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Abstract

It is not always clear how to adjust for control data in causal inference, balancing the
goals of reducing bias and variance. We show how, in a setting with repeated experiments,
Bayesian hierarchical modeling yields an adaptive procedure that uses the data to determine
how much adjustment to perform. The result is a novel analysis with increased statistical
efficiency compared to the default analysis based on difference estimates. We demonstrate this
procedure on two real examples, as well as on a series of simulated datasets. We show that the
increased efficiency can have real-world consequences in terms of the conclusions that can be
drawn from the experiments. We also discuss the relevance of this work to causal inference and
statistical design and analysis more generally.

1. Introduction

Consider the following problem. Experiments j = 1, . . . , J are performed, and each is paired with a
sham experiment with a null treatment. Label the estimated treatment effects for each experiment
j as yj1 for the active data and yj0 for the sham data. It is standard practice to estimate the
treatment effect in experiment j as yj1 − yj0. But this bias adjustment can add noise. In many
cases, it is not a priori obvious whether the sham experiments can be safely discarded or not. The
same problem arises in observational studies in economics with the difference-in-differences estimate
(see, e.g., Ashenfelter, Zimmerman, and Levine1), where, again, subtracting the baseline difference
can reduce bias but at the cost of increasing variance.

How can we decide whether to adjust for the sham data and how best to do so, if we do adjust?
We propose a hierarchical Bayesian approach which is broadly consistent with modern ideas of
regularization in causal inference for varying treatment effects (e.g., Hill2 and Wager and Athey3).
We move beyond standard Bayesian meta-analysis (e.g., Smith, Spiegelhalter, and Thomas4 and
Higgins and Whitehead5) by partially pooling biases as well as the treatment effects, thus allowing
an adjustment that adapts to observed variation in the sham data. Our approach uses Bayesian
multilevel modeling and is most generally effective when the number of experiments, J , is large.
When J is small, strong prior information is required to most efficiently use the sham information;
when J is large, the relevant hyperparameters can be estimated from the data.

The core contributions of this paper are: (1) a focus on a problem that arises in many areas
of science when analyzing repeated controlled experiments, and where an existing default method
can yield demonstrably poor performance, (2) a solution, along with code to implement it, (3) a
method for interpreting the resulting estimate as an approximate partial adjustment, and (4) a set
of simulation-based evaluations of the method that are directly relevant to the ways in which these
studies are reported.

We demonstrate the need for a solution to the sham-adjustment problem, and our recommended
method, in the context of two real examples. First, we consider a series of laboratory experiments
on the effects of electromagnetic fields on calcium flow in the brain. The results of these experiments
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were influential in a public health debate regarding cancer clusters that had been found near electric
power lines. For the experimental results under study, it possible to greatly improve the published
analysis by modeling the bias rather than simply subtracting the sham estimate, and the new
analysis alters the scientific conclusions. As a second case study, we consider a recent, highly
cited meta-analysis on repetitive transcranial magnetic stimulation as a treatment for depression
by Berlim et al.6 Our method addresses a problem that is widely found across science, however,
whenever repeated controlled experiments are analyzed, and we could have equally have considered
the studies of Fuchikami et al.7, Kádár et al.8, or Le Quément et al.9, to name a few.

2. The problem and proposed solution

2.1. The model and two estimates

Suppose that, for each of j = 1, . . . , J , two experiments have been conducted, yielding estimate
yj1 and standard error sj1 from the active-treatment experiment and yj0 and sj0 from the sham-
treatment experiment. We consider the following model that is intended to capture the experiment
and estimation process for each pair of experiments j, where we assume statistical independence
between all pairs of experiments:

yj1 ∼ normal(θj + bj , sj1)

yj0 ∼ normal(bj , sj0). (1)

Here, θj is the treatment effect of interest and bj is an experimental bias shared by the real and sham
treatments. In modeling the bias in this way we are following the general approach of Greenland10.
For simplicity of presentation and for application to the meta-analysis problem, we shall assume
that the estimates and standard errors are given, and that the sample size in each experiment
is large enough that it is reasonable to approximate the information from the data in the form of
normal likelihoods with known variances. It would not materially affect the methods or conclusions
of this paper if we were to go to the raw data (where available) or to replace the normal with t
likelihoods corresponding to the degrees of freedom of the data in each experiment.

We start by considering two estimates of the treatment effect θj : the exposed-only estimate,
yj1, and the difference estimate, yj1 − yj0.

Under model (1), the difference estimate is unbiased—indeed, it is the only unbiased estimate
of θj . However, performing this subtraction adds noise, doubling the variance if the standard errors
of the active treatment data and sham are the same. If the bias bj in the experiments were zero,
the exposed-only estimate would clearly be the better choice. More generally, depending on the
size of the bias, bj , it could be more effective to partially adjust for the sham rather than to fully
subtract yj0.

At this point, a scientist might feel that the safe choice would be to use the difference estimate,
paying the price of a higher mean squared error, as it could seem risky to accept bias. Researchers
are often trained to think of bias as the primary concern, with the minimum-variance unbiased
estimator being optimal11. We suspect that such an attitude is not as prevalent as in the past,
now that we are used to regularization in methods ranging from lasso to deep learning to multilevel
regression, but it remains a starting point in many analyses.

In the present paper we shall consider the exposed-only and difference estimates as two extreme
cases of a Bayesian procedure that performs meta-analysis on the treatment effects and biases.
We first present the Bayesian model, then demonstrate its merits on the applied example that
motivated this research as well as on a more recent example that illustrates different aspects of the
model, and then present methods for understanding and evaluating the inferences.
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2.2. Multilevel model and Bayesian analysis

We have set up model (1) in a way to reflect the scientific choices indicated in design and data
collection. The next step is the model for the treatment effects and the biases. This is the multilevel
part of the model, and by default we will use normal distributions (again, assuming independence
across the different values of j):

bj ∼ normal(µb, σb)

θj ∼ normal(µθ, σθ). (2)

We briefly go through the hyperparameters of this model:

• µθ, σθ are the mean and standard deviation of the true effects. µθ and σθ determine the
partial pooling in the estimates of the individual θj ’s.

• µb is the average experimental bias and will equal zero if the sham treatments have no effect.

• σb is the variation in the biases across experiments and, again, will equal zero if the sham
treatments have no effect.

We need to include an average sham effect and variation in the sham effects in the model to allow for
the possibility of bias. This is a matter of respecting the experimental design: the sham treatments
were included in the study for a reason.

We can fit the model using Bayesian inference with default uniform priors on the hyperpa-
rameters µθ, σθ, µb, σb, with the understanding that informative priors could be used in problems
where such prior information is readily available. We choose a Bayesian approach (rather than
using marginal maximum likelihood to obtain a point estimate of the hyperparameters) because it
accounts for the uncertainty in the hyperparameters, and also for computational convenience—we
can fit our model directly in Stan12, and it is easy to extend the Stan model to include departures
from normality, linearity, and exchangeability as desired.

Model (2) represents a default, or starting point. In real-world meta-analyses there can be
additional prior information, and the J studies will differ in various known ways. Suppose we have
a predictor xj assigned or observed for each study, j. Then it will make sense to allow the expected
treatment effect to vary by x, thus replacing the exchangeable model for θ in (2) by something like,

θj = g(xj), (3)

where g is a stochastic function whose distribution will itself depend on hyperparameters, for
example a linear regression with errors, g(xj) ∼ normal(a + bxj , σ

θ), or a Gaussian process that
penalizes discrepancies between g(xj) and g(xk) for nearby pairs (xj , xk). The choice of model for
g will depend on the particular applied problem.

