
Making the most of imprecise measurements: Changing patterns of arsenic
concentrations in shallow wells of Bangladesh from laboratory and field data

Yuling Yao∗ Rajib Mozumder† Benjamin Bostick‡ Brian Mailloux‡

Charles F. Harvey§ Andrew Gelman† Alexander van Geen‡

17 Jan 2021

Abstract

Millions of people in Bangladesh drink well water contaminated with arsenic. Despite the
severity of this heath crisis, little is known about the extent to which groundwater arsenic
concentrations change over time: Are concentrations generally rising, or is arsenic being flushed
out of aquifers? Are spatially patterns of high and low concentrations across wells homogenizing
over time, or are these spatial gradients becoming more pronounced? To address these questions,
we analyze a large set of arsenic concentrations that were sampled within a 25 km2 area of
Bangladesh over time. We compare two blanket survey collected in 2000–2001 and 2012–2013
from the same villages but relying on a largely di↵erent set of wells. The early set consists
of 4574 accurate laboratory measurements, but the later set poses a challenge for analysis
because it is composed of 8229 less accurate categorical measurements conducted in the field
with a kit. We construct a Bayesian model that jointly calibrates the measurement errors,
applies spatial smoothing, and describes the spatiotemporal dynamic with a di↵usion-like process
model. Our statistical analysis reveals that arsenic concentrations change over time and that
their mean dropped from 110 to 96 µg/L over 12 years, although one quarter of individual wells
are inferred to see an increase. The largest decreases occurred at the wells with locally high
concentrations where the estimated Laplacian indicated that the arsenic surface was strongly
concave. However, well with initially low concentrations were unlikely to be contaminated by
nearby high concentration wells over a decade. We validate the model using a posterior predictive
check on an external subset of laboratory measurements from the same 271 wells in the same
study area available for 2000, 2014, and 2015.

Keywords: measurement error, process model, smoothing spline, spatiotemporal dynamic,
water pollution

1. Introduction

Elevated levels of arsenic (As) in water pumped from shallow wells and consumed without treatment
pose a serious threat to public health across many villages of South and Southeast Asia (Fendorf
et al., 2010; Flanagan et al., 2012). For lack of alternatives such as water treatment or a piped
supply of safe water, rural residents of these regions with an unsafe well lowered their exposure to
As mostly by switching their consumption to a neighbor’s well that is low in As (van Geen et al.,
2002; Chen et al., 2007). This is often a viable option because the sub-surface distribution of As
in groundwater is highly heterogeneous. Well switching assumes, however, that wells are tested for
As and that well users remember the test result, neither of which is necessarily the case. Another
potential concern is that As levels in well water could potentially change over time. The few
available studies relying on long-term monitoring indicate that groundwater As levels are by-and-
large stable, but noteworthy exceptions have also been documented (Dhar et al., 2008; McArthur
et al., 2010; Mihajlov et al., 2020). Groundwater flow patterns in shallow (<30 m deep) aquifers of

∗
Department of Statistics, Columbia University.

†
Lamont-Doherty Earth Observatory of Columbia University.

‡
Environmental Sciences, Barnard College.

§
Department of Civil and Environmental Engineering, Massachusetts Institute of Technology.

ar
X

iv
:2

10
1.

06
63

1v
1 

 [s
ta

t.A
P]

  1
7 

Ja
n 

20
21



the region have been highly perturbed and accelerated by irrigation pumping to grow rice during
the winter season (Harvey et al., 2002, 2006). It is therefore plausible to anticipate some changes
over time, including the possibility of convergence of spatially highly variable As concentrations
towards a local mean due to physical mixing and dispersion triggered by the daily turning on and
o↵ of numerous irrigation pumps within a given area. Such a convergence of As concentrations
could pose a risk to residents relying on shallow wells that were low in As when they were tested
and are rarely if ever tested again thereafter.

