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Abstract

A substantial school in the philosophy of science identifies Bayesian inference with
inductive inference and even rationality as such, and seems to be strengthened by the
rise and practical success of Bayesian statistics. We argue that the most successful
forms of Bayesian statistics do not actually support that particular philosophy but
rather accord much better with sophisticated forms of hypothetico-deductivism. We
examine the actual role played by prior distributions in Bayesian models, and the crucial
aspects of model checking and model revision, which fall outside the scope of Bayesian
confirmation theory. We draw on the literature on the consistency of Bayesian updating
and also on our experience of applied work in social science.

Clarity about these matters should benefit not just philosophy of science, but also
statistical practice. At best, the inductivist view has encouraged researchers to fit and
compare models without checking them; at worst, theorists have actively discouraged
practitioners from performing model checking because it does not fit into their frame-
work.

1 The usual story—which we don’t like

In so far as I have a coherent philosophy of statistics, I hope it is “robust” enough
to cope in principle with the whole of statistics, and sufficiently undogmatic not
to imply that all those who may think rather differently from me are necessarily
stupid. If at times I do seem dogmatic, it is because it is convenient to give my
own views as unequivocally as possible. (Bartlett, 1967, p. 458)

Schools of statistical inference are sometimes linked to approaches to the philosophy
of science. “Classical” statistics—as exemplified by Fisher’s p-values, Neyman-Pearson
hypothesis tests, and Neyman’s confidence intervals—is associated with the hypothetico-
deductive and falsificationist view of science. Scientists devise hypotheses, deduce implica-
tions for observations from them, and test those implications. Scientific hypotheses can be
rejected (that is, falsified), but never really established or accepted in the same way. Mayo
(1996) presents the leading contemporary statement of this view.
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In contrast, Bayesian statistics or “inverse probability”—starting with a prior distribu-
tion, getting data, and moving to the posterior distribution—is associated with an inductive
approach of learning about the general from particulars. Rather than testing and attempted
falsification, learning proceeds more smoothly: an accretion of evidence is summarized by a
posterior distribution, and scientific process is associated with the rise and fall in the pos-
terior probabilities of various models; see Figure 1 for a schematic illustration. In this view,
the expression p(θ|y) says it all, and the central goal of Bayesian inference is computing
the posterior probabilities of hypotheses. Anything not contained in the posterior distri-
bution p(θ|y) is simply irrelevant, and it would be irrational (or incoherent) to attempt
falsification, unless that somehow shows up in the posterior. The goal is to learn about
general laws, as expressed in the probability that one model or another is correct. This
view, strongly influenced by Savage (1954), is widespread and influential in the philosophy
of science (especially in the form of Bayesian confirmation theory; see Howson and Urbach
1989; Earman 1992) and among Bayesian statisticians (Bernardo and Smith, 1994). Many
people see support for this view in the rising use of Bayesian methods in applied statistical
work over the last few decades.1

We think most of this received view of Bayesian inference is wrong.2 Bayesian methods
are no more inductive than any other mode of statistical inference. Bayesian data analysis
is much better understood from a hypothetico-deductive perspective.3 Implicit in the best
Bayesian practice is a stance that has much in common with the error-statistical approach of
Mayo (1996), despite the latter’s frequentist orientation. Indeed, crucial parts of Bayesian
data analysis, such as model checking, can be understood as “error probes” in Mayo’s sense.

We proceed by a combination of examining concrete cases of Bayesian data analysis in
1Consider the current (9 June 2010) state of the Wikipedia article on Bayesian inference, which begins as

follows:

Bayesian inference is statistical inference in which evidence or observations are used to update
or to newly infer the probability that a hypothesis may be true.

It then continues with:

Bayesian inference uses aspects of the scientific method, which involves collecting evidence that
is meant to be consistent or inconsistent with a given hypothesis. As evidence accumulates,
the degree of belief in a hypothesis ought to change. With enough evidence, it should become
very high or very low. . . . Bayesian inference uses a numerical estimate of the degree of belief
in a hypothesis before evidence has been observed and calculates a numerical estimate of
the degree of belief in the hypothesis after evidence has been observed. . . . Bayesian inference
usually relies on degrees of belief, or subjective probabilities, in the induction process and does
not necessarily claim to provide an objective method of induction. Nonetheless, some Bayesian
statisticians believe probabilities can have an objective value and therefore Bayesian inference
can provide an objective method of induction.

These views differ from those of, e.g., Bernardo and Smith (1994) or Howson and Urbach (1989) only in the
omission of technical details.

2We are claiming that most of the standard philosophy of Bayes is wrong, not that most of Bayesian
inference itself is wrong. A statistical method can be useful even if its philosophical justification is in error.
It is precisely because we believe in the importance and utility of Bayesian inference that we are interested
in clarifying its foundations.

3We are not interested in the hypothetico-deductive “confirmation theory” prominent in philosophy of
science from the 1950s through the 1970s, and linked to the name of Hempel (1965). The hypothetico-
deductive account of scientific method to which we appeal is distinct from, and much older than, this
particular sub-branch of confirmation theory.
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Figure 1: Hypothetical picture of idealized Bayesian inference under the conventional in-
ductive philosophy. The posterior probability of different models changes over time with
the expansion of the likelihood as more data are entered into the analysis. Depending on
the context of the problem, the time scale on the x-axis might be hours, years, or decades,
in any case long enough for information to be gathered and analyzed that first knocks out
hypothesis 1 in favor of hypothesis 2, which in turn is dethroned in favor of the current
champion, model 3.

empirical social science research, and theoretical results on the consistency and convergence
of Bayesian updating. Social-scientific data analysis is especially salient for our purposes
because there is general agreement that, in this domain, all models in use are wrong—not
merely falsifiable, but actually false. With enough data—and often only a fairly moderate
amount—any analyst could reject any model now in use to any desired level of confidence.
Model fitting is nonetheless a valuable activity, and indeed the crux of data analysis. To
understand why this is so, we need to examine how models are built, fitted, used, and
checked, and the effects of misspecification on models.

Our perspective is not new; in methods and also in philosophy we follow statisticians
such as Box (1980, 1983, 1990), Good and Crook (1974), Good (1983), Morris (1986), Hill
(1990), and Jaynes (2003). All these writers emphasized the value of model checking and
frequency evaluation as guidelines for Bayesian inference (or, to look at it another way,
the value of Bayesian inference as an approach for obtaining statistical methods with good
frequency peroperties; see Rubin 1984). Despite this literature, and despite the strong
thread of model checking in applied statistics, this philosophy of Box and others remains a
minority view that is much less popular than the idea of Bayes being used to update the
probabilities of different candidate models being true (as can be seen, for example, by the
Wikipedia snippets given in footnote 1).

A puzzle then arises: The evidently successful methods of modeling and model check-
ing (associated with Box, Rubin, and others) seems out of step with the accepted view of
Bayesian inference as inductive reasoning (what we call here “the usual story”)? How can we
understand this disjunction? One possibility (perhaps held by the authors of the Wikipedia
article) is that the inductive-Bayes philosophy is correct and that the model-building ap-
proach of Box et al. can, with care, be interpreted in that way. Another possibility is that
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the approach characterized by Bayesian model checking and continuous model expansion
could be improved by moving to a fully-Bayesian approach centering on the posterior prob-
abilities of competing models. A third possibility, which we advocate, is that Box, Rubin,
et al. are correct and that the usual philosophical story of Bayes as inductive inference is
faulty.

We are interested in philosophy and think it is important for statistical practice—if noth-
ing else, we believe that strictures derived from philosophy can inhibit research progress.4

That said, we are statisticians, not philosophers, and we recognize that our coverage of the
philosophical literature will be incomplete. In this presentation, we focus on the classical
ideas of Popper and Kuhn, partly because of their influence in the general scientific cul-
ture and partly because they represent certain attitudes which we believe are important in
understanding the dynamic process of statistical modeling. We also emphasize the work
of Mayo (1996) and Mayo and Spanos (2006) because of its relevance to our discussion of
model checking. We hope and anticipate that others can expand the links to other modern
strands of philosophy of science such as Giere (1988); Haack (1993); Kitcher (1993); Laudan
(1996) which are relevant to the freewheeling world of practical statistics; our goal here is
to demonstrate a possible Bayesian philosophy that goes beyond the usual inductivism and
can better match Bayesian practice as we know it.

2 The data-analysis cycle

We begin with a very brief reminder of how statistical models are built and used in data
analysis, following Gelman et al. (2003), or, from a frequentist perspective, Guttorp (1995).

