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Abstract

The problem of multiple comparisons can disappear when viewed from a Bayesian
perspective. We propose building multilevel models in the settings where multiple
comparisons arise. These address the multiple comparisons problem and also yield
more efficient estimates, especially in settings with low group-level variation, which is
where multiple comparisons are a particular concern.

Multilevel models perform partial pooling (shifting estimates toward each other),
whereas classical procedures typically keep the centers of intervals stationary, adjusting
for multiple comparisons by making the intervals wider (or, equivalently, adjusting the p-
values corresponding to intervals of fixed width). Multilevel estimates make comparisons
more conservative, in the sense that intervals for comparisons are more likely to include
zero; as a result, those comparisons that are made with confidence are more likely to
be valid.

Keywords: Bayesian inference, hierarchical modeling, multiple comparisons, type S
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1 Introduction

Researchers from nearly every social and physical science discipline have found themselves

in the position of simultaneously evaluating many questions, testing many hypothesis, or

comparing many point estimates. In the program evaluation world this arises, for instance,

when comparing the impact of several different policy interventions, comparing the status

of social indicators (test scores, poverty rates, teen pregnancy rates) across multiple schools,

states, or countries, examining whether treatment effects vary meaningfully across different

subgroups of the population, or examining the impact of a program on many different

outcomes.
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The main multiple comparisons problem is that the probability a researcher wrongly

concludes that there is at least one statistically significant effect across a set of tests, even

when in fact there is nothing going on, increases with each additional test. This can be a

serious concern in classical inference and many strategies have been proposed to address

the issue (see Hsu, 1996, or Westfall and Young, 1993, for reviews). A related multiple

comparisons concern is that, in a setting where nonzero true effects do exist, a researcher

applying multiple tests may identify additional statistically significant effects that are not

in fact real.

Our approach as described in this paper has two key differences from the classical per-

spective. First, we are typically not terribly concerned with Type 1 error because we rarely

believe that it is possible for the null hypothesis to be strictly true. Second, we believe that

the “problem” is rather that we haven’t properly accounted for the relationship between

the corresponding parameters of the model. Once we work within a Bayesian multilevel

modeling framework and model these phenomena appropriately, we are actually able to

get more reliable point estimates. A multilevel model shifts point estimates and their cor-

responding intervals toward each other (by a process often referred to as “shrinkage” or

“partial pooling”), whereas classical procedures typically keep the point estimates station-

ary, adjusting for multiple comparisons by making the intervals wider (or, equivalently,

adjusting the p-values corresponding to intervals of fixed width). In this way, multilevel

estimates make comparisons appropriately more conservative, in the sense that intervals for

comparisons are more likely to include zero. As a result we can say with confidence that

those comparisons made with multilevel estimates are more likely to be valid. At the same

time this “adjustment” doesn’t sap our power to detect true differences as many traditional

methods do.

Rather than correcting for the problems that can arise when examining many compar-

isons (performing many significance tests), when we work within the Bayesian paradigm all

of the relevant research questions can be represented as parameters in one coherent mul-

tilevel model. Simply put, rather than correcting for a perceived problem, we just build

the right model from the start (for similar perspectives see Louis, 1984, and Greenland and

Robins, 1991) This puts more of a burden on the model, and a key goal of this paper is to

demonstrate the effectiveness of our suggestion for realistic examples.

Sections 2 and 3 present the multiple comparisons problem from the classical and

Bayesian perspectives, respectively. Both are described within the context of a example

and then potential solutions are outlined. We bolster our argument against traditional mul-

tiple comparisons corrections in Section 4 of this article through a series of small examples

that illustrate several of the scenarios described above. Section 5 concludes.
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2 Multiple comparisons problem from a classical perspective

2.1 Infant health and development study

In this section we walk through a relatively simple example using data from a real study

to illustrate the issues involved in performing multiple comparisons from both a classical

perspective and a Bayesian multilevel model perspective. We’re using data from the Infant

Health and Development Program, an intervention that targeted children who were born

premature and with low birth weight and provided them with services such as home visits

and intensive high quality child care. The program was evaluated using an experiment in

which randomization took place within site and birth weight group. The experimental design

was actually slightly more complicated (as described in Infant Health and Development

Program, 1990) but we’re going to keep things simple for expository purposes. In fact, for

this first illustration we will assume that it was a simple randomized block experiment with

the eight sites as blocks.

In this context, we’re not just interested in the overall treatment effect. Given that

the composition of participating children was quite different across sites and that program

implementation varied across sites as well, we would like to know for each site individually

whether or not a statistically significant effect was present. However, we may be concerned

that, in the process of conducting eight different significance tests, we are misperceiving

our overall risk of making a false claim. This overall risk of error is sometimes referred to

as the familywise error rate (Tukey, 1953). A similar problem arises if we are interested in

comparing whether there are significant differences in treatment effects across sites.

2.2 Classical perspective

A classical model fit to these data might look like this

yi =
∑

j

(γjS
j
i + δjS

j
i Pi) + εi,

εi ∼ N(0, σ2),

where yi denotes student i’s test score, Sj
i in an indicator for living in site j, and Pi is an

indicator for program status. Although this may not be the most common way to specify

this model, it is useful because here δj represents the treatment effect in the jth site and γj

represents the average test score for the untreated in each site.1 This allows us to directly

test the significance of each site effect.