To understand the evolution of spatial and temporal pattern of As in groundwater perturbed
by irrigation pumping, we focus on a particularly well-studied 25 km2 area of Araihazar upazila
(subdistrict) in Bangladesh. Groundwater samples from a total of 4827 shallow, mostly privately
installed wells was sampled a first time in 2000–2001 and analyzed for As in the laboratory (van
Geen et al., 2003). Most of these wells were replaced or re-installed by individual households in the
subsequent decade (van Geen et al., 2014). In 2012–2013, 8228 shallow wells in the same area were
tested, but this time with the ITS Econo-Quick Arsenic field kit (George et al., 2012) that is less
precise and bins results in discrete categories (Figure 1). A subset of wells were tested with the
field kit and in the laboratory and can be used for intercalibration (Mozumder, 2019). Although
the Econo-Quick field kit is cost-e↵ective (about USD 0.30 per test) and su�ciently accurate for
large-scale monitoring, their limited precision poses a challenge when trying to evaluate the stability
of the distribution of As in shallow groundwater over time.

This paper seeks to quantify the changing pattern over a decade of As concentrations in a
perturbed shallow aquifer from a combination of laboratory measurements and noisier test kits. The
contribution of our work is threefold. First, we designed a flexible Bayesian model that incorporates
a before-after comparison with di↵erent precision and measurement error. Such modeling could be
useful more generally when applied to field kits in environmental data analysis (e.g., Korfmacher and
Dixon, 2007; Landes et al., 2019). Second, we assessed the direction and magnitude of groundwater
mixing via a di↵erential-equation-based dynamic. The inference result suggests that wells with
initially low As concentration are unlikely to be contaminated by its high As neighbors, which
validates the current recommendation for households with elevated arsenic levels to switch to a
neighbor’s safe well. Third, as a byproduct of the Bayesian modeling, we calibrated noisy individual
field kit test results communicated to households.

Several projects have collected As data in Araihazar upazila, at di↵erent times and in di↵erent
ways as follows.

1. Blanket surveys. In 2000–2001, a sample of size n1 = 4574 of groundwater from all wells in
the study area was analyzed by graphite-furnace atomic absorption (GFAA) in a laboratory
(van Geen et al., 2003). A subset of samples at the detection limit of 5 µg/L for As by
this method was subsequently re-analyzed by inductively-coupled plasma mass spectrometry
(ICPMS, Cheng et al., 2004). We denote the reading of the i-th well as y1i. In the second
blanket survey conducted in 2012–2013, a group of trained workers tested n2 = 8229 wells
for As in the same area using the ITS Econo-Quick field kit. They recorded visual readings
of a colored test strip relative to a reference scale showing 9 discrete levels (0, 10, 25, 50,
100, 200, 300, 500, 1000 µg/L). We denote the discrete field-kit measurement of well-i as w2i.
Most wells in the second survey were are di↵erent from wells sampled during the first study
because of replacements and new installations over a decade (van Geen et al., 2014). The
well index i therefore does not corresponds the same unit in two surveys. The location of
wells from both surveys was recorded with handheld GPS receivers with an accuracy of 10–50
m and is presented in a local Cartesian coordinate pair (xEti, x

N
ti) for each sampled well. The
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Figure 1: In 2000–2001, a sample of size n1 = 4574 of wells within a 25 km2 area of Bangladesh
were analyzed by GFAA in laboratory. The second survey took place in 2012–2013 where n2 = 8229
wells in the same area were measured by Econo-Quick field kit based on visual readings of a test
strip at 9 discrete levels (0, 10, 25, 50, 100, 200, 300, 500, 1000 ppb). Because they were measured
with di↵erent measurement precision and at di↵erent sampling locations, these two datasets are not
directly comparable.

depth of the well, as reported by households who paid for each section of pipe that went into
the well’s installation and therefore remember, is dti in meters.

2. Quality-control sample. The inaccuracy of field kits is not only attributable to discretization
of visual readings but reflects also potential groundwater matrix e↵ects on the reading, the
occasional wetting of the test strip, and di↵erences in handling. For calibration, we saved
ncal = 944 water samples from the second blanket survey and analyzed them by ICPMS. We
denote the lab and kit values by ycali and wcal

i , 1  i  ncal respectively.

3. Resampled subset. A subset of 271 remaining wells from the 2000 blanket survey were re-
identified in 2014 and 2015 with reasonable certainty based on the combination of a metal
identification tag from 2000 that was still attached to the stem of the handpump along with
a consistent location and installation year based on a conversation with the household that
owns the well. These wells were therefore sampled a total of three times in 2000, 2014, and
2015 and are identified and labeled by consistent indices i = 1, . . . , 271. The results from
ICPMS analysis of all these samples, including re-analysis of the original set from 2000 for
maximum consistency, are denoted by year t and well i as ỹti, for t = 2000, 2014, 2015. The
depth of the i-th well is d̃i measured in 2000.