The statistician begins with a model that stochastically generates all the data y, whose
joint distribution is specified as a function of a vector of parameters θ from a space Θ
(which may, in the case of some so-called non-parametric models, be infinite dimensional).
This joint distribution is the likelihood function. The stochastic model may involve other,
unmeasured but potentially observable variables ỹ—that is, missing or latent data—and
more-or-less fixed aspects of the data-generating process as covariates. For both Bayesians
and frequentists, the joint distribution of (y, ỹ) depends on θ. Bayesians insist on a full joint
distribution, embracing observables, latent variables, and parameters, so that the likelihood
function becomes a conditional probability density, p(y|θ). In designing the stochastic pro-
cess for (y, ỹ), the goal is to represent the systematic relationships between the variables
and between the variables and the parameters, and as well as to represent the noisy (con-
tingent, accidental, irreproducible) aspects of the data stochastically. Against the desire
for accurate representation one must balance conceptual, mathematical and computational
tractability. Some parameters thus have fairly concrete real-world referents, such as the fa-
mous (in statistics) survey of the rat population of Baltimore (Brown et al., 1955). Others,
however, will reflect the specification as a mathematical object more than the reality be-
ing modeled—t-distributions are sometimes used to model heavy-tailed observational noise,
with the number of degrees of freedom for the t representing the shape of the distribution;
few statisticians would take this as realistically as the number of rats.

4For example, we have more than once encountered Bayesian statisticians who had no interest in assessing
the fit of their models to data because they felt that Bayesian models were by definition subjective, and thus
neither could nor should be tested.
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Bayesian modeling, as mentioned, requires a joint distribution for (y, ỹ, θ), which is
conveniently factored (without loss of generality) into a prior distribution for the parame-
ters, p(θ), and the complete-data likelihood, p(y, ỹ|θ), so that p(y|θ) =

∫
p(y, ỹ|θ)dỹ. The

prior distribution is, as we will see, really part of the model. In practice, the various parts
of the model have functional forms picked by a mix of substantive knowledge, scientific
conjectures, statistical properties, analytical convenience, disciplinary tradition, and com-
putational tractability.

Having completed the specification, the Bayesian analyst calculates the posterior distri-
bution p(θ|y); it is so that this quantity makes sense that the observed y and the parameters
θ must have a joint distribution. The rise of Bayesian methods in applications has rested
on finding new ways of to actually carry through this calculation, even if only approxi-
mately, notably by adopting Markov chain Monte Carlo methods, originally developed in
statistical physics to evaluate high-dimensional integrals (Metropolis et al., 1953; Newman
and Barkema, 1999), to sample from the posterior distribution. The natural counterpart of
this stage for non-Bayesian analyses are various forms of point and interval estimation to
identify the set of values of θ that are consistent with the data y.

According to the view we sketched above, data analysis basically ends with the calcula-
tion of the posterior p(θ|y). At most, this might be elaborated by partitioning Θ into a set
of models or hypotheses, Θ1, ...ΘK , each with a prior probability p(Θk) and its own set of
parameters θk. One would then compute the posterior parameter distribution within each
model, p(θk|y,Θk), and the posterior probabilities of the models,

p(Θk|y) =
p(Θk)p(y|Θk)∑

k′ (p(Θk′)p(y|Θk′))

=
p(Θk)

∫
p(y, θk|Θk)dθk∑

k′ (p(Θk′)
∫
p(y, θk|Θk′)dθk′)

.

These posterior probabilities of hypotheses can be used for Bayesian model selection or
Bayesian model averaging (topics to which we return below). Scientific progress, in this
view, consists of gathering data—perhaps through well-designed experiments, designed to
distinguish among interesting competing scientific hypotheses (cf. Atkinson and Donev,
1992; Paninski, 2005)—and then plotting the p(Θk|y)’s over time and watching the system
learn (as sketched in Figure 1).

In our view, the account of the last paragraph is crucially mistaken. The data-analysis
process—Bayesian or otherwise—does not end with calculating parameter estimates or pos-
terior distribution. Rather, the model can then be checked, by comparing the implications
of the fitted model to the empirical evidence. One asks questions like, Do simulations from
the fitted model resemble the original data? Is the fitted model consistent with other data
not used in the fitting of the model? Do variables that the model says are noise (“error
terms”) in fact display readily-detectable patterns? Discrepancies between the model and
data can be used to learn about the ways in which the model is inadequate for the scientific
purposes at hand, and thus to motivate expansions and changes to the model (§4).
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Figure 2: Based on a model fitted to survey data: states won by John McCain and Barack
Obama among different ethnic and income categories. States colored deep red and deep blue
indicate clear McCain and Obama wins; pink and light blue represent wins by narrower
margins, with a continuous range of shades going to gray for states estimated at exactly
50/50. The estimates shown here represent the culmination of months of effort, in which
we fit increasingly complex models, at each stage checking the fit by comparing to data and
then modifying aspects of the prior distribution and likelihood as appropriate.
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Figure 3: Some of the data and fitted model used to make the maps shown in Figure 2.
Dots are weighted averages from pooled June-November Pew surveys; error bars show ±1
standard error bounds. Curves are estimated using multilevel models and have a standard
error of about 3% at each point. States are ordered in decreasing order of McCain vote
(Alaska, Hawaii, and D.C. excluded). We fit a series of models to these data; only this last
model fit the data well enough that we were satisfied. In working with larger datasets and
studying more complex questions, we encounter increasing opportunities to check model fit
and thus falsify in a way that is helpful for our research goals.
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2.1 Example: Estimating voting patterns in subsets of the population

We demonstrate the hypothetico-deductive Bayesian modeling process with an example
from our recent applied research (Gelman et al., 2010). In recent years, American political
scientists have been increasingly interested in the connections between politics and income
inequality (see, e.g., McCarty et al. 2006). In our own contribution to this literature, we
estimated the attitudes of rich, middle-income, and poor voters in each of the fifty states
(Gelman et al., 2008b). As we described in our article on the topic (Gelman et al., 2008c),
we began by fitting a varying-intercept logistic regression: modeling votes (coded as y = 1
for votes for the Republican presidential candidate or y = 0 for Democratic votes) given
family income (coded in five categories from low to high as x = −2,−1, 0, 1, 2), using a
model of the form Pr (y = 1) = logit−1(as + bx), where s indexes state of residence—the
model is fit to survey responses—and the varying intercepts as correspond to some states
being more Republican-leaning than others. Thus, for example as has a positive value in a
conservative state such as Utah and a negative value in a liberal state such as California.
The coefficient b represents the “slope” of income, and its positive value indicates that,
within any state, richer voters are more likely to vote Republican.

It turned out that this varying-intercept model did not fit our data, as we learned
by making graphs of the average survey response and fitted curves for the different income
categories within each state. We had to expand to a varying-intercept, varying-slope model,
Pr (y = 1) = logit−1(as + bsx), in which the slopes bs varied by state as well. This model
expansion led to a corresponding expansion in our understanding: we learned that the gap
in voting between rich and poor is much greater in poor states such as Mississippi than in
rich states such as Connecticut. Thus, the polarization between rich and poor voters varied
in important ways geographically.

We found this not through any process of Bayesian induction but rather through model
checking. Bayesian inference was crucial, not for computing the posterior probability that
any particular model was true—we never actually did that—but in allowing us to fit rich
enough models in the first place that we could study state-to-state variation, incorporating
in our analysis relatively small states such as Mississippi and Connecticut that did not have
large samples in our survey. (Gelman and Hill 2006 review the hierarchical models that
allow such partial pooling.)

Life continues, though, and so do our statistical struggles. After the 2008 election,
we wanted to make similar plots, but this time we found that even our more complicated
logistic regression model did not fit the data—especially when we wanted to expand our
model to estimate voting patterns for different ethnic groups. Comparison of data to fit
led to further model expansions, leading to our current specification, which uses a varying-
intercept, varying-slope logistic regression as a baseline but allows for nonlinear and even
non-monotonic patterns on top of that. Figure 2 shows some of our inferences in map form,
while Figure 3 shows one of our diagnostics of data and model fit.