1Birthweight group was also added as a predictor in this model but we ignore it in this description for
simplicity of exposition.
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For any given test of a null hypothesis, say H j
0 : δj = 0, versus an alternative, say

Hj
A : δj 6= 0, there is a 5% chance of incorrectly rejecting H j

0 when in fact it is true.

If we test two independent hypotheses at the same significance level (α = .05) then the

probability that at least one of these tests yields an erroneous rejection raises to 1 −

Pr(neither test yields an erroneous rejection of the null) = 1 − .95 ∗ .95 = .098 ≈ .10. Fol-

lowing the same logic, if we performed (independent) tests for all 8 sites at a .05 significance

level there would be a 34% chance that at least one of these would reject in error.

2.3 Bonferroni correction

One of the most basic and historically most popular fixes to this problem is the Bonferroni

correction, which adjusts the p-value at which a test is evaluated for significance based on

the total number of tests being performed. Specifically, the working p-value is calculated as

the original p-value divided by the number of tests being performed. Implicitly, it assumes

that these test statistics are independent. So in our current example an overall desired

significance level of .05 would translate into individual tests each using a p-value threshold

of .05/8 = .0062. These thresholds could also be used to create wider confidence intervals

for each point estimate as we’ll see later in Figure 2 which plots the point estimates from

the model above along with both uncorrected and Bonferroni-corrected uncertainty intervals

corresponding to a nominal .05 significance level. While the standard intervals reject the null

hypothesis of no effect of the intervention for seven sites, the multiple-comparisons-adjusted

intervals reject the null hypothesis for only four sites.

The Bonferroni correction directly targets the Type 1 error problem but it does so at the

expense of Type 2 error. By changing the p-value needed to reject the null (or equivalently

widening the uncertainty intervals) the number of claims of rejected null hypotheses will

indeed decrease on average. While this reduces the number of false rejections, it also will

increase the number of instances that the null is not rejected when in fact it should have

been. Thus, the Bonferroni correction can severely reduce our power to detect an important

effect.

2.4 Other classical corrections

Motivated by the shortcomings of the Bonferroni correction, other researchers have pro-

posed more sophisticated procedures. The goal of these methods typically is to reduce the

familywise error rate without unduly sacrificing power. A natural way to achieve this is by

taking account of the dependence across tests. A variety of such corrections exist that rely

upon bootstrapping methods or permutation tests (see, for example, Westfall and Young,

1993)
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A more recent class of approaches to this problem focuses not on reducing the familywise

error rate (again, the risk of any false positives) but instead on controlling the expected

proportion of false positives, or the “false discovery rate” (Benjamini and Hochberg, 1995,

Benjamini and Yekutieli, 2001). The rationale behind the concern for false discovery rate is

that the researcher should be more worried about a situation in which many tests show up as

statistically significant and an unknown proportion of these are erroneous than a situation

in which all but a few tests show up as insignificant. Controlling for the false discovery rate

rather than the familywise error rate leads to a less conservative testing procedure with

respect to Type 1 error but is more powerful in terms of detecting effects that are real.

These methods make particular sense in fields like genetics where one would expect to see

a number of real effects amidst a vast quantity of zero effects such as when examining the

effect of a treatment on differential gene expression (Grant, et al., 2005). We see these as

less relevant in social science applications.

3 A different perspective on multiple comparisons

Classical methods typically start with the assumption that the null hypothesis is true – an

unhelpful starting point as we discuss below. Moreover, we argue that they fail to model

the parameters corresponding to the tests of interest correctly. Our goal in this paper is not

to say that we’re proposing the optimal statistical method for all circumstances. Rather we

present an entirely different perspective on the issue and its implications and argue that,

when viewed from a Bayesian perspective, many of these problems simply disappear.

3.1 Abandoning the Type 1 error paradigm

The classical perspective worries primarily about Type 1 errors and we argue that these

should not be the focus of our concern. Suppose we’ve established the following two hy-

potheses regarding our site-specific treatment effects τj for j = 1, . . . , J : Hj
0 : τj = 0, and

Hj
A : τj 6= 0. A primary concern from the classical multiple comparisons perspective is that

we might erroneously accept H j
A when, in fact, Hj

0 is true (Type 1 error). But do we ever

believe that τj exactly equals zero? What is the practical import of such a test? Similarly,

a Type 2 error occurs when we mistakenly accept the H j
0 that τj = τk when in fact the

Hj
A that τj 6= τk is true. Again, under what circumstances do we truly believe that are

absolutely no differences between groups? There may be no practical differences but this is

a distinct point which we shall discuss shortly. Moreover, if true effects are zero, we don’t

want anything close to a 5% chance of finding statistically significant results.

A more serious concern might be that we make a claim that τj > 0 when in fact τj < 0,

in other words, we claim that there is a positive effect when in fact the effect is detrimental.
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Figure 1: In a particular model, where the null hypothesis happens to be true (or very close
to true), the narrow distribution could correspond to estimates of main effects, which have
high precision and are thus not claimed to be large, with the wide distribution representing
interactions, which have low precision and thus, ironically, will be estimated to be very large
in the rare cases when they happen by chance to be statistically significant.”