The remainder of this paper is organized as follows. In section 2 we first explore the 271
resampled wells for which kit-measurement error is not a major issue. In section 3.1 we consider the
measurement error models that calibrate the discrete field kit measurement. We propose a Bayesian
hierarchical model in section 3.2 to infer spatiotemporal patterns from the noisy kit readings.
Section 4 presents the inference result of the blanket survey data, which reveals a general decline
trend in As concentration across the study region. We conclude that physical homogenization is
unlikely to be the driving force in this dynamic and hence do not need to be overly concerned

3
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Figure 2: 308 wells in the 2000 blanket survey were re-identified in 2014 and measured in labs,
among which 271 wells were tested again in 2015. Each dot in the graph represents one well.

about shallow low arsenic wells being a↵ected by high As wells nearby. We discuss limitations and
implications of our finding in section 5.

2. Exploring the resampled wells

Because of the discreteness nature and large measurement error in the blanket survey, we first
explore the accurate lab measurements in the resampled 271 wells. Besides data exploration, we
later reuse this dataset as an external validation. Figure 2 visualizes the spatial distribution of
arsenic values in the subset over time. All three maps show clusters of high, mixed, and low As
concentrations that persisted over time. The sample average As concentrations over time for the
271 resampled wells was 100 µg/L in 2000–2001 and 90 µg/L in 2014 and 2015.

2.1. Regression to the mean vs. groundwater mixing

The main public health concern is whether physical water mixing could imperil wells that were
initially safe when tested. To start, we run linear regressions on 3 pairs: 2014 versus 2000, 2015
versus 2014, and 2015 versus 2000 on the resampled dateset (Figure 3). The regression is in log
scale to avoid the analysis driven by extremely large values. The posterior means of the regression
coe�cients are 0.97, 0.98, and 0.96 for these three pairs, and their 95% confidence intervals do not
overlap with 1. The observed arsenic level in low-level wells tends to increase and in high-level wells
tends to decrease in all three time periods. However, this pattern akin to regression to the mean
could be the result of either measurement noise or natural fluctuations in each sampling period and
is not necessarily an indication that physical mixing and homogenization is taking place.

In Figure 4, we compare log As changes over time. The well-wise changes in 2000–2014 are pos-
itively correlated with those in 2000–2015 but negatively correlated with 2014–2015. This evidence
suggests measurement error rather than physical mixing as the underlying cause of convergence of
groundwater As concentrations. Both the short term and long term changes show large variations,
with multiplicative shifts ranging from 20 to 1/20.
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Figure 3: “Regression to the mean.” Lower values tend to increase and higher values tend to
decrease. However, this does not separate the observational noise and the potential water mixing.

2.2. Spatial smoothing using a Gaussian process and autoregression using a spline

To try to separate the pattern of water mixing, we decompose the observed log arsenic values
log ỹti(t = 2000, 2014, 2015, i = 1, . . . , 271) into a spatial baseline arsenic level (the expected value
conditional on the location), denoted by ✓, the depth term, and residuals ✏.

log ỹti = ✓t,i + �depth(d̃i � d0) + ✏ti, ✏ti ⇠ normal(0,�S). (1)

The spatial-dependent parameter ✓t,i is the baseline value in well i and year t, which we will specify
in the next paragraph. The depth term describes the dependence of arsenic concentration on well
depth via a linear form �depth(d̃i � d0), where d0 = 15.29 meters is the pre-calculated mean depth
of all wells. The residual ✏ contains measurement errors, short-term fluctuations, or any other
unobserved factors that can not be explained by the spatial distribution of wells. We model it by
a normal distribution with standard deviation �S (the short-term).

We model baseline arsenic concentration ✓ as a function of location x 2 R2: the two dimensional
location coordinate. That is ✓t,i = ✓t(xi). We place a Gaussian process prior on ✓2000(x), with a
squared exponential kernel,

✓2000(x) ⇠ GP(µ,K), K(x1, x2) = ↵ exp

✓
� ||x1 � x2||2

⇢2

◆
, (2)

where ||x1�x2||2 is the Euclidean distance between two locations x1 and x2. The Gaussian process
is flexible to characterize the spatial pattern.

