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Abstract1

Temperature sensitivity—the magnitude of a biological response per ◦C—is a fundamen-2

tal concept across scientific disciplines, especially biology, where temperature determines the3

rate of many plant, animal and ecosystem processes. Recently, a growing body of literature4

in global change biology has found temperature sensitivities decline as temperatures rise (Fu5

et al., 2015; Güsewell et al., 2017; Piao et al., 2017; Dai et al., 2019). Such observations have6

been used to suggest climate change is reshaping biological processes, with major implications7

for forecasts of future change. Here we present a simple alternative explanation for observed8

declining sensitivities: the use of linear models to estimate non-linear temperature responses.9

Corrections for the non-linearity of temperature response in simulated data and long-term10

phenological data from Europe remove the apparent decline. Our results show that rising11

temperatures combined with linear estimates based on calendar time produce observations12

of declining sensitivity—without any shift in the underlying biology. Current methods may13

thus undermine efforts to identify when and how warming will reshape biological processes.14
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1 Main text15

Climate change has reshaped biological processes around the globe, with shifts in the timing of16

major life history events (phenology), carbon dynamics and other ecosystem processes (IPCC,17

2014). With rising temperatures, a growing body of literature has documented changes in tem-18

perature sensitivity—the magnitude of a biological response scaled per ◦C. Many studies have19

found declining responses to temperature in recent decades (Fu et al., 2015; Güsewell et al.,20

2017; Piao et al., 2017; Dai et al., 2019), and some have reported more uniform sensitivities21

across elevation (Vitasse et al., 2018), or lower sensitivities in warmer, urban areas (Meng et al.,22

2020).23

24

Most studies attribute changes in temperature sensitivity to shifts in underlying biological pro-25

cesses. For example, researchers have suggested weaker temperature sensitivities are evidence of26

increased light limitation in the tundra (Piao et al., 2017), or a decline in the relative importance27

of warm spring temperatures for spring phenological events (e.g., leafout, insect emergence) in28

the temperate zone (Fu et al., 2015; Meng et al., 2020), as other environmental triggers (e.g.,29

winter temperatures that determine ‘chilling’) play a larger role. Yet, despite an increase in30

studies reporting declining or shifting temperature sensitivities, none have provided strong evi-31

dence of the biological mechanisms underlying these changes (e.g., Fu et al., 2015; Meng et al.,32

2020). The missing mechanisms may be hidden in the data: environmental factors moderate33

biological processes in complex ways (Chuine et al., 2016; Güsewell et al., 2017), are strongly34

correlated in nature (e.g., Fu et al., 2015), and temperature variance shifts over time and space35

(Keenan et al., 2020).36

37

Here we propose a simpler alternative explanation: the use of linear models for non-linear re-38

sponses to temperature. Researchers generally use methods with assumptions of linearity to39

calculate temperature sensitivities, often relying on some form of linear regression to compute40

a change in a quantity—days to leafout or carbon sequestered over a fixed time, for example—41

per ◦C, thus ignoring that many biological responses to temperature are non-linear. We show,42

theoretically then with simulated and empirical data, how the use of linear methods for non-43
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linear responses can produce an illusion that the mechanisms underlying biological processes are44

changing.45

46

Many observed biological responses are the result of continuous non-linear processes that depend47

on temperature, which are discretized into temporal units for measurement. For example, a bio-48

logical response, such as leafout, occurs when a certain thermal sum is reached (Dijkhuis, 1956;49

Lindsey and Newman, 1956), and plants will reach this threshold more quickly—in calendar50

time—when average daily temperatures are warmer (Valentine, 1983; Lechowicz, 1984; Kramer,51

2012). Biologically, however, the plants may require the same temperature sum. Indeed any52

process observed or measured as the time until reaching a threshold is inversely proportional to53

the speed at which that threshold is approached. Temperature determines the speed of many54

biological processes (Bonan and Sirois, 1992; Hinrichsen, 2009; Hofmann and Todgham, 2010).55

Thus, at very low temperatures plants would never leaf out and at higher temperatures they56

could leaf out in only a matter of days—yet sensitivities estimated from linear regression at57

higher (warmer) temperatures would appear much lower than those observed at lower temper-58

atures. Warming acts to step on the biological accelerator, producing shifts in estimates when59

non-linear responses are modeled as linear.60

61

We show this by deriving the relationship between a biological response and temperature using62

a simple stochastic model, which describes the first time a random process hits a threshold (see63

‘A first-hitting-time model of leafout’ in Supplementary Information). Our model holds the64

temperature threshold for leafout constant (Hunter and Lechowicz, 1992; Man and Lu, 2010;65