A similar phenomenon occurs if we claim that τj > τk when in fact τj < τk; for instance

we claim that Miami had a larger treatment effect than New York when in fact the reverse

is true. These are both examples of what is referred to as “Type S” error (Gelman and

Tuerlinckx, 2000) and are of greater concern.

But in policy analysis, there is also a fair bit of concern with examples where the

differences might actually be very close to zero: for example, comparing different educational

interventions, none of which might be very effective. Here we would want to be thinking

about “Type M” (magnitude) errors: saying that a treatment effect is near zero when it is

actually large, or saying that it’s large when it’s near zero (Gelman and Tuerlinckx, 2000).

In that setting, underpowered studies present a real problem. Consider an example in which

the true effect was zero (or very close to zero). An ironic property about effect estimates with

relatively large standard errors is that they are more likely to produce effect estimates that

are larger in magnitude than effect estimates with relatively smaller standard errors, as can

be seen in Figure 1. Thus, when we switch from examining main effects to subgroup effects,

for example, we automatically increase our probability of seeing large estimates and tricking

ourselves into thinking that something is going on. There is a tendency sometimes towards

downplaying a large standard error (which might increase the p-value of their estimate) by

pointing out that, however, the magnitude of the estimate is quite large. In fact, this “large

effect” is likely a byproduct of this standard error. Bayesian modeling will help us here too,

as we shall see below.
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Figure 2: Plots of treatment effect point estimates and 95% intervals across the eight Infant
Health and Development Program sites. The left panel display classical estimates from a
linear regression. The middle panel displays the same point estimates as in the left panel
but the confidence intervals have been adjusted to account for a Bonferroni correction. The
right panel displays 95% intervals and means from the posterior distributions for each of
the eight site-specific treatment effects generated by fitting a multilevel model.

3.2 Multilevel modeling in a Bayesian framework

More strongly, we claim that when viewed within a Bayesian framework, many of these

problems disappear, or in the case of Type S and Type M errors, are at least substantially

ameliorated. A relatively simple multilevel model would be appropriate in this setting. In

this model we might assume that the individuals in a common site experience the same

effect on age 3 test scores, such as

yi ∼ N(γj[i] + δj[i]Pi, σ
2),

Here δj[i] is the parameter for the treatment effect corresponding to person i’s site (indexed

by j). Given that the programs and types of children are by design similar, is also seems

reasonable to assume that these effects vary across sites according to a common distribution,

such as

δj ∼ N(µ, ω2).

We’ve also allowed the intercept, γ, to vary across sites in a similar manner. It does not

seem a strong assumption to think of these as realizations from a common distribution and

this addition should strengthen our model. Additionally, our Bayesian analysis requires us

to specify prior distributions for the parameters µ, σ, and ω. However (particularly for this

kind of simple model) it is not difficult to choose priors to be so uninformative that they

have little to no impact on our inferences. Finally, we could (and should, in a real analysis)

easily add other predictors to the model to increase our predictive power but have refrained

from doing so to focus on the primary issues.
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Partial pooling. This model can be thought of as a compromise between two extremes.

One extreme, complete pooling, would assume the treatment effects are the same across all

sites, that is, δj = δ, for all j. The other extreme, no pooling, would estimate treatment

effects separately for each site. The compromise found in the multilevel model is often

referred to as partial pooling. Figure 2, graphically illustrates this compromise by plotting

the multilevel intervals next to the classical estimates and intervals (with and without

Bonferroni corrections) for comparison. The horizontal dashed line displays the complete

pooling estimate. We also display a horizontal solid line at 0 to easily discern which estimates

would be considered to be statistically significant. This process leads to point estimates

that are closer to each other (and to the “main effect” across all sites) than the classical

analysis. Rather than inflating our uncertainty estimates, which doesn’t really reflect the

information we have regarding the effect of the program, we shift the point estimates in

ways that do reflect the information we have. It has been recognized since the pioneering

work of James and Stein (1960) and Efron and Morris (1975) that partial pooling can lead

to estimates with better properties (for instance lower mean squared error) than traditional

estimators.

The intuition. Why does partial pooling make sense at an intuitive level? Let’s start

from the basics. The only reason we have to worry about multiple comparisons issues is

because we have uncertainty about our estimates. If we knew the “true” treatment effect

in each site we wouldn’t be making any probabilistic statements to begin with – we would

just know the true sign and true magnitude of each (and certainly then whether or not

each was really different from 0 or from each other). Classical inference in essence uses

only the information in each site to get the treatment effect estimate in that site and the

corresponding standard error. A multilevel model however recognizes that this site-specific

estimate is actually ignoring some important information – the information provided by

the other sites. While still allowing for heterogeneity across sites, the multilevel model

also recognizes that since all the sites are measuring the same phenomenon it doesn’t make

sense to complete ignore what has been found in the other sites. Therefore each site-specific

estimate gets “shrunk” or pulled towards the overall estimate. The greater the uncertainty

in a site, the more it will get pulled towards the overall estimate. The less the uncertainty

in a site, the more we trust that individual estimate and the less it gets shrunk.