The power of Bayesian inference here is deductive: given the data and some model
assumptions, it allows us to make lots of inferences, many of which can be checked and
potentially falsified. For example, look at New York state (in the bottom row of Figure 3):
apparently, voters in the second income category supported John McCain much more than
did voters in neighboring income groups in that state. This pattern is theoretically possible
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but it arouses suspicion. A careful look at the graph reveals that this is a pattern in the
raw data which was moderated but not entirely smoothed away by our model. The natural
next step would be to examine data from other surveys. We may have exhausted what we
can learn from this particular dataset, and Bayesian inference was a key tool in allowing us
to do so.

3 The Bayesian principal-agent problem

Before returning to discussions of induction and falsification, we briefly discuss some findings
relating to Bayesian inference under misspecified models. The key idea is that Bayesian
inference for model selection—statements about the posterior probabilities of candidate
models—does not solve the problem of learning from data about problems with existing
models.

In economics, the “principal-agent problem” refers to the difficulty of designing contracts
or institutions which ensure that one selfish actor, the “agent,” will act in the interests of
another, the “principal,” who cannot monitor and sanction their agent without cost or
error. The problem is one of aligning incentives, so that the agent serves itself by serving
the principal (Eggertsson, 1990). There is, as it were, a Bayesian principal-agent problem as
well. The Bayesian agent is the methodological fiction (now often approximated in software)
of a creature with a prior distribution over a well-defined hypothesis space Θ, a likelihood
function p(y|θ), and conditioning as its sole mechanism of learning and belief revision. The
principal is the actual statistician or scientist.

The Bayesian agent’s ideas are much more precise than the actual scientist’s; in par-
ticular, the Bayesian (in this formulation, with which we disagree) is certain that some θ
is the exact and complete truth, whereas the scientist is not.5 At some point in history,
a statistician may well write down a model which he or she believes contains all the sys-
tematic influences among properly-defined variables for the system of interest, with correct
functional forms and distributions of noise terms. This could happen, but we have never
seen it, and in social science we’ve never seen anything that comes close, either. If nothing
else, our own experience suggests that however many different specifications we think of,
there are always others which had not occurred to us, but cannot be immediately dismissed
a priori, if only because they can be seen as alternative approximations to the ones we
made. Yet the Bayesian agent is required to start with a prior distribution whose support
covers all alternatives that could be considered.6

This is not a small technical problem to be handled by adding a special value of θ, say θ∞

standing for “none of the above”; even if one could calculate p(y|θ∞), the likelihood of the
data under this catch-all hypothesis, this in general would not lead to just a small correction
to the posterior, but rather would have substantial effects (Fitelson and Thomason, 2008).

5In claiming that “the Bayesian” is certain that some θ is the exact and complete truth, we are not
claiming that actual Bayesian scientists or statisticians hold this view. Rather, we are saying that this is
implied by the philosophy we are attacking here. All statisticians, Bayesian and otherwise, recognize that
the philosophical position which ignores this approximation is problematic.

6It is also not at all clear that Savage and other founders of Bayesian decision theory ever thought that
this principle should apply outside of the small worlds of artificially simplified and stylized problems—see
Binmore (2007). But as scientists we care about the real, large world.
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Fundamentally, the Bayesian agent is limited by the fact that its beliefs always remain
within the support of its prior. For the Bayesian agent, the truth must, so to speak, be
always already partially believed before it can become known. This point is less than clear
in the usual treatments of Bayesian convergence, and so worth some attention.

Classical results (Doob, 1949; Schervish, 1995; Lijoi et al., 2007) show that the Bayesian
agent’s posterior distribution will concentrate on the truth with prior probability 1, provided
some regularity conditions are met. Without diving into the measure-theoretic technical-
ities, the conditions amount to (i) the truth is in the support of the prior, and (ii) the
information set is rich enough that some consistent estimator exists. (See the discussion in
Schervish (1995, §7.4.1).) When the truth is not in the support of the prior, the Bayesian
agent still thinks that Doob’s theorem applies and assigns zero prior probability to the set
of data under which it does not converge on the truth.

The convergence behavior of Bayesian updating with a misspecified model can be un-
derstood as follows (Berk, 1966, 1970; Kleijn and van der Vaart, 2006; Shalizi, 2009). If the
data are actually coming from a distribution q, then the Kullback-Leibler divergence rate,
or relative entropy rate, of the parameter value θ is

d(θ) = lim
n→∞

1
n
E
[
log

p(y1, y2, . . . yn|θ)
q(y1, y2, . . . yn)

]
,

with the expectation being taken under q. (For details on when the limit exists, see Gray
1990.) Then, under not-too-onerous regularity conditions, one can show (Shalizi, 2009) that

p(θ|y1, y2, . . . yn) ≈ p(θ) exp {−n(d(θ)− d∗)},

with d∗ being the essential infimum of the divergence rate. More exactly,

− 1
n

log p(θ|y1, y2, . . . yn)→ d(θ)− d∗,

q-almost-surely. Thus the posterior distribution comes to concentrate on the parts of the
prior support which have the lowest values of d(θ) and the highest expected likelihood.7

There is a geometric sense in which these parts of the parameter space are closest approaches
to the truth within the support of the prior (Kass and Vos, 1997), but they may or may
not be close to the truth in the sense of giving accurate values for parameters of scientific
interest. They may not even be the parameter values which give the best predictions
(Grünwald and Langford, 2007; Müller, 2011). In fact, one cannot even guarantee that the
posterior will concentrate on a single value of θ at all; if d(θ) has multiple global minima,
the posterior can alternate between (concentrating around) them forever (Berk, 1966).

To sum up, what Bayesian updating does when the model is false (that is, in reality,
always) is to try to concentrate the posterior on the best attainable approximations to the
distribution of the data, “best” being measured by likelihood. But depending on how the
model is misspecified, and how θ represents the parameters of scientific interest, the impact

7More precisely, regions of Θ where d(θ) > d∗ tend to have exponentially small posterior probability; this
statement covers situations like d(θ) only approaching its essential infimum as ‖θ‖ → ∞, etc. See Shalizi
(2009) for details.
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of misspecification on inferring the latter can range from non-existent to profound.8 Since
we are quite sure our models are wrong, we need to check whether the misspecification
is so bad that inferences regarding the scientific parameters are in trouble. It is by this
non-Bayesian checking of Bayesian models that we solve our principal-agent problem.

4 Model checking

In our view, a key part of Bayesian data analysis is model checking, which is where there
are links to falsificationism. In particular, we emphasize the role of posterior predictive
checks, creating simulations and comparing the simulated and actual data. Again, we are
following the lead of Box (1980), Rubin (1984) and others, also mixing in a bit of Tukey
(1977) in that we generally focus on visual comparisons (Gelman et al., 2003, ch. 6).

Here’s how this works. A Bayesian model gives us a joint distribution for the parameters
θ and the observables y. This implies a marginal distribution for the data,

p(y) =
∫
p(y|θ)p(θ)dθ.

If we have observed data y, the prior distribution p(θ) shifts to the posterior distribution
p(θ|y), and so a different distribution of observables,

p(yrep|y) =
∫
p(yrep|θ)p(θ|y)dθ,

where we use the yrep to indicate hypothetical alternative or future data, a replicated data
set of the same size and shape as the original y, generated under the assumption that the
fitted model, prior and likelihood both, is true. By simulating from the posterior distribution
of yrep, we see what typical realizations of the fitted model are like, and in particular whether
the observed dataset is the kind of thing that the fitted model produces with reasonably
high probability.9

If we summarize the data with a test statistic T (y), we can perform graphical compar-
isons with replicated data. In practice, we recommend graphical comparisons (as illustrated
by our example above), but for continuity with much of the statistical literature, we focus
here on p-values,

Pr (T (yrep) > T (y)|y) ,

which can be approximated to arbitrary accuracy as soon as we can simulate yrep. (This
is a valid posterior probability in the model, and its interpretation is no more problematic
than that of any other probability in a Bayesian model.) In practice, we find graphical

8White (1994) gives examples of econometric models where the influence of mis-specification on the
parameters of interest runs through this whole range, though only considering maximum likelihood and
maximum quasi-likelihood estimation.

9For notational simplicity, we leave out the possibility of generating new values of the hidden variables
ỹ and set aside choices of which parameters to vary and which to hold fixed in the replications; see Gelman
et al. (1996).
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test summaries more illuminating than p-values, but in considering ideas of (probabilistic)
falsification, it can be helpful to think about numerical test statistics.10

Under the usual understanding that T is chosen so large values indicate poor fits, these
p-values work rather like classical ones (Mayo, 1996; Mayo and Cox, 2006)—they in fact are
generalizations of classical p-values, merely replacing point estimates of parameters θ with
averages over the posterior distribution—and their basic logic is one of falsification. A very
low p-value says that it is very improbable, under the model, to get data as extreme along
the T -dimension as the actual y; we are seeing something which would be very improbable
if the model were true. On the other hand a high p-value merely indicates that T (y) is
an aspect of the data which would be unsurprising if the model is true. Whether this is
evidence for the usefulness of the model depends how likely it is to get such a high p-value
when the model is false: the “severity” of the test, in the terminology of Mayo (1996) and
Mayo and Cox (2006).

