removed and awkward to handle if it is included with

an infinite coefficient (see, for example, the estimates for 1964 in the first column of Figure

2). Given that we do not expect to see effects as large as 10 on the logistic scale, it is

appropriate to use this information.
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