Model fitting. One barrier to more widespread use of multilevel models is that re-

searchers aren’t always sure how to fit such models. We often recommend fitting multilevel

models in a fully Bayesian way using a software package such as Bugs (as described in
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detail in Gelman and Hill, 2007). However many simple models can be fit quite well using

packages that have been built in (or can be easily installed into) existing software packages.

For instance the model above can be fit easily in R

ihdp.fit <- lmer(y~ treat+(1+treat|state))

and further functions exist to help the user sample from the posterior distribution for each

site-specific treatment effect (or any other parameter from the model or functions thereof;

see Gelman and Hill, 2007). Similar options for fitting the model are available in Stata and

SAS as well (see Appendix C of Gelman and Hill, 2007).

Other motivations for multilevel models. The multiple comparisons problems arise

frequently in research studies in which participants have been clustered because of interest

in examining differences across these program sites, schools, cities, etc. However, arguably,

data from these types of studies should already be fit using a multilevel model.

4 Examples illustrating the relevance and lack of relevance

of multiple comparisons in different settings

4.1 Comparing the impact of multiple treatments: effects of electromag-

netic fields at 38 frequencies
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Figure 3: (a) Estimated effects of electromagnetic fields on calcium efflux from chick brains,
shaded to indicate different levels of statistical significance, adapted from Blackman et al.
(1988). A separate experiment was performed at each frequency. (b) The same results
presented as estimates ± standard errors. The first plot, with its emphasis on statistical
significance, is misleading. (c) Multilevel estimates and standard errors, partially pooled
from the separate estimates displayed in the center graph. The standard errors of the
original estimates were large, and so the multilevel estimates are pooled strongly toward
the common mean estimate of approximately 0.1.

In the wake of concerns about the health effects of low-frequency electric and mag-

netic fields, an experiment was performed to measure the effect of electromagnetic fields
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at various frequencies on the functioning of chick brains (Gelman and Hill, 2007). At each

of several frequencies of electromagnetic fields (1 Hz, 15 Hz, 30 Hz, . . . , 510 Hz), a ran-

domized experiment was performed to estimate the effect of exposure on calcium efflux,

compared to a control condition of no electromagnetic field. The researchers reported, for

each frequency, the estimated treatment effect (the average difference between treatment

and control measurements) and the standard error2. Results in the original article were

summarized in terms of p-values (see Figure 3a) but are more informatively displayed as

confidence intervals, as in Figure 3b.

The confidence intervals at different frequencies in Figure 3b overlap substantially, which

implies that the estimates could be usefully pooled using a multilevel model. The raw data

from these experiments were not available,3 so we analyzed the estimates, which we shall

label as yj for each subexperiment j. Because the chicken brains were randomly assigned

to the treatment and control groups, we can assume the yj’s are unbiased estimates of the

treatment effects θj; and because the sample sizes were not tiny, it is reasonable to assume

that the estimation errors are approximately normally distributed; thus, yj ∼ N(θj, σ
2
j ).

Our default model for the treatment effects is simply θj ∼ N(µθ, σ
2
θ ). If we assume each σj

is known and equal to the standard error of the estimate yj, we can easily perform inference

about the θj’s (as well as the hyperparameters µθ and σθ)

Figure 3c displays the inferences for the treatment effects θj, as estimated from the mul-

tilevel model. The inferences shown here represent partial pooling of the separate estimates

yj toward the grand mean µθ. More generally, the multilevel model can be seen as a way

to estimate the effects at each frequency j, without setting “nonsignificant” results to zero.

Some of the apparently dramatic features of the original data as plotted in Figure 3a—for

example, the negative estimate at 480 Hz and the pair of statistically significant estimates

at 405 Hz—do not stand out so much in the multilevel estimates, indicating that these

features could be easily explained by sampling variability and do not necessarily represent

real features of the underlying parameters.

Potential expansions of the multilevel model. This multilevel model can be criticized

because it pools all the estimates toward their common mean of 0.1 with an assumed normal

distribution for the true θj’s. This would not be appropriate if, for example, the treatment

had a positive effect at some frequencies and a zero effect at others. Or, as hypothesized

by the authors of the original study, that the true treatment effects could fall into three

2By standard error here we mean
p

σ2

T
/nT + σ2

C
/nC where σ2

T and σ2

C represent the standard deviations
of calcium efflux in the control and treatment groups, respectively, and nT and nC denote the corresponding
sample sizes.

3When we asked the experimenter to share the data with us, he refused. This was disturbing considering
this was a government-funded study of public health interest.
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groups: a set of large effects near 0.3, a set of moderate effects near 0.15, and a set of zero

effects.

We could explore this possibility by fitting a mixture model for the θj ’s. But the

resulting inferences would not differ much from our multilevel analysis that used a normal

distribution. The reason that changing the model would not do much is that the uncertainty

bounds for the individual estimates are so high. Even if, for example, we fit a model with

three clusters of effects, it would not be so clear which points correspond to which cluster.