From the summary statistics (mean, median, standard deviation, median absolute deviation) of
the well-level arsenic-changes (Figure 4), the mean of the change from 2014 to 2015 (the left panel)
is small compared to the change between 2000 and 2014. Therefore, we assume

✓2015,i = ✓2014,i, i = 1, . . . , 271. (3)

This approximation is computationally necessary because the problem is non-identified otherwise.
Changes in well-water As concentrations driven by physical mixing would eventually lead to

homogenization independently of observational noise. In order to approximate this mechanism, we
consider an autoregression from ✓2000 to ✓2014. A strong negative autocorrelation will support the
water mixing hypothesis such that higher As values would drop and lower As values would increase.

5



●

●
●

●
●●

●

●
●

●

●

●

● ●●
●

●
●

●

●
●

●

●
●

●●●
●

●
●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●
●●

●
●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●●●
●

●

●

●
●

●

●

●
●

●

●
●

●

●

●● ●

●
●
●

●
●
●

●

●

●

●
●

● ●
●

●

●
●

●

●●●●
●

●

●

●● ●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●●
●
●

●
●●●

●
●●
●●
●

●
●

●

●

●

●
●

●
●

●
● ●

●
●●●

●

●●
●

●●

●

●

●

●●

●

●

●

●

●
●

●

●
●●

●●●
●

●

●

●
●

●

●

●
●

●

●

●

●

●●●●

●

●
●

●

●●●

●

●●
●

●
● ●
●

●

●

●

●

●● ●●●●

●

●

●
●

●

●
●

●

●

●●●
●● ● ●

●

●

●
●

●
●

●
●

●
●
●● ●●

●

●

●

●

●

●

●●
●

●●

●

−4 0 4

−4

0

4

two−stage changes are 
 negatively correlated

log changes from 2000 to 2014

lo
g 

ch
an

ge
s 

fro
m

 2
01

4 
to

 2
01

5

●●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●●

●

●
●

●

●

●

● ●

●●

●

●

●

● ●
● ●

●●

●

●

●
●

●

●

●
●
●

●

●

●

●●

●

● ●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●●

●
●

●

●

●

●
●

●
●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

● ●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●●

●

●
●

●

●

●

● ●

●●

●

●

●

● ●
● ●

●●

●

●

●
●

●

●

●
●
●

●

●

●

●●

●

● ●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●●

●
●

●

●

●

●
●

●
●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

● ●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

lab−measurement in 2000

change from 2000   
 to  average in 2014&15

m
ul

tip
lic

at
ive

 c
ha

ng
es

 

10−1 1 101 102 103

1/20
1/10

1/3

1

3

10
20 ●

●

●

1 14

−0.15

−0.10

−0.05

0.00

year gap

mean of log changes

mean

median

●

● ●

1 14
0.0

0.4

0.8

year gap

sd of log changes

sd

mad

Figure 4: (1) The comparison of log change in 2000–2014 versus 2014–2015 per well. (2) The
multiplicative change from 2000 to 2014 or 2015 per well as a function of the the initial values.
The two endpoints are the 2000–2014 and 2000–2015 changes and the dot is the average. (3–4):
Summary statistics (mean, median, standard deviation, median absolute deviation) of the well-level
arsenic-changes as a function of year gaps.

In the exploration data analysis (Figure 3), we model a linear autoregression. To make it more
flexible, we model the baseline change by a cubic spline of the initial value:

✓2014,i � ✓2000,i = �0✓2000,i +
LX

l=1

�lBl(✓2000,i) + normal(0,�L), i = 1, . . . , 271. (4)

where {Bl}Ll=1 is a collection of cubic spline basis functions. Unlike typical spline smoothing di-
rectly applied to data, here we are fitting a spline regression on the latent variable ✓, whose range
is unknown. Nevertheless, from the observational model (1), it is reasonable to expect that ✓t,i
and log ỹt,i have a similar range. Hence we choose the internal knots of the cubic spline to the
(0.1, 0.2, . . . , 0.9) quantile of all observed log ỹt,i. We use a random-walk prior as on spline coe�-
cients �l to encourage smoothness, and place a weakly-informative prior on remaining parameters:

�0,�1 ⇠ normal(0, 1), �l+1 ⇠ normal(�l, 0.5),

�S ,�L ⇠ InvGamma(3, 3), µ ⇠ normal(4, 1).
(5)

We sample from this joint posterior distribution in Stan (Stan Development Team, 2020), a
platform for Bayesian modeling and computation.