It would also be possible to add structure to the model for the biases bj . For example, a
correlation between bj and θj would allow biases to be larger under conditions of larger treatment
effects, which could make sense in some contexts.

2.3. Frequency evaluation

In applied statistics it is not enough to come up with a good estimate; it is also necessary to
understand it and compare to previously existing approches. To this end, we compare the estimated
treatment effects under the hierarchical model to the exposed-only estimates, yj1, and the difference
estimates, yj1 − yj0. We conduct this evaluation using a simulation study, as we demonstrate in
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Section 5 for our motivating example. The simulation study is conducted to allow a range of values
for the crucial parameter σb which governs the value of the information from the sham experiments.

For each of the three estimates, we then compute the following four summaries: (i) the propor-
tion of the J estimates that are statistically significant (that is, where the estimate ±1.96 standard
error or Bayesian 95% posterior interval excludes zero), (ii) the type S error rate (the proportion
of statistically significant estimates that are the wrong sign), (iii) the mean squared error of the
J estimates compared the true values θj (which by the design of the simulation are known to us),
and (iv) the correlation between the ranks of the J estimates and the ranks of the true θj ’s.

We choose these summaries because they represent four different practical goals of this sort of
study: (i) identification of experiments where the treatment effect is statistically distinguishable
from zero, (ii) validity of these claims of confidence, (iii) accurate estimation of treatment effects,
and (iv) ranking of which results are strongest and most worthy of further study. It is important
in any frequency evaluation to consider statistical properties that are relevant to the task at hand,
and we argue for the relevance of these measures in the context of our applied example.

2.4. Relevance and novelty of this procedure

This model can apply to a large set of problems of repeated controlled experiments, such as arise
in biology, medicine, policy analysis, and other fields where a treatment effect is conjectured to
vary in some unknown way as a function of input conditions, so that the point of the study is not
merely to estimate an average treatment effect but also to estimate the individual θj ’s. In Section
3, we consider an example from biology in which the goal was to estimate the dependence of θ on
x; in Section 4 we consider a medical example where the distribution of the θj ’s was of interest.

The hierarchical model and Bayesian computation used in this paper are now familiar statistical
tools. What is new here is, first, their application to a causal inference setting where it is often
standard practice to simply subtract sham estimates (sometimes called a difference-in-difference
procedure) rather than to jointly model active and sham data; second, the frequency evaluation
demonstrating the superiority of the modeling approach under a wide range of conditions; and,
third, the expression of the Bayesian estimate as an approximate fractional adjustment for the
sham, which links these results to existing practice.

3. Applied example 1: Magnetic fields and calcium efflux

3.1. Background

The 1980s saw a concern regarding health effects of low-frequency magnetic fields, as a result of some
findings in epidemiology that children living near electric power lines had elevated risks of leukemia,
and this caught the interest of the news media13–15. One posited mechanism for a carcinogenic
effect here was that magnetic fields interfered with cell structure, and this general model was studied
in a series of experiments conducted at the U.S. Environmental Protection Agency, measuring the
effects on calcium efflux in chick brains. The studies were carefully conducted with an eye toward
theory, measurement, and statistical design16. Each chick brain was divided in two, with one half
of the brain randomly assigned to the treatment of exposure to an alternating current magnetic
field at a specified frequency and the other brain half given the control of no exposure to the field.
Between 28 and 36 chicks were employed in each experiment, and 38 experiments were performed,
representing magnetic field frequencies ranging from 1 to 510 Hz; see Blackman et al.17

As a check against systematic bias, each experiment was repeated under “sham” conditions,
with the same setup but with the magnetic field turned off. Each sham and real experiment was then
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Sham treatment Real exposure
Frequency (Hz) n Estimate yj0 (s.e. sj0) n Estimate yj1 (s.e. sj1)

1 32 −0.005 (0.041) 32 0.036 (0.041)
15 32 0.013 (0.042) 36 0.173 (0.034)
30 32 0.033 (0.032) 32 0.107 (0.035)
45 32 −0.010 (0.032) 32 0.181 (0.052)
. . . . . . . . . . . . . . .

Table 1: A portion of the data summaries from the chick brains experiment reported by Blackman
et al.17 Data continue at 15 Hz intervals all the way up through 510 Hz. As can be seen from the
above numbers, the sham estimates are statistically indistinguishable from zero, whereas the effects
are clearly positive for many of the real experiments.

analyzed to produce an estimated relative effect, along with a standard error. The experimental
design also included clustering, but we do not further consider that here. Unfortunately the authors
refused to share their data when requested, and so in our analysis we are restricted to the published
data summaries, which are the estimates and standard errors for each sham and real experiment.
A subset of these data summaries are displayed for clarity in Table 1.

In the published analysis, the effect of magnetic fields at each frequency was estimated by
subtracting the estimates from the real and sham exposures, adding the variances as is appropriate
for independent experiments. The estimate for each experiment j is then yj1 − yj0, with standard
error (σ2j1 + σ2j0)

1/2.
Is it appropriate to subtract the sham estimate? An alternative would be to simply use the

estimate from the real exposure, yj1 with its standard error, σj1, which discards the sham data
entirely and has the benefit of having approximately half the variance of the differenced estimator.

The difference, yj1 − yj0, would typically be considered a safe and conservative estimate as it
corrects for any biases shared by the two experiments, and it indeed was used in the published
paper and not questioned in that literature. However, as we shall see in our discussion of the
inferences and conclusions drawn from these data, reliance on the noisy differenced estimator may
well incur real scientific costs.

3.2. Originally published analysis

Blackman et al.17 presented the differenced estimates and categorized them based on levels of
statistical significance relative to the hypothesis of zero effects. The top row of Figure 1a shows
redrawn versions of the graphs in that paper. The top-left graph displays point estimates, shading
those that are statistically significant. The top-right graph shows p-values of the hypothesis of zero
effect at each frequency.a The authors divide these into three categories: those with p-values less
than 0.01, those with p-values between 0.01 and 0.05, and the rest.

This division based on statistical significance was a mistake, and it is a common mistake in
applied statistics; see Gelman and Stern18. Seemingly major differences in p-values are not neces-
sarily statistically significant or even close to significant. For example, p-values of 0.20 and 0.01
correspond to z-scores of 1.28 and 2.33, respectively (using the normal distribution here for sim-
plicity). So, even though p = 0.20 seems like no evidence at all, while p = 0.01 appears to be a very
strong result, their difference is a mere 1.05 standard errors, which can easily occur by chance.

aOur Figure 1b is slightly different from Figure 2 of Blackman et al.17 for reasons that are not clear to us, as our
displayed p-values are consistent with those in Table 1 of Blackman et al.17, but in any case the differences are minor
and do not affect the arguments of this paper. It was not possible to obtain the raw data from these experiments
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Figure 1: Top row: Redrawn versions of the graphs of Blackman et al.17, summarizing the chick
brains data by categorizing estimates at different frequencies based on their statistical significance:
(a) Estimates yj1 − yj0 plotted vs. frequencies xj. For three of the frequencies (165, 180, and 405
Hz) the experiment was performed twice, and in these cases we have jittered the two experimental
results so they both appear on the graph. Each bar is shaded if the experimental result is statistically
significant at the 5% level based on the appropriate t distribution. (b) Results of each experiment
displayed as a p-value.
Bottom row: Corresponding plots using only the exposed data, yj1. The patterns are similar but
with enough differences to change some of the reported results.