The estimates at 255, 285, and 315 Hz appear to be one cluster, but in fact the point at 255

Hz has a high standard error (see Figure 3b) and could very well belong to a lower cluster,

whereas the estimates at 45, 135, 225, and other points are consistent with being in the

higher group. Similarly, several of the estimates are not statistically significant (see Figure

3a) but they are almost all positive, and in aggregate they do not appear to be zero. There

is certainly no sharp dividing line between the “low” and the “moderate” estimates.

To put it another way: we do not “believe” the estimates in Figure 3a, but neither do

we “believe” the separate estimates in Figure 3b, which we know from statistical theory

will almost certainly be more variable than the true effects. We would recommend using a

multilevel model and estimates as a starting point for further analysis of these data.

Relevance to multiple comparisons. One of the risks in statistical analysis of complex

data is overinterpretation of patterns that could be explained by random variation. Mul-

tilevel modeling can reduce overinterpretation. For example, Figure 3a shows a dramatic

pattern of three points that stand apart from all the others, but the multilevel estimates in

Figure 3c show these to be part of a larger group of relatively large effects for frequencies

up to 300 Hz or so. The partial pooling has revealed the fragility of the patterns in the raw

data (or in the no-pooling estimates), which can be explained by sampling variability.

4.2 Comparing average test scores across all U.S. states

This next example illustrates how these issues play out in a situation in which all pair-

wise comparisons across groups are potentially of interest. Figure 4 shows a graph from

a National Center for Education Statistics (1997) report, ordering all states based on av-

erage scores on the National Assessment of Educational Progress (NAEP) fourth-grade

mathematics test; Bonferroni corrections have been performed and statistically significant

comparisons have been shaded. In theory, this plot allows us to answer questions such as,

Does North Carolina have higher average test scores than neighboring South Carolina? This

information could be displayed better (Wainer, Hambleton, and Meara, 1999, Almond et

al., 2000), and maybe should not be displayed at all (Wainer, 1986,) but here our concern
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Figure 4: Graph from the National Center for Education Statistics (1997) report comparing
average math test scores of students in different states. Shaded comparisons represent
differences that are statistically significant after a multiple comparisons correction. The full
table printed in the report shows all paired comparisons. We argue that these multiple-
comparisons adjustments make no sense, as they are based on the irrelevant model in which
true population differences are exactly zero.
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is with the formulation as a multiple comparisons problem.

Concerns with the classical multiple comparisons display. Here is a situation in

which most classical multiple comparisons adjustments, such as the Bonferroni adjustment

that was used, will not be appropriate because we know ahead of time that the null hy-

pothesis (zero average differences between states) is false, so there is no particular reason to

worry about the Type 1 error rate. Therefore, any motivation for multiple comparisons then

rests either on (a) wanting more than 95% of the 95% intervals to contain the true values,

or (b) wanting a lower Type S error rate, in other words, we want to minimize the chance

of, for instance, stating that New Jersey has higher average test scores than Pennsylvania

when, in fact, the opposite is the case.

With regard to 95% intervals, we will do better using multilevel modeling, either on the

raw state averages from any given year or, even better, expanding the model to include

state-level predictors and test scores from other years. If Type S error rates are a concern,

then, again, a multilevel model will more directly summarize the information available.

Of course the objection may be raised that although we may accept that the true

differences are not exactly zero, but what about the null hypothesis that they are nearly

zero? Our reply is that this weaker version of classical hypothesis testing doesn’t work here

either. One way to see this is that the data used to create Figure 3 clearly reject either of

these null hypotheses. But the multiple comparisons procedures just plug along ignoring

this information, widening the confidence intervals as new comparisons are added.

Multilevel model and corresponding display of comparisons. As an alternative,

we fit a multilevel model: yj ∼ N(αj , σ
2
j ), where j = 1, . . . , J are the different states, and yj

is the average fourth grade mathematics score for the students who took the test in state j.4

The parameters αj represent the true means in each state—that is, the population averages

that would be obtained if all the students in the state were to take the test. We model

these population averages with a normal distribution: αj ∼ N(µα, σ2
α). Finally, we assign

uniform prior distributions to the hyperparameters µα, σα, σj .

One advantage of working within the Bayesian multilevel modeling paradigm in which

models are fit using simulation is that the output is easy to manipulate in order to examine

whatever functions of the parameters are of primary interest. In this case, based on the

fitted multilevel model, we simulate S = 1000 draws of state effect parameters to construct a

4We recognize that this model could be improved, most naturally by embedding data from multiple years
in a time series structure. The ability to include additional information in a reliable way is indeed a key
advantage of multilevel models; however, here we chose a simple model because it uses no more information
than was used in the published tables.
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Comparisons of Average Mathematics Scale Scores for
Grade 4 Public Schools in Participating Jurisdictions
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Figure 5: Posterior inference of National Center for Education Statistics (1997) report
from a fitted multilevel model. Compared to the classical multiple comparisons summaries
in Figure 4, these Bayesian intervals are more confident in making compairsons. This is
because the states are far apart in this dataset, thus little pooling is done and the classical
multiple comparisons adjustments are overkill.
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posterior interval for the difference in true means for each pair of states. For the purpose of

comparing to the classical approach, we set a 0.05 cutoff: for each pair of states j, k, we check

whether 95% or more of the simulations show αj > αk. If so—that is, if αj > αk for at least

950 of the 1000 simulations—we can claim with 95% confidence that state j outperforms

state k. We plot the results in Figure 5. States that have effects that are significantly lower

are shaded with light blue, the ones which are higher are shaded with darker blue, and ones

that are not significantly different are left as white. Simulation variability adds some noise

to this plot, as can be seen, for example, in some of the non-monotonic patterns of the

comparisons across states.