Inference results for 271 resampled wells

The left panel of Figure 4 displays the posterior means, 50%, and 95% confidence intervals of the
autoregression cubic spline in (4), i.e., �0✓2000+

PL
l=1 �lBl(✓2000) as a function of ✓2000. It represents

the expected value of log As changes in 2014 and 2015, given a well’s initial baseline arsenic value
in 2000. This result suggests that large initial values were likely to drop over time. Perhaps more
surprisingly, As concentrations at the low end of the range were more likely to decline as well,
whereas intermediate values did not change appreciably.

Conditional on the the baseline As level in 2000, there is still a large amount of uncertainty of
how the distribution of concentrations evolve due to both the long term regression noise �L and
the short term observational noise �S . To help the interpretation of this uncertainty, we simulate
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Figure 5: Left: posterior mean and intervals of the predicted change in 2014, given the well-arsenic
level in 2000. Middle: the probability that a well would excess safety values in 15 years as a function
of initial measurements. Right: the global mean of ✓2000,i is log 51 and the mean of ✓2014,i is log 44.
We label the y-axis by the usual linear scale (ppb) for readability.

in the middle panel a series of posterior draws to compute the probability of a realized laboratory
test in a well exceeding certain threshold in 15 years as a function of its initial baseline value: a
well with initial value 10 ppb has a 40% chance to exceed 10 ppb and 4% chance to exceed 50 ppb
in 2014’s measurement. This graph provides an accessible way to communicate decision making:
despite all the temporal variation readily exists, a well is unlikely to change from 10 ppb to 50 ppb
in 14 years. In other words, a clearly safe/unsafe well (smaller than 10 or larger than 100 ppb) is
nearly ensured to keep safe/unsafe and should be encouraged to switch to/away from. Mailloux
et al. (2020) reach a similar conclusion using another approach as well as additional well-water
arsenic data from di↵erent regions.

The right panel shows the fitted overall spatial mean of the latent baseline level ✓ in 2000 and
2014, with their 95% confidence interval overlapped. This is in line with the 95% confidence interval
in the left panel showing an overall trend of mildly decreasing arsenic concentrations without ruling
out that there was no change.

The data also confirm the gradual increase in As concentrations with depth. The coe�cient
�depth is estimated to be 0.03 (95% CI (0.01, 0.05)) per meter.

The observational noise and suggestions of a “regression to the mean” do not exclude the
possibility that the underlying As concentrations are truly converging due to physical water mixing.
A limitation of the resampled wells is their small sample size. In the next section, we model the
underlying stochastic process using two blanket surveys conducted in 2000–2001 and 2012–2013
that are much larger but partially measured by less accurate field kits.

3. A closer look at the two large surveys

3.1. Kit calibration using the quality-control samples

The discrete kit readings w2 in 2012–2013 are not directly comparable to the more precise laboratory
measurements y1 in the 2000–2001 survey.

In the quality-control data, we observe both the kit measurement wcal
i and the lab measurement

ycali for i = 1, . . . , 944. The first two columns of Figure 6 compares the face value of eco-kit and
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Figure 6: First two columns: conditional mean and standard deviation of lab measurement y condi-
tioning on the face value of eco-kit measurement w. The dot size is the sample size in that category in
the calibration set. Third column: the fitted ordered-logistic regression using the the quality-control
sample. The red line is the posterior prediction of w given y, while the black dot is the observation
in the calibration set. Rightmost: the predicted probability of each class Pr(w = k|y, �̂cal, ĉcal), as
a function of lab reading y. Colors from shallow yellow to dark red represents kit-test classes from
low to high.

laboratory measurements of the same water sample. The kit reading exhibits a systemically negative
bias and a considerable variance. For calibration, we treat the kit measurement w as a nominal
variable that only takes integer values 1, 2, . . . , 9. We model the kit-measurement p(wcal

i |ycali ) by
an ordered logistic regression with a flat prior and the following likelihood:

Pr(wcal
i  k |�cal, ccal, ycali ) = logit�1

⇣
ccalk + �cal log ycali

⌘
, k = 1, 2, . . . , 9. (6)

The ordered logistic regression does not take the face value of the kit measurement as true value,
but does keep the sequential order of the nominal readings. The fitted result is shown in Figure
6. With n = 944 quality control samples, the joint posterior distribution of these 10 parameters is
nearly a point mass.