The use of a p-value-based decision rule had consequences. In the paper under discussion,
Blackman et al.17 used the summary shown in the top-right graph of Figure 1 to draw the following
conclusions: “those data with P -values less than 0.01, which extend from 15 to 315 Hz, could form
one set composed of two groups of 30 Hz . . . the response at 60, 90 and 180 Hz, the first odd
multiple of 60 Hz, with an elevated but not statistically reliable response at 30 Hz, may be part of
a second set . . . the response at 405 Hz may represent still another set . . . .” To their credit, the
authors emphasized that these are “only hypothetical constructs,” but these noisy results formed
the empirical conclusions of the paper and they motivated in the published paper a further three-
page speculation about physical models.

The specific claims from these and similar experiments also influenced perceptions of researchers
and the public regarding underlying mechanisms. For example, in an article published in a respected
national magazine, Brodeur14 reported, “Blackman was trying to figure out why fields with fre-
quencies of fifteen, forty-five, seventy-five, and a hundred and five hertz should have such a strong
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Figure 2: (a) Estimates ± standard errors of the effect of the sham treatment as a function of
frequency of the (turned off) electromagnetic field; (b) Sham vs. exposed estimates. Unsurprisingly,
given the careful design of the experiment, there is no evidence that the sham effects are anything
other than zero.

effect on calcium-ion outflow from chick-brain tissue, while fields of thirty, sixty, and ninety hertz
produced only a weak effect.”

3.3. Exploration of the sham data

Let us set aside concerns about summarizing experimental results by discretizing p-values, an
approach that has been increasingly contested in recent years19, and instead focus on the question
of what should be done with the data from the sham experiments in the chick study.

A glance at Table 1 suggests that nothing much seems to be going on in the sham data, which
is confirmed by examination of the entire dataset: the estimates fluctuate around the zero, with the
amount of variation consistent with the reported standard errors; see Figure 2a. This impression
can be confirmed with a simple χ2 test:

∑38
j=1(yj0/σj0)

2 = 21.3, which is quite a bit less than would

be expected under the χ2
38 distribution. This suggests there may be an problem with the standard

errors, as they seem to be too conservative—perhaps there was an error in their computation, as
the data were collected using a clustered design and perhaps this was not correctly handled in the
standard error calculations—but, in any case, there is no evidence for any variation in the effects
of the sham treatment. Furthermore, the mean of the 38 sham estimates is 0.01, which is both
substantively and statistically insignificantly different from the null, so the data do not contradict
the model of no sham effect. This should be no surprise—given that the magnetic fields were turned
off in the sham condition, we would not expect a null treatment to have any effect, and the sham
experiments represent an abundance of caution more than anything else.

In our remaining treatment of these data we shall take the sham estimates and standard errors
as reported; arguably, though, it would make sense to scale all the standard errors down by a factor
of
√

21.3/38 as an approximation to the adjustment that would be required, under the assumption
that some mistake was made in their calculation. Scaling these standard errors down would not
affect our main conclusions; indeed it would just make our advocacy of an alternative analysis even
stronger by increasing the precision of our inferences.

To continue with our main thread, in Figure 2b we look for patterns in the sham data another
way, by plotting the sham estimate yj0 vs. the exposed estimate yj1 for each frequency j. We see
no pattern, which again is consistent with the sham estimates being pure noise.
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3.4. Analysis not adjusting for the sham data

If the sham estimates are indeed nothing but noise, then it makes sense not to include them in
the estimated treatment effects. The resulting unadjusted analysis is simple: just report yj1 with
standard error σj1 at each frequency j. We could almost describe this as “analysis ignoring the
sham data” but that would not quite be correct. We did not ignore the sham data: we only decided
to exclude the sham data from our inferences after first analyzing the sham results and finding no
evidence distinguishing them from pure noise.

The bottom row of Figure 1 shows the results. We use the same sorts of displays as used in
the earlier published paper, not because we think it appropriate to summarize a set of experiments
using statistical significance but because we wish to demonstrate the potential practical gains that
could come from switching to the undifferenced estimates, even without considering alternative
inferential summaries.

For this example, it is clear from a modern perspective that the estimates yj1 − yj0 are inferior
to the simple yj1. The sham experiments may well have been an important part of the design of
the study, as they rule out a potential threat to validity in the causal inferences, but given what
the data look like, it is not necessary to include their data in the final estimates.

The challenges we address in this paper are, first, to come to this conclusion in a more systematic
way; second, to situate this in a general framework that can apply to other designs; third, to
come up with a compromise solution for settings where the sham data are noisy but contain some
information; and, fourth, to be able to report such a compromise estimate in a reasonable way.

3.5. Scientific consequences of the choice of analysis

We now go through the original conclusions drawn from the chick study and see how they could
have differed, had they been based on the bottom row of Figure 1 rather than the more noisy,
statistically inefficient summaries shown in the top row of that figure.

Perhaps most importantly, the overall impression of the data would have changed. Blackman
et al.17 started off by declaring: “These results demonstrate that certain frequencies are effective
(P < .05) in causing enhance calcium-ion efflux while others are not.” And, indeed, the upper-
left plot of Figure 1 shows a mix of positive and negative results, and most are not statistically
significant. In contrast, in the lower-left plot all the point estimates are positive, making it clear that
the results are consistent with a general pattern of positive effects with uncertainty at individual
frequencies.

Removing the sham correction affects more detailed conclusions as well. Blackman et al.17

pulled out patterns from the top-right graph Figure 1 that do not appear when this same p-value
classification is used in the bottom-right graph. They labeled one set of responses as occurring at
five frequencies at the low end—15, 45, 75, 105, and 135 Hz—but in the new graph the frequencies
of 30 and 60 Hz also fall in this p < 0.01 category, destroying the alternating pattern of positive
and null results. Relatedly, Blackman et al.17 placed 60, 90, and 180 Hz in together in a set of
intermediate p-values—but in the cleaner summary, this category contains 120 Hz rather than 60
Hz, obviating a discussion later in the paper of how “the data at 180 Hz could be the fundamental
of a nonlinear mechanism . . . leading to subharmonic frequencies that manifest at 90 and 60 Hz.”

The article also included speculation about what was going on at 405 Hz, which in the original
analysis was the only frequency at the high end with a statistically significant effect; see the top-left
graph of Figure 1. The revised, bottom-left, plot tells a completely different story: the estimate at
405 Hz is no longer statistically significant, but those at 420 and 450 Hz are. An entirely new set
of theories would be needed to explain this pattern.
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Parameter Estimate (s.e.) 95% interval
µθ 0.097 (0.015) [0.069, 0.126]
σθ 0.069 (0.014) [0.044, 0.099]
µb 0.004 (0.006) [−0.008, 0.017]
σb 0.008 (0.006) [0.000, 0.021]

Table 2: Posterior means, standard deviations, and 95% intervals for the hyperparameters in the
hierarchical model fit to the chick data.

We are not saying that it was a bad idea for the authors of the original paper to engage in
data-based scientific speculation. Rather, our point is that the statistically inefficient decision to
adjust for the sham data is not merely of theoretical interest; it has real effects on the empirical
conclusions from this study and also on the scientific explanations proposed for further study. The
analysis subtracting the sham estimates may have seemed at the time like a safe choice, but in this
example it simply added noise.