Compared to the classical multiple comparisons summaries in Figure 4, the multilevel

estimates in Figure 5 are more informative, with more claims with confidence and fewer

cells in the central region where comparisons are not statistically significant. The classical

procedure overcorrects for multiple comparisons in this setting where the true differences

between states are large. (At the other extreme, classical procedures undercorrect for

multiple comparisons when true differences are small, as we discuss in Section 4.3.

The classical multiple comparisons procedure as shown in Figure 4 does not “listen” to

the data. When there is evidence for a multiple comparisons problem, our procedure makes

corrections. When there is no evidence for a multiple comparisons problem our procedure

is similar to the direct inference without a multiple comparisons correction.

4.3 SAT coaching in 8 schools

Rubin (1981) discusses an example (reprised in chapter 5 of Gelman et al., 2003) of a meta-

analysis of randomized experiments of coaching for the Scholastic Aptitude Test (SAT) in

eight high schools in New Jersey. This example is notable as one of the first fully Bayesian

analysis of a hierarchical model and also because there was no evidence in the data of

differences between the treatment effects in the different schools. (And, in fact, the total

estimated effects are small.) The first two columns of numbers in Figure 6 give the data.

Just to get a sense of the variation, the standard deviation of the eight school estimates is

10, which is of the same order as the standard errors.

Classical and Bayesian analysis. This is the sort of situation where one might worry

about multiple comparisons. (In the actual data in Figure 6, none of the comparisons is

statistically significant, but as we discuss below, they could be in a replication of the study.)

The hierarchical Bayesian analysis of Rubin (1981) has no multiple comparisons prob-

lems, however. The group-level variance is estimated to be low—the marginal maximum

likelihood or posterior mode estimate is zero, and the Bayesian analysis averages over the
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Raw estimate Standard error Bayes Bayes
of treatment of raw effect posterior posterior

School effect, yj estimate, σj mean sd

A 28 15 11 8
B 8 10 7 6
C −3 16 6 8
D 7 11 7 7
E −1 9 5 6
F 1 11 6 7
G 18 10 10 7
H 12 18 8 8

Figure 6: First two columns of numbers: Data from the 8-schools experiment of Rubin
(1981). A separate randomized experiment was conducted in each school, and regression
analysis gave separate treatment effect estimates (labeled as yj above) and standard errors
(labeled as σj). Effects are on the scale of points in the SAT-Verbal test (which was scored
from 200 to 800). An effect of 8 points corresponds to approximately 1 additional test item
correct.
Last two columns: Posterior mean and standard deviation of treatment effects, as estimated
from a Bayesian multilevel model. The evidence is that the effects vary little between
schools, hence the estimates are pooled strongly toward the common mean. None of the
comparisons from the Bayesian inference are even close to statistically significant.

posterior distribution, which is largely below 10—and as a result the Bayes estimates are

pooled strongly toward the common mean.

Simulation study with small effects. To get further insight into this example, we

perform repeated simulations of a world in which the true treatment effects in different

schools come from a normal distribution with standard deviation 5 (a plausible estimate

given the data in Figure 6). For each replication, we simulate eight true values θ1, . . . , θ8

from this distribution, then simulate data y1, . . . , y8 from the eight separate normal distri-

butions corresponding to each θj. The standard deviations σj for each of these distributions

is given by Figure 6. Note that relative to the within group standard deviations the between

group standard deviation of 5 is small. We then performed both classical and hierarchical

Bayesian analyses. For each analysis, we computed all (87̇)/2 = 28 comparisons and count

the number that are statistically significant (that is, where the difference between the esti-

mates for two schools is more than 1.96 times the standard error for the difference), and of

these, we count the number that have the correct sign.

We performed 1000 simulations. Out of these simulations, 6.7% of the classical intervals

were statistically significant and, of these, 64% got the sign of the comparison correct.

Multiple comparisons corrections are clearly necessary here if we want to avoid making

16



unreliable statements. By comparison, only 0.5% of the Bayesian intervals are statistically

significant (with 73% getting the sign of the comparison correct). The shrinkage of the

Bayesian analysis has already essentially done a multiple comparisons correction.

To look at it another way: the classical estimates found at least one statistically signif-

icant comparison in 60% of our 1000 simulations. In the Bayesian estimates, this occurred

only 6% of the time. The Bayesian analysis here is using a uniform prior distribution on the

hyperparameters—the mean and standard deviation of the school effects—and so it uses no

more information than the classical analysis. As with a classical multiple comparisons pro-

cedure the Bayesian inference recognizes the uncertainty in inferences and correspondingly

reduces the number of statistically significant comparisons.