Zohner et al., 2020). Even though the mechanism by which temperature leads to leafout does not66

change, the model produces declining sensitivity—as measured in days per ◦C—with warming.67

Indeed, under this model constant temperature sensitivity would be evidence that the temper-68

ature threshold is not constant and the mechanisms underlying the leafout process have changed.69

70

Simulations show that correcting for non-linearity using a log transformation removes appar-71

ent declines in temperature sensitivity (Fig. 1, S2, code link). In empirical long-term leafout72

data from Europe, correcting for non-linearity in responses produces little evidence for declining73
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sensitivities with warming (Figs. 1, S6, S7). An apparent decline in sensitivity for silver birch74

(Betula pendula) from -4.3 days/◦C to -3.6 days/◦C from 1950-1960 compared to 2000-2010 dis-75

appears using a log-log regression (-0.17 versus -0.22). We see similar corrections using 20-year76

windows, and a potential increase in sensitivity for European beech (Fagus sylvatica, see Ta-77

bles S1-S2). Moreover, the variance of the leafout dates of both species declines as temperatures78

rise—(declines of roughly 50%, see Tables S1-S2), which is expected under our model as warming79

accelerates towards the thermal threshold that triggers leafout (and in contrast to predictions80

from changing mechanisms, see Ford et al., 2016).81

82

Fundamentally rising temperature should alter many biological processes, making robust meth-83

ods for identifying these changes critical. In spring plant phenology, where declining sensitivities84

are often reported (Fu et al., 2015; Piao et al., 2017; Dai et al., 2019), warming may increase85

the role of ‘chilling’ (determined mainly by winter temperatures) and daylength (Laube et al.,86

2014; Zohner et al., 2016)—potentially increasing the thermal sum required for leafout at lower87

values of these cues (Polgar et al., 2014; Zohner et al., 2017; Flynn and Wolkovich, 2018). Ad-88

justing our simulations to match this model yielded shifts in sensitivities with warming. Unlike89

a model with no underlying biological change, however, after correcting for non-linearity, the90

shifts in sensitivities remained and they occurred in step with the biological change (Fig. S4a,91

c). In contrast, sensitivities estimated from a linear model showed shifts across the entire range92

of warming, well before the simulated biological change (Fig. S4a, c). Further, we found that93

an increase in the thermal sum required for leafout should yield larger in magnitude temper-94

ature sensitivities, not smaller, as often expected (e.g., Fu et al., 2015), thus highlighting the95

complexity of what trends to expect in sensitivities with warming (see ‘Common hypotheses for96

declining sensitivity’ in Supplementary Information for an extended discussion).97

98

Our theoretical model and empirical results show that rising temperatures are sufficient to ex-99

plain declining temperature sensitivity. It is not necessary to invoke changes to the mechanisms100

that underlie the biological processes themselves. Our results provide a simpler explanation for101

observations of declining temperature sensitivities, but do not rule out that important changes102

in biological processes may underlie such declines. Instead, our results highlight how the use103
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of linear models may make identifying when—and why—warming alters underlying biology far104

more difficult.105

106

Inferring biological processes from statistical artifacts is not a new problem (e.g., Nee et al.,107

2005), but climate change provides a new challenge in discerning mechanism from measure-108

ments because it affects biological time, while researchers continue to use calendar time. Other109

fields focused on temperature sensitivity often use approaches that acknowledge the non-linearity110

of responses (e.g., Yuste et al., 2004). Researchers have called for greater use of process-based111

models (Keenan et al., 2020), which often include non-linear responses to temperature, but112

rely themselves on exploratory methods and descriptive analyses for progress (Chuine et al.,113

2016). The challenge, then, is to interrogate the implicit and explicit models we use to interpret114

data summaries, and to develop null expectations that apply across biological and calendar time.115

116
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Figure 1: Shifts in temperature sensitivities (response per ◦C) with warming occur

when using linear models for non-linear processes. Estimated sensitivities decline (in

magnitude) with warming in simulations (shading, estimated across 45 sites with a base tem-

perature of normal(6,4), variation comes from fluctuation in the Monte Carlo simulations) with

no underlying change in the biological process when sensitivities were estimated with linear

regression (left). This decline disappears when performing the regression on logged predictor

and response variables (right). Such issues may underlie declining sensitivities calculated from

observational data, including long-term observations of leafout across Europe (for Betula pen-

dula from PEP725 from for the 45 sites that had complete data for 1950-1960 and 2000-2010),

which show a lower sensitivity with warming when calculated on raw data, but no change in

sensitivity using logged data. Shading, symbols and lines represent means ± standard deviations

of regressions across sites. See Supplementary Information for a discussion of why estimated

sensitivities are -1 or lower in non-linear models.
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