When it comes to the kit-measurement w2i in the large blanket survey that we will model in
the next subsection, the lab measurement is missing, and we will impute it probabilistically from
the ordered-logistic regression learned here.

3.2. Modeling the mixing process

We model the spatial arsenic distribution with a smoothing spline and superimpose a di↵usion-like
process to reflect changes in the distribution between 2000–2001 and 2012–2013.

Smoothing spline and its Laplacian

For the i-th well in the 2000–2001 survey at location (xN1i, x
E
1i), we decompose the log laboratory

reading log y1i into (a) the spatial baseline factor, modeled by a bivariate spline of (xN1i, x
E
1i), (b)

the depth dependence, modeled by a linear function of depth (d1i � d0), where d0 is the average
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depth of all observed wells, and (c) an independent observational noise.

log y1i = �0 +
LX

l=1

�lBl(x
N
1i, x

E
1i) + �depth(d1i � d0) + normal(0,�obs), 1  i  n1. (7)

We construct the bivariate spline from tensor products of one-dimensional cubic B-splines,
with L basis function Bl(xN2i, x

E
2i) = BN

l (x
N
2i)B

E
l (x

E
2i). After trimming, the number of product-

basis-functions is L = 485. We detail the spline knot choice in Appendix A.3.
From this spline model, for all sampling locations xN2i, x

E
2i in the second survey, the counterfactual

log baseline value is described by parameters ✓1i: the expected log As value if well i in the second
had existed in 2000–2001 and we had tested its sample using lab reading.

✓1i = �0 +
LX

l=1

�lBl(x
N
2i, x

E
2i), 1  i  n2. (8)

The spline model describes not only the value of ✓1i, but also the geometry of the static As
value surface. In particular, the Laplace operator � = @2

@(xN)2
+ @2

@(xE)2
describes the local cur-

vature. The Laplacian of basis functions comes in closed form �Bl(xN2i, x
E
2i) = �BN

l (x
N
2i)B

E
l (x

E
2i) +

�BE
l (x

E
2i)B

N
l (x

N
2i), where �BE and �BN is the second order derivative of the one-dimensional cubic

spline basis functions. Therefore, we can extract pointwise Laplacian �i as a linear transformation
of spline coe�cients:

�i =
LX

l=1

�l�Bl(x
N
2i, x

E
2i), 1  i  n2, (9)

which reflects the As surface curvature in 2000–2001 at location (xN2i, x
E
2i).

From the ordered logistic regression, we use a variable ⌘2i to represent the log lab reading of
well-i: the inferred log lab measurement if we had done the second survey in lab. We plug-in
the posterior mean of ĉcalk , �̂cal learned from the calibration model (3.1), and the likelihood of the
missing lab measurement is expressed by

logit(Pr(w2i  k)) = ĉcalk + �̂cal⌘2i, k = 1, 2, . . . , 9, 1  i  n2. (10)

Like the observed log y1i in data model (7), the hypothetical log lab reading ⌘2i also contains the
noise-free baseline As surface ✓2i, the depth dependence, and another independent Gaussian noise.

⌘2i = ✓2i + �depth(d2i � d0) + normal(0,�obs), 1  i  n2. (11)

Mixing dynamic on latent arsenic surface

So far we have modeled ✓1i and ✓2i: the static baseline log As surfaces at the same well i in
2000–2001 and 2012–2013 respectively. Next, we model the temporal dynamic.