For an example of the practical impact of not fully modeling variation, consider this quote
from Blakeslee20: “This requirement for exact field geometries may help explain the ‘Cheshire cat
phenomenon’ in bioelectromagnetic experiments, Dr. Blackman said. Researchers have long been
vexed by a now-you-see-it, now-you-don’t problem as many experiments were not reproducible from
one laboratory to the next, he said.” It seems that active research effort was devoted to studying
experimental differences which well may have been explainable by noise. We consider this not a
criticism of these particular researchers so much as a general concern with the routine use of simple
statistical analyses (in this case, subtraction of the sham estimate) which lead to unnecessarily
variable conclusions.

3.6. Reanalysis using the multilevel model

We now fit the multilevel model (2) to the Blackman et al. data; inferences for the hyperparameters
appear in Table 2. The estimates of µθ and σθ imply a distribution of treatment effects with a clearly
positive mean, along with substantial variation, implying different effects at different frequencies.
But there is no evidence for any sham effects: both µb and σb are estimated to be essentially
zero—even at the highest end of the uncertainty interval, a value of 0.02 would be a tiny amount of
bias compared to treatment effects that are three to six times higher. The lack of evidence for any
sham effects is no surprise given the preliminary analysis shown in Figure 2. Again, the point of
our hierarchical model in this example is not to discover the evident lack of noticeable sham effects
but rather to be part of a general approach to this sort of problem.

Figure 6a shows the posterior mean and standard deviation of the treatment effect θj for each
experiment j. For comparison, we display in Figure 6b the raw estimates yj1±σj1 from the exposed
data. The estimates from the hierarchical model have been partially pooled toward the common
mean but otherwise show a pattern similar to that of the raw data, with the largest change being
the raw estimate at 255 Hz that had a very large standard error (the long error bar in Figure 6b)
and was thus pulled closer to the center of the distribution.

Again, we are not surprised that our Bayesian inferences are qualitatively similar to the raw
estimates from the exposed data. Recall that this whole example came up because the standard
recommendation to subtract the sham data yielded unnecessarily noisy estimates. We consider it
a success that hierarchical modeling gives us a general approach that also arrives at a reasonable
conclusion in this particular case.

In the data at hand we see no clear patterns or correlations that would warrant a more structured
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Figure 3: (a) Posterior mean ± standard deviation of each treatment effect θj from the hierarchical
model fit to the chick data. The fitted model estimated the sham effects to be essentially zero (see
discussion of Table 2), and so these estimated treatment effects come pretty much from the exposed
data alone. For three of the frequencies (165, 180, and 405 Hz) the experiment was performed twice,
and in these cases we have jittered the two experimental results so they both appear on the graph.
(b) For comparison, the raw estimates yj1 from the exposed data ± standard error. The Bayesian
hierarchical estimates on the left plot are partially pooled toward a common mean.

model for the treatment effects or the biases; however, in Appendix A we consider some alternative
models of the form (3), as a robustness check and also to demonstrate how such models could be
fit using Stan.

3.7. How common is the situation of zero sham effects?

In this example, the sham effects were estimated to be essentially zero. A reader might wonder
how rare this situation is and whether our example generalizes. We argue that this situation is, in
fact, quite common.

In the chick brains example, effect sizes are frequently quantified as a ratio between a pre- and
post-treatment measurement, both for the sham and real treatments. In case of a sham treatment
without effect, this ratio tends to be 1. Either subtracting 1 from both treatment and sham effects
or taking their logarithm leaves us with a measure of sham effects that is expected to be 0 in case
of a truly irrelevant sham treatment. More generally, controls are often expected to have no effect
and are just included in experiments to avoid a potential threat to validity. As discussed above, it
can make sense to include a sham treatment in the design even if its effects might be small, but
then the analysis should allow for that possibility, which in our model is done by including the
mean and variance of the sham effects as hyperparameters which will be near zero in that case.

4. Applied example 2: Meta-analysis of sham-controlled trials of rTMS for treating
major depression

4.1. Background

Depression is a highly prevalent public health issue with enormous social and economic cost. For a
large group (20–30%) of patients, existing treatments do not suffice to achieve remission. Moreover,
existing treatments can take a long time to achieve remission if they do at all and tend to be
associated with unpleasant side effects. For this reason, new treatment options for major depression

10



Sham treatment Real exposure
Study name Remission nj0 Total Nj0 Remission nj1 Total Nj1

George et al. (1997) 0 5 1 7
Berman et al. (2000) 0 10 1 10

...
...

...
...

...
Bakim et al. (in press) 1 12 9 23

Table 3: A portion of the data used for the rTMS meta-analysis reported by Berlim et al.6 The
data consist of remission and total counts observed in all the included studies for both real and sham
rTMS treatment.
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Figure 4: (a) Estimated effects for each of the rTMS experiments as reported by Berlim et al.6 (b)
Raw difference estimates yj1 − yj0 with standard errors (s2j1 + s2j0)

1/2.

are badly needed. In the last two decades, repeated transcranial magnetic stimulation (rTMS)
has emerged as a promising, non-invasive new treatment option. Specifically, rTMS treatment
is achieved by inducing electric currents within the brain by applying a changing magnetic field
(generated by electricity running through a coil of wire near the scalp of the patient).

Since its introduction as a potential treatment for depression, rTMS has been studied in a large
number of randomized control trials. Recently, Berlim et al.6 published a highly cited systematic
review and meta-analysis of such trials to assess the suitability of rTMS as a treatment for major
depression, estimating the response, remission and dropout rates. This meta-analysis included 29
suitable randomized, double-blind, sham-controlled trials out of the 396 such trials they previously
identified; in the present paper, we analyze the 15 of these trials that include data on remission
rates. In each trial, patients were exposed to a real or sham rTMS treatment, consisting of a coil
angled on the scalp or the use of a specific sham coil.

Berlim et al.6 report odds ratios between the real and sham treatments for response, remission,
and dropout rates, for both the individual studies included in the meta-analysis as well as for the
compound meta-analysis. In the present paper, we focus on an alternative analysis of the remission
rates, but we could have equally well have chosen the response or dropout rates.

A subset of the data used by Berlim et al.6 are displayed for clarity in Table 3. For study j,
these data are remission counts nj0 out of a total of Nj0 patients for the sham treatment as well
as remission counts nj1 out of a total of Nj1 patients for the real treatment.
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Figure 5: (a) Estimates ± standard errors of the effect of the sham treatments for the studies in
the meta-analysis of rTMS. (b) Sham vs. exposed estimates.

4.2. Originally published analysis

From this data, Berlim et al.6 calculate estimates and confidence intervals of the odds ratio of
the two treatments, using the hierarchical modeling approach of DerSimonian and Laird21. These
estimates can be understood in our framework as follows.

We can straightforwardly calculate the log odds of remission yj0 = log((nj0 + 0.5)/(Nj0 + 1))
for the sham experiments and yj1 = log((nj1 + 0.5)/(Nj1 + 1)) for the real exposures. As is
commonly done, we deal with cells with zero counts by adding a Haldane-Anscombe correction of
0.5. Assuming a binomial distribution of the remission counts, the log odds will be approximately
normally distributed for large enough sample sizes. We can apply the power method to derive
estimates sj0 and sj1 for the standard errors of yj0 and yj1, respectively. To be precise, we estimate
sji =

√
(nji + 0.5)−1 + (Nji − nji + 0.5)−1. We are now again in a position where we can think of

yji arising from model (1).
Their estimates of the log odds ratio are reproduced in Figure 4a. They can be seen to be

compatible with the plain difference estimates in Figure 4b. Both the estimates and standard
errors corresponding to different experiments vary widely across studies (particularly considering
that these are log odds).