Simulation study with large effects. To get a sense of what happens when effects are

more clearly distinguishable, we repeat the above simulation but assume the true treatment

effects come from a distribution with standard deviation 10. This time, 12% of the classical

comparisons are statistically significant, with 88% of these having the correct sign. From

the Bayesian analysis, 4% of the comparisons are statistically significant, with 96% of these

having the correct sign. Whether using classical multiple comparisons or Bayesian hierar-

chical modeling, the price to pay for more reliable comparisons is to claim confidence in

fewer of them.

4.4 Teacher and school effects in NYC schools

Rockoff (2004) and Kane, Rockoff, and Staiger (2007) analyzed a huge dataset from the New

York City school system in order to assess the importance of factors such as educational

background, training, and experience in determining the effectiveness of teachers. One of

the findings was that variation in teacher effects on student grades was moderately large,

about 0.15 standard deviations on a scale in which standard deviation was calculated using

test scores for all students of a given grade level in the system.5

This study could have been set up as a multiple comparisons problem, trying to get

appropriate p-values for comparing thousands of teachers or for distinguishing individual

teacher effects from zero. Instead, though, the researchers learned from the scale of unex-

plained variation in teacher effects—the residual group-level variance—that teacher effects

are important and are largely not explained by background variables, except for a small

improvement in performance during the first decade of a teacher’s career.

5Despite the observational nature of the data, it was reasonable to attribute these patterns to causality
because: (1) the analysis controlled for pretest scores and other student and class-level variables from before
the students were assigned to the particular teachers; (2) estimated teacher effects were persistent from year
to year, with top-performing teachers staying in the top year after year; and (3) teachers have essentially no
power to select or remove students from their classes.

17



4.5 Fishing for significance: do beautiful parents have more daughters?

In an analysis of data from 2000 participants in the U.S. adolescent health study, Kanazawa

(2007) found that more attractive people were more likely to have girls, compared to the

general population: 52% of the babies born to people rated “very attractive” were girls,

compared to 44% girls born to other participants in the survey. The difference was sta-

tistically significant, with a t-value of 2.43. However, as discussed by Gelman (2007), this

particular difference—most attractive versus all others—is only one of the many plausible

comparisons that could be made with these data. Physical attractiveness in the survey used

by this paper was measured on a five-point scale. The statistically significant comparison

was between category 5 (“very attractive”) vs. categories 1–4. Other possibilities include

comparing categories 4–5 to categories 1–3 (thus comparing “attractive” people to others),

or comparing 3–5 to 1–2, or comparing 2–5 to 1. It is not a surprise that one of this set of

comparisons comes up statistically significant.

This study is a good example of a situation in which classical multiple comparisons

adjustments are reasonable. Actual sex ratio differences tend to be very small—typically less

than 1 percentage point—and so the null hypothesis is approximately true here. A simple

Bonferroni correction based on the number of possible comparisons (20) would change the

critical value from .05 to .0025 in which case the finding above (with p-value of .015) would

not be statistically significant.

With a properly designed study, however, multiple comparisons adjustments would not

be needed here either. To start with, a simple analysis (for example, linear regression of

proportion of girl births on the numerical attractiveness measure) should work fine. The

predictor here is itself measured noisily (and is not even clearly defined) so it would probably

be asking too much to look for any more finely-grained patterns beyond a (possible) overall

trend. More importantly, the sample size is simply too low here, given what we know from

the literature on sex-ratio differences. From a classical perspective, an analysis based on

2000 people is woefully underpowered and has a high risk of both Type S and Type M

errors.

Alternatively, a Bayesian analysis with a reasonably prior distribution (with heavy tails

to give higher probability to the possibility of a larger effect) reveals the lack of information

in the data (Gelman and Weakliem, 2007). In this analysis the probability that the effect

is positive is only 58%.

4.6 Examining impacts across subgroups

We build on our initial example to illustrate how a multi-site analysis could be expanded to

accommodate subgroup effects as well. The most important moderator in the Infant Health
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and Development Program study was the birth-weight group designation. In fact there was

reason to believe that children in the lower low-birth-weight group might respond differently

to the intervention than children in the higher low-birth-weight group. We expand our model

to additionally allow for differences in treatment effects across birth weight group,

yi ∼ N(γj[i] + δL
j[i]Pi(1 − Bi) + δH

j[i]PiBi, σ
2),

Here the treatment effect corresponding to person i’s site (indexed by j) differs depending on

if the child belongs to the lower low-birth-weight group δL
j[i] or the higher low-birth-weight

group δH
j[i]. This time each of these sets of parameters gets it’s own distribution

δL
j ∼ N(µL, ω2

L), and

δH
j ∼ N(µH, ω2

H).

In this case we allow the treatment effects for the lower and higher low-birth-weight children

to be correlated with each other with correlation parameter denoted ρ. Again we have

allowed the intercept, γ, to vary across sites and have specified prior distributions for the

hyperparameters that should have little to no impact on our inferences.