Put a little more abstractly, the hypothesized model makes certain probabilistic assump-
tions, from which other probabilistic implications follow deductively. Simulation works out
what those implications are, and tests check whether the data conform to them. Extreme
p-values indicate that the data violate regularities implied by the model, or approach doing
so. If these were strict violations of deterministic implications, we could just apply modus
tollens to conclude that the model was wrong; as it is, we nonetheless have evidence and
probabilities. Our view of model checking, then, is firmly in the long hypothetico-deductive
tradition, running from Popper (1934/1959) back through Bernard (1865/1927) and beyond
(Laudan, 1981). A more direct influence on our thinking about these matters is the work of
Jaynes (2003), who illustrated how we may learn the most when we find that our model does
not fit the data—that is, when it is falsified—because then we have found a problem with
our model’s assumptions.11 And the better our probability model encodes our scientific or
substantive assumptions, the more we learn from specific falsification.

In this connection, the prior distribution p(θ) is one of the assumptions of the model
and does not need to represent the statistician’s personal degree of belief in alternative
parameter values. The prior is connected to the data, and so is potentially testable, via the

10There is some controversy in the literature about whether posterior predictive checks have too little
power to be useful statistical tools (Bayarri and Berger, 2000, 2004), how they might be modified to increase
their power (Robins et al., 2000; Fraser and Rousseau, 2008), whether some form of empirical prior predictive
check might not be better (Bayarri and Castellanos, 2007), etc. This is not the place to re-hash this debate
over the interpretation or calculation of various Bayesian tail-area probabilities (Gelman, 2007). Rather, the
salient fact is that all participants in the debate agree on why the tail-area probabilities are relevant: they
make it possible to reject a Bayesian model without recourse to a specific alternative. All participants thus
disagree with the standard inductive view, which reduces inference to the probability that a hypothesis is
true, and are simply trying to find the most convenient and informative way to check Bayesian models.

11A similar point was expressed by the sociologist and social historian Charles Tilly (2004, p. 597), writing
from a very different disciplinary background: “Most social researchers learn more from being wrong than
from being right—provided they then recognize that they were wrong, see why they were wrong, and go
on to improve their arguments. Post hoc interpretation of data minimizes the opportunity to recognize
contradictions between arguments and evidence, while adoption of formalisms increases that opportunity.
Formalisms blindly followed induce blindness. Intelligently adopted, however, they improve vision. Being
obliged to spell out the argument, check its logical implications, and examine whether the evidence conforms
to the argument promotes both visual acuity and intellectual responsibility.”
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posterior predictive distribution of future data yrep:

p(yrep|y) =
∫
p(yrep|θ)p(θ|y)dθ

=
∫
p(yrep|θ) p(y|θ)p(θ)∫

p(y|θ′)p(θ′)dθ′
dθ.

The prior distribution thus has implications for the distribution of replicated data, and so
can be checked using the type of tests we have described and illustrated above.12 When
it makes sense to think of further data coming from the same source, as in certain kinds
of sampling, time-series or longitudinal problems, the prior also has implications for these
new data (through the same formula as above, changing the interpretation of yrep), and so
becomes testable in a second way. There is thus a connection between the model-checking
aspect of Bayesian data analysis and “prequentialism” (Dawid and Vovk, 1999; Grünwald,
2007), but exploring that would take us too far afield.

One advantage of recognizing that the prior distribution is a testable part of a Bayesian
model is that it clarifies the role of the prior in inference, and where it comes from. To
reiterate, it is hard to claim that the prior distributions used in applied work represent
statisticians’ states of knowledge and belief before examining their data, if only because
most statisticians do not believe their models are true, so their prior degree of belief in all
of Θ is not 1 but 0. The prior distribution is more like a regularization device, akin to
the penalization terms added to the sum of squared errors when doing ridge regression and
the lasso (Hastie et al., 2009) or spline smoothing (Wahba, 1990). All such devices exploit
a sensitivity-stability tradeoff: they stabilize estimates and predictions by making fitted
models less sensitive to certain details of the data. Using an informative prior distribution
(even if only weakly informative, as in Gelman et al. (2008a)) makes our estimates less
sensitive to the data than, say, maximum-likelihood estimates would be, which can be a net
gain.

Because we see the prior distribution as a testable part of the Bayesian model, we do
not need to follow Jaynes in trying to devise unique, objectively-correct prior distribution
for each situation—an enterprise with an uninspiring track record (Kass and Wasserman,
1996), even leaving aside doubts about Jaynes’s specific proposal (Seidenfeld, 1979, 1987;
Csiszár, 1995; Uffink, 1995, 1996). To put it even more succinctly, “the model,” for a
Bayesian, is the combination of the prior distribution and the likelihood, each of which
represents some compromise among scientific knowledge, mathematical convenience, and
computational tractability.

This gives us a lot of flexibility in modeling. We do not have to worry about making
our prior distributions match our subjective beliefs, still less about our model containing
all possible truths. Instead we make some assumptions, state them clearly, see what they
imply, and check the implications. This applies just much to the prior distribution as it
does to the parts of the model showing up in the likelihood function.

12Admittedly, the prior only has observable implications in conjunction with the likelihood, but for a
Bayesian the reverse is also true.
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4.1 Testing to reveal problems with a model

We are not interested in falsifying our model for its own sake—among other things, having
built it ourselves, we know all the shortcuts taken in doing so, and can already be morally
certain it is false. With enough data, we can certainly detect departures from the model—
this is why, for example, statistical folklore says that the chi-squared statistic is ultimately
a measure of sample size (cf. Lindsay and Liu 2009). As writers such as Giere (1988, ch. 3)
explain, the hypothesis linking mathematical models to empirical data is not that the data-
generating process is exactly isomorphic to the model, but that the data source resembles
the model closely enough, in the respects which matter to us, that reasoning based on the
model will be reliable. Such reliability does not require complete fidelity to the model.

The goal of model checking, then, is not to demonstrate the foregone conclusion of falsity
as such, but rather to learn how, in particular, this model fails (Gelman, 2003).13 When
we find such particular failures, they tell us how the model must be improved; when severe
tests cannot find them, the inferences we draw about those aspects of the real world from
our fitted model become more credible. In designing a good test for model checking, we are
interested in finding particular errors which, if present, would mess up particular inferences,
and devise a test statistic which is sensitive to this sort of mis-specification. This process
of examining, and ruling out, possible errors or mis-specifications is of course very much in
line with the “eliminative induction” advocated by Kitcher (1993, ch. 7)14

All models will have errors of approximation. Statistical models, however, typically
assert that their errors of approximation will be unsystematic and patternless—“noise”
(Spanos, 2007). Testing this can be valuable in revising the model. In looking at the red-
state/blue-state example, for instance, we concluded that the varying slopes mattered not
just because of the magnitudes of departures from the equal-slope assumption, but also
because there was a pattern, with richer states tending to have shallower slopes.

What we are advocating, then, is what Cox and Hinkley (1974) call “pure significance
testing,” in which certain of the model’s implications are compared directly to the data,
rather than entering into a contest with some alternative model. This is, we think, more
in line with what actually happens in science, where it can become clear that even large-
scale theories are in serious trouble and cannot be accepted unmodified even if there is
no alternative available yet. A classical instance is the status of Newtonian physics at the
beginning of the 20th century, where there were enough difficulties—the Michaelson-Morley
effect, anomalies in the orbit of Mercury, the photoelectric effect, the black-body paradox,
the stability of charged matter, etc.—that it was clear, even before relativity and quantum
mechanics, that something would have to give. Even today, our current best theories of
fundamental physics, namely general relativity and the standard model of particle physics,
an instance of quantum field theory, are universally agreed to be ultimately wrong, not

13In addition, no model is safe from criticism, even if it “passes” all possible checks. Modern Bayesian
models in particular are full of unobserved, latent, and unobservable variables, and nonidentifiability is
an inevitable concern in assessing such models; see, for example, Gustafson (2005); Vansteelandt et al.
(2006); Greenland (2009). We find it somewhat dubious to claim that simply putting a prior distribution on
non-identified quantities somehow resolves the problem; the “bounds” or “partial identification” approach,
pioneered by Manski (2007), seems to be in better accord with scientific norms of explicitly acknowledging
uncertainty (see also Vansteelandt et al. 2006; Greenland 2009).