4.3. Exploration of the sham data

The nature of the sham data in this second example is different than in the example of Section 3.
Indeed, it would make not any sense for our sham data to be noise (centered at zero), as log odds
of zero would correspond to even odds, that is, a coin flip. But a treatment for major depression
with a remission rate of 50% would constitute a major breakthrough. Therefore, we would expect
our sham data to look like anything but noise. Indeed, upon inspection, this turns out to be the
case, as shown in Figure 5.

This immediately makes clear that discarding the sham data and working with the exposed data
alone is not an option. However, our hierarchical model (2) still can provide a superior alternative
as it allows us to reconsider our estimates of the sham and treatment effects in the individual
studies in the light of the larger meta-analysis, by pooling them toward their common mean.
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Parameter Estimate (s.e.) 95% interval
µθ 1.2 (0.3) [0.7, 1.8]
σθ 0.5 (0.3) [0.0, 1.1]
µb −2.5 (0.2) [−2.9,−2.1]
σb 0.3 (0.2) [0.0, 0.7]

Table 4: Posterior means, standard deviations, and 95% intervals for the hyperparameters in the
hierarchical model fit to the rTMS data.

−
1

0
1

2
3

4

Estimates from hierarchical model

Study

E
st

im
at

ed
 tr

ea
tm

en
t e

ffe
ct

1 4 8 12

● ● ● ●
●

●
●

●
●

●

● ●

●
●

●

−
1

0
1

2
3

4

Raw estimates of exposed minus sham data

Study
E

st
im

at
ed

 tr
ea

tm
en

t e
ffe

ct

1 4 8 12

●
●

●

●

●

● ●

●

●

●

●

● ●

●

●

Figure 6: (a) Posterior mean ± standard deviation of each treatment effect θj from the hierarchical
model fit to the rTMS data. The fitted model did not estimate the sham effects to be zero, and
so these estimated treatment effects take into account both the exposed and sham data. (b) For
comparison, the raw difference estimates yj1 − yj0 ± standard error. The Bayesian hierarchical
estimates on the left plot are partially pooled toward a common mean.

4.4. Reanalysis using the multilevel model

We now fit the multilevel model (2) to the Berlim et al. data; inferences for the hyperparameters
appear in Table 4. The estimates of µθ and σθ imply a distribution of treatment effects with a
clearly positive mean, along with substantial variation, implying different effects across different
studies. We can interpret the estimated treatment effect µθ of 1.2 as saying that the odds of
remission when receiving the real treatment are about three and a half (exp(1.2)) times as good
as when being treated with the sham. We can interpret our estimated sham effect µb of −2.5 as
saying that even with the sham treatment, there is still a probability of about 1/13 of remission.

Figure 6a shows the posterior mean and standard deviation of the treatment effect θj for each
experiment j. For comparison, we display in Figure 6b the raw difference estimates yj1 − yj0 ±
(s2j1 + s2j0)

1/2. The estimates from the hierarchical model have been partially pooled toward the
common mean but otherwise show a pattern similar to that of the difference estimates, with the
largest changes being the studies that with extreme conclusions and large standard error. These
were thus pulled closer to the center of the distribution.

Seeing that we fit our models in Stan, there is nothing forcing us to make a normal approximation
to the likelihood and we could in fact have worked just as easily with a binomial observation model.
This does not substantively alter the conclusions, though it ends up pooling the studies slightly
less and leads to larger estimates of uncertainty. We discuss this in Appendix D.
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5. Evaluating the competing estimates using simulation

We have seen the hierarchical model work on two real problems, one where there was no evidence
of sham effects and one where correction for the sham was necessary. We can better understand
how the model works by using simulation to set up and evaluate a series of scenarios with different
levels of strength of the sham signal. We demonstrate this approach by perturbing the chick brain
example of Section 3.

5.1. Setting up a family of hypothetical scenarios

To see what happens when different levels of sham correction is necessary, we study a series of
simulated examples indexed by a parameter tied to the size of the sham effects. We can then
compare the three estimates—(a) the exposed data estimate, yj1, (b) the difference between exposed
and sham, yj1 − yj0, and (c) the hierarchical model estimate E(θj |y)—and see how they perform
as a function of the scale of the bias parameters, bj .

We set µb to 0 and consider a range of values for σb, for each performing the following steps 200
times: (1) Simulate one draw of the vector of 38 values bj , j = 1, . . . , J , drawing them independently
from the normal(0, σb) distribution; (2) Draw the vector of the 38 values θj , j = 1, . . . , J , from their
(joint) posterior distributionb from Section 3.6; (3) Simulate one dataset, that is a vector of 38
values yj0 ∼ normal(bj , σ

y) and a vector of 38 values yj1 ∼ normal(θj + bj , σ
y).

We are assuming that the residual scales σy are known and all equal to 0.04, a value chosen
because it is approximately the average of the standard errors in the data; see Table 1. This
simplification, along with that of assuming µb = 0, makes it easier to interpret the results of our
simulation but should not materially affect our results. We explore the role of µb in Section 6.

5.2. Evaluations

As discussed in Section 2.3, for each set of simulated parameters and data, we then compute the
following four summaries for each of the three estimates: the proportion of the 38 estimates that
are statistically significant, the type S error rate, the mean squared error of the 38 estimates, and
the rank correlation between the estimates and the true θj ’s.

We choose a grid of values of σb between 0 and 0.10, choosing that upper bound as this is the
approximate standard deviation of treatment effects (see inference for σθ in Table 2), and we would
not expect the variation in sham effects to be higher than the variation in treatment effects.

For each σb we average each of the above summaries over our 200 simulations to obtain 3 × 4
matrix of four frequency evaluations for the three estimates: exposed, exposed minus sham, and
hierarchical Bayes. Figure 7 plots the results for each frequency evaluation as a function of σb, the
scale of the sham effects. The difference estimate, yj1−yj0, outperforms the exposed-only estimate
yj1 when sham effects are large (the right side of each graph) but not when sham effects are small.
The Bayesian hierarchical estimate outperforms both, in part by appropriately managing the sham
data and in part by pooling across experiments.

We now go through each of the frequency properties for this example:

• Number of statistically significant claims: The difference estimate yields the lowest rate of
statistically significant results, which makes sense given that it is the noisiest of the estimates.
When sham effects become large, the rate of apparently statistically significant estimates from

bIn Appendix 13, we show that the conclusions of our simulation study remain the same if we work with the raw
estimates of θj instead.
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Figure 7: Results of simulation study comparing three estimates— the exposed data estimate, yj1,
the difference between exposed and sham, yj1 − yj0, and the Bayesian hierarchical model estimate
E(θj |y)—to simulated data. The four graphs show the results for four different frequency evalu-
ations, and on each graph the horizontal axis represents σb, the standard deviation of the sham
effects in the simulation.
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the exposed data alone goes up, but this is an illusion based on the fact that the variance in
the data is increasing but this is not reflected in the standard errors.

• Type S error rate: The difference and Bayes estimates have approximate 5% type S error
rates, as does the exposed-only estimate when the sham effects are negligible. As sham effects
become larger, the error rate for the exposed-only estimate becomes increasingly unacceptable.

• Root mean squared error: The Bayes estimate performs the best, unsurprisingly as it makes
use of the most information, and we are simulating from the model. The exposed-only estimate
outperforms the difference estimate when sham effects are near zero—this is what we saw in
Section 3—but when sham effects are large, the exposed-only estimate has a huge error.