Figure 7 plots some of the results from this model. The results for the lower low-birth-

weight group are quite volatile in the classical setting, where the information we have about

the relationship between the sites is ignored. The Bonferroni correction serves only to

reinforce our uncertainty about these estimates. On the other hand, the results from the

Bayesian multilevel model for this group have been partially pooled towards the main effect

across groups and thus are less subject to the idiosyncracies that can arise in small samples

(the sample sizes across these sites for this group range from 18 to 43). The results for the

higher low-birth-weight children are more stable for all analyses relative to those for the

lower low-birth-weight group due in part at least to the larger sample sizes (they range from

64 to 100). The results from the Bayesian multilevel analysis though are the most stable

and lead to substantively different conclusions in that not one of the 95% intervals covers

zero. In comparison, in the classical analyses, one site fails to reject the null hypothesis

when we don’t adjust for multiple comparisons and when we do several more are on the

borderline of significance.

5 Multiple outcomes and other challenges

Similar issues arise when researchers attempt to evaluate the impact of a program on many

different outcomes. If you look at enough outcomes eventually one of them will appear to

demonstrate a positive and significant impact, just by chance. In theory, multilevel models
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Figure 7: Plots of treatment effect point estimates and 95% intervals across the eight Infant
Health and Development Program sites now broken down by birth-weight group as well.
The left panel display classical estimates from a linear regression. The middle panel displays
the same point estimates as in the left panel but the confidence intervals have been adjusted
to account for a Bonferroni correction. The right panel displays 95% intervals and means
from the posterior distributions for each of the eight site-specific treatment effects generated
by fitting a multilevel model.
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can be extended to accommodate multiple outcomes as well. However this often requires a

bigger methodological and conceptual jump. The reason that multilevel modes were such

a natural fit in the examples described above is because all the estimated groups effects

were estimates of the same phenomenon. Thus it was reasonable to assume that they were

exchangeable. Basically this means that we could think of these estimates as random draws

from the same distribution without any a priori knowledge that one should be bigger than

another (if we had such information then we would consider that bigger estimate to be a

draw from a different distribution). This is not always a reasonable assumption for a group

of outcomes.

On the other hand, there are some situations when modeling multiple outcomes simulta-

neously within a common multilevel model might be fairly natural. For instance, sometimes

researchers acquire several different measures of the same phenomenon (such as educational

achievement, behavioral problems, or attitudes towards related issues). It is also common

to measure the same attribute at several different time points over the course of the study.

This might require a slightly more complicated modeling strategy to account for trends

over time, but is otherwise a reasonable choice. But if many outcomes have been measured

across several disparate domains multilevel modeling might not be the optimal choice.

More generally, if you are comparing a set of exchangeable items, such as 50 states or

8 schools or 4 machine learning algorithms, it’s pretty easy to set up a multilevel model.

Some choices need to be made—normal distribution or t distribution, mixture model or not,

equal or unequal variances, etc.—but in practice it’s not hard to come up with a reasonable

model based on one’s general understanding of the situation. Even if the items differ in

recognizable ways, we can still make them exchangeable by including covariates, for example

statewide poverty levels or previous test scores in the NAEP example.

Harder problems arise when modeling multiple comparisons that have more structure.

For example, 3 varieties of treatments and subgroups classified by 2 sexes and 4 racial

groups. We would not want to model this 2 × 3 × 4 structure as 24 exchangeable groups.

We think that, even in these more complex situations, multilevel modeling should and will

eventually take the place of classical multiple comparisons procedures. After all, as far as

we know, every classical multiple comparisons procedure in existence is exchangeable in the

sense of treating all the different comparisons symmetrically. As with in many settings,

there is a limit to what can be done by building upon the rickety structure of least squares.

The more comparisons we have, the more stable our multilevel models will be.

21



6 Conclusion

Multiple comparisons can indeed create problems and it is useful to address the issue.

However, statistical methods must be mapped to the setting. Classical Type 1 and Type

2 errors and false discovery rates are based on the idea that the true effect could really be

zero (see Johnstone and Silverman, 2004, and Efron, 2006, for connections between these

ideas and hierarchical Bayes methods). Effects that are truly zero (not just “small”) can

make sense in genetics (Efron and Tibshirani, 2002) but not in social science. We prefer to

frame the issue in terms of Type S or Type M errors.

Therefore for a social science or program evaluation setting we do not recommend clas-

sical fixes that alter p-values or (equivalently) make confidence intervals wider. Instead, we

prefer multilevel modeling, which shifts point estimates and their corresponding intervals

closer to each other (that is, performs partial pooling) where necessary—especially when

much of the variation in the data can be explained by noise. By comparison, classical in-

tervals can have Type S error rates as high as 50%; then, multiple comparisons can pose a

real threat.

Functions for fitting multilevel models are now available in many statistical software

packages; therefore, implementing our suggestions should not be overly burdensome. This

should yield better results than the simplest multiple comparisons corrections and should

not pose a greater burden than performing one of the fancier types of classical multiple

comparisons corrections. Moreover, fitting the multilevel model should result in positive

externalities of better point estimates.

We recognize that multilevel modeling can prove to be more of a research challenge

for complicated structures as discussed above. More research needs to be done in this

area. However we believe it is more worthwhile to invest research time and effort towards

expanding the multilevel model framework than to invest in classical multiple comparisons

adjustments that start from a perspective on the problem that we find to be unhelpful.
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