14Despite the name, this is, as Kitcher notes, actually a deductive argument.
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least because they are mutually incompatible, and recognizing this does not require that
one have a replacement theory (Weinberg, 1999).

4.2 Connection to non-Bayesian model checking

Many of these ideas about model checking are not unique to Bayesian data analysis and are
used more or less explicitly by many communities of practitioners working with complex
stochastic models (Ripley 1988; Guttorp 1995). The reasoning is the same: a model is a
story of how the data could have been generated; the fitted model should therefore be able
to generate synthetic data that look like the real data; failures to do so in important ways
indicate faults in the model.

For instance, simulation-based model checking is now widely accepted for assessing
the goodness of fit of statistical models of social networks (Hunter et al., 2008). That
community was pushed toward predictive model checking by the observation that many
model specifications were “degenerate” in various ways (Handcock, 2003). For example,
under certain exponential-family network models, the maximum likelihood estimate gave a
distribution over networks which was bimodal, with both modes being very different from
observed networks, but located so that the expected value of the sufficient statistics matched
observations. It was thus clear that these specifications could not be right even before more
adequate specifications were developed (Snijders et al., 2006).

At a more philosophical level, the idea that a central task of statistical analysis is the
search for specific, consequential errors has been forcefully advocated by Mayo (1996), Mayo
and Cox (2006); Mayo and Spanos (2004), and Mayo and Spanos (2006). Mayo has placed
a special emphasis on the idea of severe testing—a model being severely tested if it passes a
probe which had a high probability of detecting an error if it is present. (The exact definition
of a test’s severity is related to, but not quite, that of its power; see Mayo 1996 or Mayo
and Spanos 2006 for extensive discussions.) Something like this is implicit in discussions
about the relative merits of particular posterior predictive checks (which can also be framed
non-Bayesianly as graphical hypothesis tests based on the parametric bootstrap).

Our contribution here is to connect this hypothetico-deductive philosophy to Bayesian
data analysis, going beyond the evaluation of Bayesian methods based on their frequency
properties (as recommended by Rubin (1984), Wasserman (2006), among others) to em-
phasize the learning that comes from the discovery of systematic differences between model
and data. At the very least, we hope this paper will motivate philosophers of hypothetico-
deductive inference to take a more serious look at Bayesian data analysis (as distinct from
Bayesian theory) and, conversely, to motivate philosophically-minded Bayesian statisticians
to consider alternatives to the inductive interpretation of Bayesian learning.

4.3 Why not just compare the posterior probabilities of different models?

As mentioned above, the standard view of scientific learning in the Bayesian community
is, roughly, that posterior odds of the models under consideration are compared, given
the current data.15 When Bayesian data analysis is understood as simply getting the

15Some would prefer to compare the modification of those odds called the Bayes factor (Kass and Raftery,
1995). Everything we have to say about posterior odds carries over to Bayes factors with few changes.
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posterior distribution, it is held that “pure significance tests have no role to play in the
Bayesian framework” (Schervish, 1995, p. 218). The dismissal rests on the idea that the
prior distribution can accurately reflect our actual knowledge and beliefs.16 At the risk of
boring the reader by repetition, there is just no way we can ever have any hope of making
Θ include all the probability distributions which might be correct, let alone getting p(θ|y)
if we did so, so this is deeply unhelpful advice. The main point where we disagree with
many Bayesians is that we do not see Bayesian methods as generally useful for giving the
posterior probability that a model is true, or the probability for preferring model A over
model B, or whatever.17 Beyond the philosophical difficulties, there are technical problems
with methods that purport to determine the posterior probability of models, most notably
that in models with continuous parameters, aspects of the model that have essentially no
effect on posterior inferences within a model can have huge effects on the comparison of
posterior probability among models.18 Bayesian inference is good for deductive inference
within a model we prefer to evaluate a model by comparing it to data.

In rehashing the well-known problems with computing Bayesian posterior probabilities
of models, we are not claiming that classical p-values are the answer. As is indicated by
the literature on the Jeffreys-Lindley paradox (notably Berger and Sellke 1987), p-values
can drastically overstate the evidence against a null hypothesis. From our model-building
Bayesian perspective, the purpose of p-values (and model checking more generally) is not
to reject a null hypothesis but rather to explore aspects of a model’s misfit to data.

In practice, if we are in a setting where model A or model B might be true, we are
inclined not to do model selection among these specified options, or even to perform model
averaging over them (perhaps with a statement such as, “We assign 40% of our posterior
belief to A and 60% to B”) but rather to do continuous model expansion by forming a
larger model that includes both A and B as special cases. For example, Merrill (1994) used
electoral and survey data from Norway and Sweden to compare two models of political

16As Schervish (1995) continues: “If the [parameter space Θ] describes all of the probability distributions
one is willing to entertain, then one cannot reject [Θ] without rejecting probability models altogether. If
one is willing to entertain models not in [Θ], then one needs to take them into account” by enlarging Θ, and
computing the posterior distribution over the enlarged space.

17There is a vast literature on Bayes factors, model comparison, model averaging, and the evaluation of
posterior probabilities of models, and although we believe most of this work to be philosophically unsound
(to the extent it is designed to be a direct vehicle for scientific learning), we recognize that these can be useful
techniques. Like all statistical methods, Bayesian and otherwise, these methods are summaries of available
information that can be important data-analytic tools. Even if none of a class of models is plausible as truth,
and even if we aren’t comfortable accepting posterior model probabilities as degrees of belief in alternative
models, these probabilities can still be useful as tools for prediction and for understanding structure in data,
as long as these probabilities are not taken too seriously. See Raftery (1995) for a discussion of the value
of posterior model probabilities in social science research and Gelman and Rubin (1995) for a discussion of
their limitations, and Claeskens and Hjort (2008) for a general review of model selection. (Some of the work
on “model-selection tests” in econometrics (e.g., Vuong 1989; Rivers and Vuong 2002) is exempt from our
strictures, as it tries to find which model is closest to the data-generating process, while allowing that all of
the models may be mis-specified, but it would take us too far afield to discuss this work in detail.)

18This problem has been called the Jeffreys-Lindley paradox and it is the subject of a large literature.
Unfortunately (from our perspective) the problem has usually been studied by Bayesians with an eye toward
“solving” it—that is, coming up with reasonable definitions that allow the computation of nondegenerate
posterior probabilities for continuously-parameterized models—but we we think that this is really a problem
without a solution; see Gelman et al. (2003, sec. 6.7).
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ideology and voting: the “proximity model” (in which you prefer the political party that is
closest to you in some space of issues and ideology) and the “directional model” (in which
you like the parties that are in the same direction as you in issue space, but with a stronger
preference to parties further from the center). Rather than using the data to pick one model
or the other, we would prefer to think of a model in which voters consider both proximity
and directionality in forming their preferences (Gelman, 1994).

In the social sciences, it is rare for there to be an underlying theory that can provide
meaningful constraints on the functional form of the expected relationships among variables,
let alone the distribution of noise terms.19 Taken to its limit, then, the idea of continuous
model expansion counsels social scientists to pretty much give up using parametric statistical
models in favor of nonparametric, infinite-dimensional models, advice which which the on-
going rapid development of Bayesian nonparametrics (Ghosh and Ramamoorthi, 2003; Hjort
et al., 2010) makes increasingly practical. While we are certainly sympathetic to this, and
believe a greater use of nonparametric models in empirical research is desirable on its own
merits (cf. Li and Racine, 2007), it is worth sounding a few notes of caution.

A technical, but important, point concerns the representation of uncertainty in Bayesian
nonparametrics. In finite-dimensional problems, the use of the posterior distribution to
represent uncertainty is in part supported by the Bernstein-von Mises phenomenon, which
ensures that large-sample credible regions are also confidence regions. This simply fails
in infinite-dimensional situations (Cox, 1993; Freedman, 1999), so that a naive use of the
posterior distribution becomes unwise20. (Since we regard the prior and posterior distri-
butions as regularization devices, this is not especially troublesome for us.) Relatedly, the
prior distribution in a Bayesian nonparametric model is a stochastic process, always chosen
for tractability (Ghosh and Ramamoorthi, 2003; Hjort et al., 2010), and any pretense of
representing an actual inquirer’s beliefs abandoned.