• Rank correlation with truth: When sham effects are small, the exposed-only estimate is best;
when sham effects are large, the difference is best; in all cases the Bayes performs as well as
the other two. At each extreme, the Bayes does as well as, not better than the corresponding
simple estimate; this is because, in this simple simulation where the error variances for all
experiments are equal, the partial pooling across experiments affects estimates and standard
errors but does not alter the ranking of the 38 estimates.

The results shown in Figure 7 are consistent with the idea of the difference being a conservative
estimate—and, indeed, if the only available choices were the exposed-only and the difference esti-
mate, and no information were available regarding σb, the scale of the sham effects, then we might
well prefer the difference as the safe option. In fact, though, we are also free to use the hierarchical
Bayes estimate, and even if that were not available, the data are informative about σb, so we would
not recommend the difference estimate as a default analysis.

6. Linear adjustment via partial Bayesian inference

We can gain intuition about the sham-adjustment problem by considering a partially Bayesian
model in which the sham effects come from a normal(µb, σb) distribution but the treatment effects
θj are estimated using maximum likelihood (equivalently, Bayesian inference with σθ set to infinity
and µθ becoming irrelevant). This can also be viewed as a measurement error model, where the
yj0’s are noisy measurements of latent variables bj . To simplify the algebra, we assume a normal
likelihood for the measurements.

Under any of these formulations, fixing the hyperparameters results in linear estimates for the
θj ’s, which in turn allows clear comparisons with the exposed-only and difference estimates. This
is related to the work of Turner et al.22 to make Bayesian meta-analysis more accessible using
analytic formulas that approximate fully Bayesian inferences.

To work out the solution algebraically it is convenient to first perform inference for the sham
effects. Combining the prior distribution, bj ∼ normal(µb, σb), with the sham measurement, yj0 ∼
normal(bj , σj0), yields a posterior distribution, bj ∼ normal(b̂j , sj), where

b̂j =

1
(σb)2

µb + 1
σ2
j0
yj0

1
(σb)2

+ 1
σ2
j0

and sj =

(
1

(σb)2
+

1

σ2j0

)−1/2
.

The corresponding maximum likelihood estimate θ̂j is yj1 − b̂j , which can be written as

θ̂j = yj1 − µb − λ(yj0 − µb) (4)
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with standard error
√
s2j + σ2j1, and where

λ =
(σb)2

(σb)2 + σ2j0

is the variance ratio which determines the amount by which the exposed-data estimate must be
adjusted for the sham measurement.

The estimate (4) reduces to the exposed-only estimate when µb = σb = 0 (that is, when there
are no sham effects) and reduces to the difference estimate as σb → ∞ (as sham effects become

large). The standard error of θ̂j reduces to σj1 when sham effects are zero and
√
σ2j0 + σ2j1 in the

limit of large sham effects.
In between these extremes, equation (4)—the maximum likelihood estimate under the measure-

ment error model—is constructed by first subtracting the average sham effect, which represents the
average bias for all the experiments—and then a subtracting a fraction of the relative estimated
sham effect from experiment j, with that fraction depending on the relative values of σb and σj0.
For the chicken data, µb is estimated to be essentially zero and σb is estimated to be much smaller
than σj0 for all the experiments (see Table 2), so there is no essentially no need to adjust for the
sham measurements.

In practice we would recommend full Bayesian inference as in Section 2.2. Or, if there is
reluctance to partially pool across experiments, one could fit the same Bayesian model but removing
the prior on the θj ’s (equivalently, constraining σθ to∞; see Appendix A.3). The point of the above
algebra is just to clarify the way in which the optimal estimate of treatment effects will in general
approximately take the observed estimate yj1 and subtract some fraction, between 0 and 1, of the
sham estimate.

7. Discussion

7.1. Failure modes and limitations of the method

For the reasons discussed above, we prefer the hierarchical Bayesian model to the simple treated-
only or difference analyses: we think that the estimates obtained from our model are more reason-
able and that they would yield better predictions in a replication study. But there must be settings
where our approach would perform poorly. When will that occur?

Speaking generally, Bayesian inference with noisy data works by partial pooling toward a fitted
model. When the fitted model is wrong, the pooling can go in the wrong direction, yielding poor
inferences. In the problem discussed in this paper, the sham and treatment estimates are each
pooled toward the mean of that set of experiments. For the sham, this does not seem to be a
problem, first because we expect sham effects to be small, second because we have no reason to
expect patterns in the sham effects. If we did expect such patterns, it would make sense to include
them in the model, for example by allowing a correlation between sham and treatment effects as
discussed in Appendix A.1. For the treatment effects, partial pooling toward a common mean
could be more of a concern, for example if there is a trend or if the pattern of effects is otherwise
predictable. This is related to the problem of edge effects when estimating a function from noisy
data: an extrapolative model can overfit trends in the data, but a model that is more conservative
in its extrapolation can flatten out at the edges. Ultimately one must accept that inferences are
sensitive to uncheckable assumptions.

For our default hierarchical model to fail badly, two things must happen: the data must be
noisy enough for the partial pooling to make a difference, and the underlying trend or pattern
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must itself be strong. Both these things can happen, for example if the treatment effects follow
a linear trend. In our two applied examples, there was no apparent trend in the data; had there
been, it surely would have been included in the model. But a proposed statistical method will be
used in all sorts of settings. Were we to fit our no-trend hierarchical model to data with an actual
trend, we would overestimate effects at the low end and underestimate at the high end, in aggregate
understating the variation in the treatment effects. In this case, our recommended solution would
be to incorporate this possible trend by adding it into the mean of the distribution for θj in (2).

More generally, nonlinear models are possible, hence it can make sense to check sensitivity of
analyses to various choices of model, as we demonstrate in Appendix A. We prefer our default
hierarchical model to the simple default of exposed minus sham, but in general it makes sense
to consider scientifically plausible alternatives as well. This is an unavoidable concern when using
measurement error or latent variable models, but ultimately we see no good alternative to modeling,
as the simple unpooled estimates are just too noisy and wasteful of data.

The main practical limitation of our method is that it works best when there is a large number of
repeated studies. We explore the number of studies needed to benefit from our method in Appendix
C. When the number of studies is small, the hierarchical model can still be fit, but the user would
be advised to include strong prior information on the hyperparameters. This could well be a good
idea—indeed, we would prefer it to a riskier or noisier strategy such as fully subtracting or ignoring
the sham data—but we recognize that a fully Bayesian approach would put more of a burden on
many researchers. Hence in the present paper we focus our recommendations on the problem of
repeated studies.

7.2. Chick brains experiment

A key point of this paper is that our analysis could have made a difference in our motivating
example, both in the conclusions drawn from the existing data and in the design of the study.

Blackman16 wrote that his team “worked very closely with a statistician . . . to optimize our
procedures for maximum statistical power.” Care went into both the scientific and statistical
aspects of the design of the study, as well as the data collection itself. This is one indication
of the potential importance of the statistical modeling and analysis plan we have presented here:
if a team of conscientious researchers, working on a policy-relevant research program and aware
of cost constraints and the importance of statistical efficiency, can perform an analysis that is
mathematically equivalent to discarding half the information in their data, this represents large
gains from a new paradigm, moving away from cookbook rules to an open-ended modeling approach.
Indeed, Blackman16 also writes, “Plans were made to follow up . . . but the experiment could not be
brought to fruition.” In this case, discarding the sham data would have been equivalent to doubling
the sample size of the experiments, without any additional data-collection cost at all.

7.3. More general implications for design and analysis of structured experiments

What is striking about the results from this paper, as distinguished from many other examples
of the practical efficiency gains that can be obtained from Bayesian inference, is how simple and
effectively the Bayesian approach works out in this example, requiring no specialized knowledge or
custom prior distributions. This gives us hope that hierarchical modeling can resolve other common
data-combination problems in applied statistics, and it is why we have been continuing to chew on
this example for thirty years.

Specifically, we recommend our Bayesian multilevel model as a default analysis for repeated
controlled experiments. Indeed, it gives more efficient estimates than both the commonly used
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difference or exposed-only estimates. More importantly still, it systematically determines from the
data how much adjustment for the sham measurements is appropriate, by interpolating between the
extremes of difference and exposed-only estimates, rather than leaving that choice to the scientist.

There is some awkwardness that, in order to perform our more efficient estimate, we need to
model the treatment effects θj and the biases bj . This is a general property of measurement-
error models, and we believe there are many cases, including the examples described in the paper,
where the small effort in constructing probability models for treatment effects and biases is minor
compared to the efficiency gains obtainable from the model-based estimate. An alternative for
those who would prefer not to partially pool the θj ’s across experiments is to use the procedure of
Section 6 to find an optimal linear adjustment, which is corresponds to modeling just the biases
without partially pooling the treatment effects.

Combining these two recommendations for the statistical analysis and experimental design of
controlled experiments should enable a more cost-effective scientific practice. We hope this will
contribute to an increase in replicable scientific findings.
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Figure 8: (a) Posterior mean ± standard deviation of each treatment effect θj from the hierarchical
model with correlated bias and treatment effects fit to the chick data. (b) For comparison, the
estimates of the original hierarchical model without correlations, which can be seen to be almost
identical.

A. Alternative models for example 1

In this appendix, we discuss some alternative models we could have used for analyzing the chick
brain data from Section 3.

A.1. Measurement error with correlation

It is conventional with measurement error models to use independent errors, and this is what we
did in (2), with the idea being that there can be an average sham effect and variation in the sham
effects but with no correlation expected with the treatment effects. This makes sense in the chick
experiment, as the treatment effect varies by frequency of the magnetic field, whereas the bias or
sham effect should have nothing to do with frequency.

More generally, though, one might want to allow the treatment effect and its measurement bias
to be correlated, in which case (2) can be generalized to a bivariate normal distribution for (θj , bj)
with a covariance matrix. Figure 8 shows the results of fitting this to the chick data; these treatment
effect estimates are essentially the same as from the uncorrelated-errors model fit in Section 3.6.

A.2. Gaussian process for the treatment effects

A potential concern regarding the models fit so far is that they do not encode any structure in the
treatment effects. One challenge here is that so many different structures are possible, as discussed
in the original Blackman et al.17 paper. As discussed in Section 3.2, various complicated patterns
of alternating frequencies were extracted, but many of these conclusions are shaky as they rely on
inherently noisy comparisons of p-values.

We think the measurement error model of Section 2.2 is a sensible default analysis, but more
structured models would be possible. As an example, we consider two Gaussian process (GP)
models for the vector θ as a function of frequency: one model which favors local smoothness of
the treatment effects (a GP with a squared-exponential covariance function) and one which favors
similar effects for frequencies separated by 30 Hz (a GP with a periodic covariance function with a
period of around 30 Hz).

The resulting estimates are displayed in Figure 9. The squared-exponential GP model gives
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Figure 9: Top row: (a) Posterior mean ± standard deviation of each treatment effect θj from the
squared-exponential (SE) kernel Gaussian process model fit to the chick data. (b) The corresponding
plot for the periodic kernel Gaussian process model. The fitted models estimate the sham effects
to be essentially zero, and so these estimated treatment effects come pretty much from the exposed
data alone. The Bayesian estimates in the left plot are partially pooled toward each other for close
frequencies. The estimates in the right plot are partially pooled toward each other for frequencies
whose difference is close to 30 Hz.
Bottom row: For comparison, (c) the estimates from our default analysis and (d) the raw estimates
yj1 from the exposed data.

estimates that are very close to those of the hierarchical model. This model favors stronger pooling
between measurements which are close in frequency. This results, for example, in a slightly higher
estimate for the treatment effect at 285 Hz but it is most visible for the frequencies with repeated
measurements which it forces to have the same estimated effect sizes. For the periodic GP model,
we observe interestingly different estimates compared to our default analysis, due to the periodic
partial pooling behaviour it enforces. For example, we see that the estimates at 225 and 345 Hz
are pulled upwards, a phenomenon we do not observe in our default analysis.

One difficulty in using such GP models for analyzing the data is the question of how to choose
an appropriate prior on the length-scale parameter. This parameter regulates the scale on which
the smoothing happens. That is to say, it determines how close two frequencies need to be to
each other in order to qualify to be pooled together. This prior should be chosen based on domain
expertise in each particular application. We believe this makes the GP analyses less suitable as a
default choice, unless strong domain knowledge of that kind is available.
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Figure 10: (a) Posterior mean ± standard deviation of each treatment effect θj from the partially-
hierarchical model, which partially pools the biases but not the treatment effects, as fit to the chick
data. The fitted model estimated the sham effects to be essentially zero (see discussion of Table 2),
and so these estimated treatment effects come pretty much from the exposed data alone. (b) For
comparison, the raw estimates yj1 from the exposed data. These two estimates roughly coincide.

A.3. Removing partial pooling

Following Section 6, it may be interesting to inspect the estimates given by variants of the hierar-
chical model, where we first remove the partial pooling of the treatment effects and next also that
of the biases.

When we remove the partial pooling of the treatment effects (equivalent to the limit, σµ →∞),
but keep partial pooling of the biases, we estimate that µb and σb are both near zero, as would be
expected from Table 1. As anticipated by the algebra of Section 6, we obtain, in effect, the raw
exposed-only estimates. This is shown in Figure 10.

When we additionally remove the partial pooling of the biases (equivalent to the limit, σb →∞),
the algebra of Section 6 would predict that we roughly end up giving the raw difference estimate.
Indeed, we see this confirmed in Figure 11. The difference estimate is similar to the exposed-only
estimate but is much higher in uncertainty. Dropping the partial pooling of the biases has the same
result of increasing the noise in our estimates.

The two estimates of Figure 11 always coincide, but the collapse of the two estimates of Figure 10
only happens when the sham data is effectively noise. The partially hierarchical model that partially
pools the biases but not the treatment effects might be a superior alternative to the exposed-only
and difference estimates in case there is reluctance to partially pool across experiments as we do in
our default analysis.

A.4. A Bayesian meta-analysis of the difference estimates

A different conceivable analysis (which tends not to be used in practice, as far as we are aware) for
our examples is to perform a standard Bayesian meta-analysis, as described for example in Gelman
et al.23, section 5.6, on the difference estimates. This would amount to the model ,

yj1 − yj0 ∼ normal(θj ,
√
s2j1 + s2j0)

θj ∼ normal(µθ, σθ).

Where our proposed default analysis separately models the treatment and sham effects, similar to
a measurement error model, this analysis is a standard hierarchical model fit to the difference esti-
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Figure 11: (a) Posterior mean ± standard deviation of each treatment effect θj from the non-
hierarchical model, which partially pools neither the biases nor the treatment effects, as fit to the
chick data. (b) For comparison, the raw difference estimate yj1− yj0 for the chick data ± standard
error. These two estimates roughly coincide.

mates. Figure 12 shows that this simplified hierarchical model is wasteful of important information
in the data, compared to our default hierarchical analysis that models the sham and exposed data
jointly.