Most fundamentally, switching to nonparametric models does not really resolve the
issue of needing to make approximations, and check their adequacy. All nonparametric
models themselves embody assumptions such as conditional independence which are hard
to defend except as approximations. Expanding our prior distribution to embrace all the
models which are actually compatible with our prior knowledge would result in a mess we
simply could not work with, nor interpret if we could. This being the case, we feel there
is no contradiction between our preference for continuous model expansion and our use of
adequately checked parametric models.21

19See Manski (2007) for a critique of the econometric practice of making modeling assumptions (such as
linearity) with no support in economic theory, simply to get identifiability.

20Even in parametric problems, Müller (2011) shows that mis-specification can lead credible intervals to
have sub-optimal coverage properties, which however can be fixed by a modification to their usual calculation.

21A different perspective — common in econometrics (e.g., Wooldridge 2002) and machine learning (e.g.,
Hastie et al. 2009) — reduces the importance of models of the data source, either by using robust procedures
that are valid under departures from modeling assumptions, or by focusing on prediction and external
validation. We recognise the theoretical and practical appeal of both these approaches, which can be
relevant to Bayesian inference. (For example, Rubin 1978 justifies random assignment from a Bayesian
perspective as a tool for obtaining robust inferences.) But it is not possible to work with all possible
models when considering fully probabilistic methods — that is, Bayesian inferences that are summarized
by joint posterior distributions rather than point estimates or predictions. This difficulty may well be
a motivation for shifting the foundations of statistics away from probability and scientific inference, and
towards developing a technology of robust prediction. (Even when prediction is the only goal, with limited
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Figure 4: Sketch of the usual statistical model for before-after data. The difference between
the fitted lines for the two groups is the estimated treatment effect. The default is to regress
the “after” measurement on the treatment indicator and the “before” measurement, thus
implicitly assuming parallel lines.

4.4 Example: Estimating the effects of legislative redistricting

We use one of our own experiences (Gelman and King, 1994) to illustrate scientific progress
through model rejection. We began by fitting a model comparing treated and control units—
state legislatures, immediately after redistricting or not—following the usual practice of
assuming a constant treatment effect (parallel regression lines in “after” vs. “before” plots,
with the treatment effect representing the difference between the lines). In this example, the
outcome was a measure of partisan bias, with positive values representing state legislatures
where the Democrats were overrepresented (compared to how we estimated the Republicans
would have done with comparable vote shares) and negative values in states where the
Republicans were overrepresented. A positive treatment effect here would correspond to a
redrawing of the district lines that favored the Democrats.

Figure 4 shows the default model that we (and others) typically use for estimating causal
effects in before-after data. We fitted such a no-interaction model in our example too, but
then we made some graphs and realized that the model did not fit the data. The line for
the control units actually had a much steeper slope than the treated units. We fit a new
model, and it had a completely different story about what the treatment effects meant.

The graph for the new model with interactions is shown in Figure 5. The largest effect
of the treatment was not to benefit the Democrats or Republicans (that is, to change the
intercept in the regression, shifting the fitted line up or down) but rather to change the
slope of the line, to reduce partisan bias.

Rejecting the constant-treatment-effect model and replacing by the interaction model
was, in retrospect, a crucial step in this research project. This pattern of higher before-after
correlation in the control group than the treated group is quite general (Gelman, 2004), but
at the time we did this study we discovered it only through the graph of model and data,
which falsified the original model and motivated us to think of something better. In our

data bias-variance considerations can make even mis-specified parametric models superior to non-parametric
models.) This however goes far beyond the scope of the present article, which aims merely to explicate the
implicit philosophy guiding current practice.
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Figure 5: Effect of redistricting on partisan bias. Each symbol represents a state election
year, with dots indicating controls (years with no redistricting) and the other symbols cor-
responding to different types of redistricting. As indicated by the fitted lines, the “before”
value is much more predictive of the “after” value for the control cases than for the treated
(redistricting) cases. The dominant effect of the treatment is to bring the expected value of
partisan bias toward zero, and this effect would not be discovered with the usual approach
(pictured in Figure 4, which is to fit a model assuming parallel regression lines for treated
and control cases.

experience, falsification is about plots and predictive checks, not about Bayes factors or
posterior probabilities of candidate models.

The relevance of this example to the philosophy of statistics is that we began by fitting
the usual regression model with no interactions. Only after visually checking the model
fit—and thus falsifying it in a useful way without the specification of any alternative—did
we take the crucial next step of including an interaction, which changed the whole direction
of our research. The shift was induced by a falsification—a bit of deductive inference from
the data and the earlier version of our model. In this case the falsification came from a
graph rather than a p-value, which in one way is just a technical issue, but in a larger
sense is important in that the graph revealed not just a lack of fit but also a sense of the
direction of the misfit, a refutation that sent us usefully in a direction of substantive model
improvement.

5 The question of induction

As we mentioned at the beginning, Bayesian inference is often held to be inductive in a
way which classical statistics (following the Fisher or Neyman-Pearson traditions) is not.
We need to address this, as we are arguing that all these forms of statistical reasoning are
better seen as hypothetico-deductive.

The common core of various conceptions of induction is some form of inference from
particulars to the general—in the statistical context, presumably, inference from the obser-
vations y to parameters θ describing the data-generating process. But if that were all that
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was meant, then not only is “frequentist statistics a theory of inductive inference” (Mayo
and Cox, 2006), but the whole range of guess-and-test behaviors engaged in by animals
Holland et al. (1986) are formalized in the hypothetico-deductive method are also induc-
tive. Even the unpromising-sounding procedure, “Pick a model at random and keep it until
its accumulated error gets too big, then pick another model completely at random,” would
qualify (and could work surprisingly well under some circumstances; cf. Ashby (1960); Fos-
ter and Young (2003)). So would utterly irrational procedures (“pick a new random θ when
the sum of the least significant digits in y is 13”). Clearly something more is required, or
at least implied, by those claiming that Bayesian updating is inductive.

One possibility for that “something more” is to generalize the truth-preserving property
of valid deductive inferences: just as valid deductions from true premises are themselves true,
good inductions from true observations should also be true, at least in the limit of increasing
evidence.22 This, however, is just the requirement that our inferential procedures be consis-
tent. As discussed above, using Bayes’s rule is not sufficient to ensure consistency, nor is it
necessary. In fact, every proof of Bayesian consistency known to us either posits there is a
consistent non-Bayesian procedure for the same problem, or makes other assumptions which
entail the existence of such a procedure. In any case, theorems establishing consistency of
statistical procedures make deductively valid guarantees about these procedures—they are
theorems, after all—but do so on the basis of probabilistic assumptions linking future events
to past data.

It is also no good to say that what makes Bayesian updating inductive is its conformity
to some axiomatization of rationality. If one accepts the Kolmogorov axioms for probability,
and the Savage axioms (or something like them) for decision-making,23 then updating by
conditioning follows, and a prior belief state p(θ) plus data y deductively entail that the
new belief state is p(θ|y). In any case, lots of learning procedures can be axiomatized (all
of them which can be implemented algorithmically, to start with). To pick this system, we
would need to know that it produces good results (cf. Manski 2010), and this returns us to
previous problems. To know that this axioms systems leads us to approach the truth rather
than become convinced of falsehoods, for instance, is just the question of consistency again.

Karl Popper, the leading advocate of hypothetico-deductivism in the last century, denied
that induction was even possible; his attitude is well-paraphrased by Greenland (1998) as:
“we never use any argument based on observed repetition of instances that does not also
involve a hypothesis that predicts both those repetitions and the unobserved instances of
interest.” This is a recent instantiation of a tradition of anti-inductive arguments that
goes back to Hume, but also beyond him to al Ghazali (1100/1997) in the middle ages,
and indeed to the ancient Skeptics (Kolakowski, 1968). As forcefully put by Stove (1982,
1986), many apparent arguments against this view of induction can be viewed as statements
of abstract premises linking both the observed data and unobserved instances—various
versions of the “uniformity of nature” thesis have been popular, sometimes resolved into a
set of more detailed postulates, as in Russell (1948, part VI, ch. 9), though Stove rather
maliciously crafted a parallel argument for the existence of “angels, or something very

22We owe this suggestion to conversation with Kevin Kelly; cf. Kelly (1996, esp. ch. 13).
23Despite his ideas on testing, Jaynes (2003) was a prominent and emphatic advocate of the claim that

Bayesian inference is the logic of inductive inference as such, but preferred to follow Cox (1946, 1961) rather
than Savage. See Halpern (1999) on the formal invalidity of Cox’s proofs.
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much like them.”24 As Norton (2003) argues, these highly abstract premises are both
dubious and often superfluous for supporting the sort of actual inferences scientists make
— “inductions” are supported not by their matching certain formal criteria (as deductions
are), but rather by material facts. To generalize about the melting point of bismuth (to
use one of Norton’s examples) requires very few samples, provided we accept certain facts
about the homogeneity of the physical properties of elemental substances; whether nature
in general is uniform is not really at issue25.