For example, consider the frequency 255 Hz. The raw difference estimates (see Figure 11b) and
the estimates from the Bayesian meta-analysis of these difference estimates (Figure 12b) agree that
this is expected to be the frequency with the largest treatment effect. However, at this frequency,
the estimate from exposed data has large uncertainty compared to that from the sham data. As
a consequence, an analysis that makes better use of the available data would substantially correct
the estimates for this frequency downwards. This is precisely what our proposed default analysis
achieves, by separately modeling the exposed and sham effects (see Figure 12a). Our default
analysis estimates largest treatment effects to be at 285 Hz, with the estimate from this frequency
being corrected downwards less, because its exposed data reveal less uncertainty compared to the
sham data. An analysis working only with the differences between the sham and exposed data
would discard important information such as the respective uncertainty in the sham and exposed
measurements. It is for this reason that we prefer to model both the sham and exposed data
explicitly and it is why we do not recommend the Bayesian meta-analysis of the differences as our
default analysis.

B. Alternative simulation study based on raw estimates

One objection the reader might have to our simulation study of Section 5.1 is that we were simulating
the θj from the posterior as obtained from our own Bayesian model, which might give the Bayesian
estimates an unfair advantage. In this section, to address this concern, we show that we observe
the same phenomena as discussed in Section 5.1 even if we use the raw estimates for θj instead.

Specifically, we perform this alternative simulation exactly as before described except that we
perform the following two steps instead of steps 1–3 in Section 5.1: (1) Simulate one draw of the
vector of 38 values bj , j = 1, . . . , J , drawing them independently from the normal(0, σb) distribution;
(2) Simulate one dataset, that is a vector of 38 values yj0 ∼ tnj0−1(bj , σ

y) and a vector of 38 values
yj1 ∼ tnj1−1(y

obs
1j + bj , σ

y), where we write yobsj1 for the raw exposed-only estimates of the treatment

effects from the actual chick data as observed by Blackman et al.17. We are thus centering our
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Figure 12: (a) Posterior mean ± standard deviation of each treatment effect θj from our proposed
hierarchical model that separately models treatment and sham effects. (b) For comparison, the
estimates given by a Bayesian meta-analysis in the sense of a hierarchical model for the difference
estimates.
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Figure 13: Results of the alternative simulation study from Appendix B comparing three estimates—
the exposed data estimate, yj1, the difference between exposed and sham, yj1−yj0, and the Bayesian
hierarchical model estimate E(θj |y)—to simulated data. The four graphs show the results for four
different frequency evaluations, and on each graph the horizontal axis represents σb, the standard
deviation of the sham effects in the simulation.
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estimated treatment effects at the observed data rather than, as before, at the hierarchical Bayes
estimates.

The results are summarized in Figure 13. They tell mostly the same story as we saw in our
original simulation study. One difference is that the exposed-only estimate now consistently results
in more statistically significant estimates compared to the Bayesian estimate. However, inspection
of the type S error rates reveals that these extra significant estimates are not to be trusted. The
results of this simulation show that the hierarchical Bayesian estimate is still superior to its two
alternatives even in cases where its partial partial pooling behavior is not an advantage.

C. Simulation study for differently sized datasets

The reader might wonder how many repeated experiments are needed for our method to be superior,
in a practical sense, compared to existing default analyses like difference or plain exposed estimates.
To give a partial answer to this question, we repeat the simulation study of Figure 7 here, for
datasets of varying sizes M = 5, 10, 20, 38.

To be precise, we set µb to 0 and consider a range of values for σb, for each performing the
following steps 200 times: (1) Simulate one draw of the vector of M values bj , j = 1, . . . ,M , drawing
them independently from the normal(0, σb) distribution; (2) Draw the vector of the M values
θj , j = 1, . . . ,M , from their (joint) posterior distribution from Section 3.6; (3) Simulate one dataset,
that is a vector of M values yj0 ∼ normal(bj , σ

y) and a vector of M values yj1 ∼ normal(θj+bj , σ
y).

For the purposes of reducing computational instability that might arise for small datasets, we
add weakly informative priors to our model of Section 2.2 in the above simulation. To be precise, we
add a normal(0, 1) prior to both µθ and µb and a half-normal(0, 1) prior to both σθ and σb. These
priors are strong enough to rule out unreasonable parameter values and improve the computational
behavior of the model for small datasets, but they are weak enough not to materially affect the
resulting posterior estimates.

We present the results of the simulation studies in Figure 14. We see that our method always
outperforms the existing default analyses according to our four metrics, on our particular example
simulated datasets. Further, we see that the gained performance does not seem to decrease notably
as the number of repeated experiments get decreased down to 5. The noisiness of some of the graphs
in Figure 14 could be reduced by increasing the number of simulations, but this is not necessary
here because the general pattern is clear.

What happens for even smaller numbers of repeated experiments, we leave to future research.
In those scenarios, we expect that users would do well to augment their models with stronger priors
on the hyperparameters.

D. Alternative model for example 2

In this appendix, we discuss an alternative model we could have used for analyzing the data of
example 2 in Section 4. In Section 4 we used the hierarchical normal model using a standard
correction for zero counts. But, given that we fit our models in Stan, we could just have easily
have modeled the discrete data more directly, using a binomial likelihood rather than a normal
approximation. This leads to the following model, directly modeling nji, rather than yji:

bj ∼ normal(µb, σb)

θj ∼ normal(µθ, σθ)
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Figure 14: Results of simulation studies for datasets of sizes 5 (top left), 10 (top right), 20 (bottom
left), and 38 (bottom right), comparing three estimates—the exposed data estimate, yj1, the differ-
ence between exposed and sham, yj1−yj0, and the Bayesian hierarchical model estimate E(θj |y)—to
simulated data. The four graphs show the results for four different frequency evaluations, and on
each graph the horizontal axis represents σb, the standard deviation of the sham effects in the
simulation.
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Figure 15: (a) Posterior mean ± standard deviation of each treatment effect θj from the hierarchical
model (5) with binomial likelihood. (b) For comparison, the same estimates from the hierarchical
model (2) with normal likelihood.
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Parameter Estimate (s.e.) 95% interval
µθ 1.5 (0.3) [0.8, 2.2]
σθ 0.7 (0.3) [0.2, 1.4]
µb −3.0 (0.2) [−3.5,−2.5]
σb 0.3 (0.2) [0.0, 0.7]

Table 5: Posterior means, standard deviations, and 95% intervals for the hyperparameters in the
binomial hierarchical model fit to the rTMS data.

nj0 ∼ binomial(Nj0, logit−1(bj))

nj1 ∼ binomial(Nj1, logit−1(θj + bj)). (5)

Figure 15 shows how this leads to largely the same conclusions, but with slightly less pooling and
higher uncertainty than the hierarchical model with the normal likelihood function.

We summarize the estimated hyperparameters in Table 5, which shows slight differences from
the estimates of Table 4. The estimates of µθ and σθ have increased while those for µb and σb

have decreased in the binomial model. This results in lower odds of remission for patients receiving
the sham treatment as well as a larger relative effect of the real treatment compared to the sham
treatment. Moreover, the binomial model reports larger standard errors for all hyperparameters.
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