Simply put, we think the anti-inductivist view is pretty much right, but that statistical
models are tools that let us draw inductive inferences on a deductive background. Most
directly, random sampling allows us to learn about unsampled people (unobserved balls in
an urn, as it were), but such inference, however inductive it may appear, relies not any axiom
of induction but rather on deductions from the statistical properties of random samples, and
the ability to actually conduct such sampling. The appropriate design depends on many
contingent material facts about the system we are studying, exactly as Norton argues.

Some results in statistical learning theory establish that certain procedures are “probably
approximately correct” in what’s called a “distribution-free” manner (Bousquet et al., 2004;
Vidyasagar, 2003); some of these results embrace Bayesian updating (McAllister, 1999).
But, here, “distribution free” just means “holding uniformly over all distributions in a very
large class,” for example requiring the data to be independent and identically distributed,
or from a stationary, mixing stochastic process. Another branch of learning theory does
avoid making any probabilistic assumptions, getting results which hold universally across
all possible data sets, and again these results apply to Bayesian updating, at least over some
parameter spaces (Cesa-Bianchi and Lugosi, 2006). However, these results are all of the
form “in retrospect, the posterior predictive distribution will have predicted almost as well
as the best individual model could have done,” speaking entirely about performance on the
past training data and revealing nothing about extrapolation to so-far unobserved cases.

To sum up, one is free to describe statistical inference as a theory of inductive logic, but
these would be inductions which are deductively guaranteed by the probabilistic assump-
tions of stochastic models. We can see no interesting and correct sense in which Bayesian
statistics is a logic of induction which does not equally imply that frequentist statistics is
also a theory of inductive inference (cf. Mayo and Cox, 2006), which is to say, not very
inductive at all.

24Stove (1986) further argues that induction by simple enumeration is reliable without making such as-
sumptions, at least sometimes. However, his calculations make no sense unless his data are independent and
identically distributed.

25 Within environments where such premises hold, it may of course be adaptive for organisms to de-
velop inductive propensities, whose scope would be more or less tied to the domain of the relevant material
premises. Barkow et al. (1992) develops this theme with reference to the evolution of domain-specific mecha-
nisms of learning and induction; Gigerenzer (2000); Gigerenzer et al. (1999) consider proximate mechanisms
and ecological aspects, and Holland et al. (1986) proposes a unified framework for modeling such inductive
propensities in terms of generate-and-test processes. All of this, however, is more within the field of psy-
chology than either statistics or philosophy, as (to paraphrase the philosopher Ian Hacking 2001) it does not
so much solve the problem of induction as evade it.
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6 What About Popper and Kuhn?

The two most famous modern philosophers of science are undoubtedly Karl Popper (1934/1959)
and Thomas Kuhn (1970), and if statisticians (like other non-philosophers) know about phi-
losophy of science at all, it is generally some version of their ideas. It may therefore help
readers for see how our ideas relate to theirs. We do not pretend that our sketch fully
portrays these figures, let alone the literatures of exegesis and controversy they inspired, or
even how the philosophy of science has moved on since 1970.

Popper’s key idea was that of “falsification,” or “conjectures and refutations.” The in-
spiring example, for Popper, was the replacement of classical physics, after several centuries
as the core of the best-established science, by modern physics, especially the replacement
of Newtonian gravitation by Einstein’s general relativity. Science, for Popper, advances by
scientists advancing theories which make strong, wide-ranging predictions capable of being
refuted by observations. A good experiment or observational study is one which tests a
specific theory (or theories) by confronting their predictions with data in such a way that a
match is not automatically assured; good studies are designed with theories in mind, to give
them a chance to fail. Theories which conflict with any evidence must be rejected, since a
single counter-example implies that a generalization is false. Theories which are not falsi-
fiable by any conceivable evidence are, for Popper, simply not scientific, though they may
have other virtues.26 Even those falsifiable theories which have survived contact with data
so far must be regarded as more or less provisional, since no finite amount of data can ever
establish a generalization, nor is there any non-circular principle of induction which could
let us regard theories which are compatible with lots of evidence are probably true.27 Since
people are fallible, and often obstinate and overly fond of their own ideas, the objectivity of
the process which tests conjectures lies not in the emotional detachment and impartiality
of individual scientists, but rather in the scientific community being organized in certain
ways, with certain institutions, norms and traditions, so that individuals’ prejudices more
or less wash out (Popper, 1945, chs. 23–24).

Clearly, we find much here to agree with, especially the general hypothetico-deductive
view of scientific method and the anti-inductivist stance. On the other hand, Popper’s
specific ideas about testing require, at the least, substantial modification. His idea of a test
comes down to the rule of deduction which says that if p implies q, and q is false, then p must
be false, with the roles of p and q being played by hypotheses and data, respectively. This
is plainly inadequate for statistical hypotheses, yet, as critics have noted since Braithwaite
(1953) at least, he oddly ignored the theory of statistical hypothesis testing.28 It is possible
to do better, both through standard hypothesis tests and the kind of predictive checks we
have described. In particular, as Mayo (1996) has emphasized, it is vital to consider the
severity of tests, their capacity to detect violations of hypotheses when they are present.

Popper tried to say how science ought to work, supplemented by arguments that his
26This “demarcation criterion” has received a lot of criticism, much of it justified. The question of what

makes something “scientific” is fortunately not one we have to answer; cf. Laudan (1996, chs. 11–12) and
Ziman (2000).

27Popper tried to work out notions of “corroboration” and increasing truth content, or “verisimilitude,”
that fit with these stances, but these are generally regarded as failures.

28We have generally found Popper’s ideas on probability and statistics to be of little use and will not
discuss them here.
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ideals could at least be approximated and often had been. Kuhn’s work, by contrast, ac-
count, in contrast, was much more an attempt to describe how science had, in point of
historical fact, developed, supported by arguments that alternatives were infeasible, from
which some morals might be drawn. His central idea was that of a “paradigm,” a scientific
problem and its solution which served as a model or exemplar, so that solutions to other
problems could be developed in imitation of it.29 Paradigms come along with presupposi-
tions about the terms available for describing problems and their solutions, what counts as
a valid problem, what counts as a solution, background assumptions which can be taken
as a matter of course, etc. Once a scientific community accepts a paradigm and all that
goes with it, its members can communicate with one another, and get on with the business
of “puzzle solving,” rather than arguing about what they should be doing. Such “normal
science” includes a certain amount of developing and testing of hypotheses but leaves the
central presuppositions of the paradigm unquestioned.

During periods of normal science, according to Kuhn, there will always be some “anoma-
lies”—things within the domain of the paradigm which it currently cannot explain, or even
seem to refute its assumptions. These are generally ignored, or at most regarded as problems
which somebody ought to investigate eventually. (Is a special adjustment for odd local
circumstances called for? Might there be some clever calculational trick which fixes things?
How sound are those anomalous observations?) More formally, Kuhn invokes the “Quine-
Duhem thesis” (Quine, 1961; Duhem, 1914/1954). A paradigm only makes predictions
about observations in conjunction with “auxiliary” hypotheses about specific circumstances,
measurement procedures, etc. If the predictions are wrong, Quine and Duhem claimed that
one is always free to fix the blame on the auxiliary hypotheses, and preserve belief in the
core assumptions of the paradigm “come what may.”30 The Quine-Duhem thesis was also
used by Lakatos (1978) as part of his “methodology of scientific research programmes,” a
falsificationism more historically oriented than Popper’s distinguishing between progressive
development of auxiliary hypotheses and degenerate research programs where auxiliaries
become ad hoc devices for saving core assumptions from data.

According to Kuhn, however, anomalies can accumulate, becoming so serious as to create
a crisis for the paradigm, beginning a period of “revolutionary science.” It is then that a
new paradigm can form, one which is generally “incommensurable” with the old: it makes
different presuppositions, takes a different problem and its solution as exemplars, re-defines
the meaning of terms. Kuhn insisted that scientists who retain the old paradigm are not
being irrational, because (by Quine-Duhem) they can always explain away the anomalies
somehow; but neither are the scientists who embrace and develop the new paradigm being
irrational. Switching to the new paradigm is more like a bistable illusion flipping (the
apparent duck becomes an obvious rabbit) than any process of ratiocination governed by

29Examples include Newton’s deduction of Kepler’s laws of planetary motion and other facts of astronomy
from the inverse square law of gravitation, or Planck’s derivation of the black-body radiation distribution
from Boltzmann’s statistical mechanics and the quantization of the electromagnetic field. An internal ex-
ample for statistics might be the way the Neyman-Pearson lemma inspired the search for uniformly most
powerful tests in a variety of complicated situations.

30This thesis can be attacked from many directions, perhaps the most vulnerable being that one can often
find multiple lines of evidence which bear on either the main principles or the auxiliary hypotheses separately,
thereby localizing the problems (Glymour, 1980; Kitcher, 1993; Laudan, 1996; Mayo, 1996).
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sound rules of method.31

In some way, Kuhn’s distinction between normal and revolutionary science is analogous
to the distinction between learning within a Bayesian model, and checking the model as
preparation to discard or expand it. Just as the work of normal science proceeds within
the presuppositions of the paradigm, updating a posterior distribution by conditioning
on new data takes the assumptions embodied in the prior distribution and the likelihood
function as unchallengeable truths. Model checking, on the other hand, corresponds to the
identification of anomalies, with a switch to a new model when they become intolerable.
Even the problems with translations between paradigms have something of a counterpart in
statistical practice; for example, the intercept coefficients in a varying-intercept, constant-
slope regression model have a somewhat different meaning than do the intercepts in a
varying-slope model. We do not want to push the analogy too far, however, since most
model checking and model re-formulation would by Kuhn have been regarded as puzzle-
solving within a single paradigm, and his views of how people switch between paradigms
are, as we just saw, rather different.

Kuhn’s ideas about scientific revolutions are famous because they raise so many disturb-
ing questions about the scientific enterprise. For instance, there has been considerable con-
troversy over whether Kuhn believed in any notion of scientific progress, and over whether
or not he should have, given his theory. Yet detailed historical case studies (Donovan et al.,
1988) have shown that Kuhn’s picture of sharp breaks between normal and revolutionary
science is hard to sustain. (Arguably this is true even of Kuhn, 1957.) The leads to a
tendency, already remarked by Toulmin (1972, pp. 112–17), to either expand paradigms or
to shrink them. Expanding paradigms into persistent and all-embracing, because abstract
and vague, bodies of ideas lets one preserve the idea of abrupt breaks in thought, but makes
them rare and leaves almost everything to puzzle-solving normal science. (In the limit,
there has only been one paradigm in astronomy since the Mesopotamians, something like
“Many lights in the night sky are objects which are very large but very far away, and they
move in interrelated, mathematically-describable, discernible patterns.”) This corresponds,
we might say, to relentlessly enlarging the support of the prior. The other alternative is to
shrink paradigms into increasingly concrete, specific theories and even models, making the
standard for a “revolutionary” change very small indeed, in the limit reaching any kind of
conceptual change whatsoever.

We suggest that there is actually some validity to both moves, that there is a sort of
(weak) self-similarity involved in scientific change. Every scale of size and complexity, from
local problem solving to big-picture science, features progress of the “normal science” type,
punctuated by occasional revolutions. For example, in working on an applied research or

31Salmon (1990) proposed a connection between Kuhn and Bayesian reasoning, suggesting that the choice
between paradigms could be made rationally by using Bayes’s rule to compute their posterior probabilities,
with the prior probabilities for the paradigms encoding such things as preferences for parsimony. This
has at least three big problems. First, all our earlier objections to using posterior probabilities to chose
between theories apply, with all the more force because every paradigm is compatible with a broad range
of specific theories. Second, devising priors encoding those methodological preferences—particularly a non-
vacuous preference for parsimony—is hard to impossible in practice (Kelly, 2010). Third, it implies a truly
remarkable form of Platonism: for scientists to give a paradigm positive posterior probability, they must,
by Bayes’s rule, have always given it strictly positive prior probability, even before having encountered a
statement of the paradigm.

24



consulting problem, one typically will start in a certain direction, then suddenly realize one
was thinking about it wrong, then move forward, and so forth. In a consulting setting, this
reevaluation can happen several times in a couple of hours. At a slightly longer time scale,
we commonly reassess any approach to an applied problem after a few months, realizing
there was some key feature of the problem we were misunderstanding, and so forth. There
is a link between the size and the typical time scales of these changes, with small revolutions
occurring fairly frequently (every few minutes for an exam-type problem), up to every few
decades for a major scientific consensus. (This is related to but somewhat different from the
recursive subject-matter divisions discussed by Abbott 2001.) The big changes are more
exciting, even glamorous, but they rest on the hard work of extending the implications of
theories far enough that they can be decisively refuted.

To sum up, our views are much closer to Popper’s than to Kuhn’s. The latter encouraged
a close attention to the history of science and to explaining the process of scientific change,
as well as putting on the agenda many genuinely deep questions, such as when and how
scientific fields achieve consensus. There are even analogies between Kuhn’s ideas and what
happens in good data-analytic practice. Fundamentally, however, we feel that deductive
model checking is central to statistical and scientific progress, and that it is the threat of
such checks that motivates us to perform inferences within complex models that we know
ahead of time to be false.

7 Why does this matter?

Philosophy matters to practitioners because they use philosophy to guide their practice; even
those who believe themselves quite exempt from any philosophical influences are usually
the slaves of some defunct methodologist. The idea of Bayesian inference as inductive,
culminating in the computation of the posterior probability of scientific hypotheses, has
had malign effects on statistical practice. At best, the inductivist view has encouraged
researchers to fit and compare models without checking them; at worst, theorists have
actively discouraged practitioners from performing model checking because it does not fit
into their framework.

In our hypothetico-deductive view of data analysis, we build a statistical model out of
available parts and drive it as far as it can take us, and then a little farther. When the model
breaks down, we dissect it and figure out what went wrong. For Bayesian models, the most
useful way of figuring out how the model breaks down is through posterior predictive checks,
creating simulations of the data and comparing them to the actual data. The comparison
can often be done visually; see Gelman et al. (2003, ch. 6) for a range of examples. Once we
have an idea about where the problem lies, we can tinker with the model, or perhaps try
a radically new design. Either way, we are using deductive reasoning as a tool to get the
most out of a model, and we test the model—it is falsifiable, and when it is consequentially
falsified, we alter or abandon it. None of this is especially subjective, or at least no more so
than any other kind of scientific inquiry, which likewise requires choices as to the problem
to study, the data to use, the models to employ, etc.—but these choices are by no means
arbitrary whims, uncontrolled by objective conditions.

Conversely, a problem with the inductive philosophy of Bayesian statistics—in which
science “learns” by updating the probabilities that various competing models are true—is
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that it assumes that the true model (or, at least, the models among which we will choose
or average over) is one of the possibilities being considered. This does not fit our own
experiences of learning by finding that a model doesn’t fit and needing to expand beyond
the existing class of models to fix the problem.

Our methodological suggestions are to construct large models that are capable of incor-
porating diverse sources of data, to use Bayesian inference to summarize uncertainty about
parameters in the models, to use graphical model checks to understand the limitations of
the models, and to move forward via continuous model expansion rather than model se-
lection or discrete model averaging. Again, we do not claim any novelty in these ideas,
which we have and others presented in many publications and which reflect decades of sta-
tistical practice, expressed particuarly forcefully in recent times by Box (1980) and Jaynes
(2003). These ideas, important as they are, are hardly groundbreaking advances in statisti-
cal methodology. Rather, the point of this paper is to demonstrate that our commonplace
(if not universally accepted) approach to the practice of Bayesian statistics is compatible
with a hypothetico-deductive framework for the philosophy of science.

We fear that a philosophy of Bayesian statistics as subjective, inductive inference can
encourage a complacency about picking or averaging over existing models rather than trying
to falsify and go further.32 Likelihood and Bayesian inference are powerful, and with great
power comes great responsibility. Complex models can and should be checked and falsified.
This is how we can learn from our mistakes.
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