In an ideal noise-free isotropic mixing scheme, the As concentration surface y(x, t) as a function
of location x and time t would follow a di↵usion process, @

@ty(x, t) / �xy(x, t). Based on this
heuristics, we build an autoregression:

✓2i = ✓1i + ↵� + (�� + �i)�i + normal(0, ⌧), 1  i  n2. (12)

The temporal change between ✓1i and ✓2i contains the global shift ↵�, the product of the mixing
coe�cient �� + �i and the local Laplacian �i, and independent regression residuals.
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This autoregression dynamic (12) is not equivalent to the di↵usion process because it models
✓, the log scale As concentration. Besides, the discretization error over t = 12 years cannot be
ignored. On the other hand, we do not expect the flow and recharge of groundwater As being
perfectly described by a molecular di↵usion and hence the di↵usion process itself is not realistic.

That being said, we view the Laplacian �i as an extracted feature that describes how the As
concentration in a well is compared with its nearby neighbors. In order to learn the a more general
dynamic, we allow the coe�cient �� + �i to vary by the initial well As, instead of a homogeneous
di↵usion constant. In e↵ect, we use (12) to learn a mixing dynamic

@

@t
✓(x, t) / ↵� + (�� + �(✓))�x(✓). (13)

The regression residual in (12) determines the fidelity of the solution to this dynamic.

Data-dependent mixing coe�cient

The mixing coe�cient contains a constant term �� and a random term �i. We parameterize the
latter term by a function of ✓1i,

�i = ↵y exp(✓1i/2) + ↵✓✓1i, (14)

The combination of linear and exponential inputs is designed to fit both the large and small end
of the initial value ✓1i.

Priors and computation

Apart from the calibration parameter {ccalk }9k=1, �
cal learned in advance, the complete model con-

tains 16950 free parameters in total: {�l}4850=1, �obs, {✓2i}8229i=1 , {⌘2i}8229i=1 , ↵0, ↵y, ↵✓, ↵�, ��, ⌧ , on
which we place weakly informative priors:

�0 ⇠ normal(4, 2), �l ⇠ normal(0, 0.5), 1  l  L = 485.

↵y ⇠ normal(0, 0.2), ↵✓ ⇠ normal(0, 0.5), ↵� ⇠ normal(0, 1), �� ⇠ normal(0, 1).

�obs ⇠ InvGamma(5, 5), ⌧ ⇠ InvGamma(5, 5).

(15)

We fit the complete model (7)–(15) in Stan based on 4 chains and 2000 posterior simulation
draws of all these parameters. Besides using the usual dynamic Hamiltonian Monte Carlo sampler,
we employ sparse matrix algebra when computing the log joint density, since the basis functions
Bl(xN1i, x

E
1i), Bl(xN2i, x

E
2i) and their Laplacians �B are sparse matrices.

4. Inference results for blanket surveys

4.1. Individual prediction

The posterior distribution of ⌘2i provides inference for the As value in the i-th sampled well in 2012–
2013. It is both spatially smoothed owing to the spline, and calibrated against the measurement
errors. Figure 7 displays the posterior mean and 10% and 90% quantile for all wells in 2012–2013.
For what matters to public health, we also compute the posterior probability of each well exceeding
the safety threshold (10, 50, and 100 ppb) in Figure 8.

10



Figure 7: The posterior mean, 10%, and 90% quantile of ⌘2: the calibrated As level of the well in
2012–2013.

Figure 8: The posterior probability that each sampled well was exceeding the As safety threshold
(10, 50, and 100 ppb) in 2012–2013.
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before the Laplacian �� + ↵y exp(✓1i/2) + ↵✓✓1i. A positive coe�cient represents a di↵usion e↵ect,
which is allowed to vary over ✓1. Middle column: the posterior mean, 50% and 95% confidence
interval for predictive multiplicative change term ↵� +(�� +↵(✓1))� as a function of � for two fixed
values exp(✓✓1) = 100 and 250 ppb. Right: posterior mean, 50%, and 95% confidence intervals for
predictive multiplicative change in the observational level, with extra noise term added.
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Figure 10: To check how sensitive the model is to the regression assumption, we consider two
alternative models where the mixing e↵ect coe�cient is modeled by a a linear regression on exp(✓)
and a constant respectively.

4.2. Mixing e↵ect

The log As level changes from 2000–2001 to 2012–2013 in the i-th well is modeled by ✓2i � ✓1i =
↵�+(��+�i)�i+ noise. Figure 9 shows the posterior mean, 50% and 95% confidence interval of the
mixing coe�cient, (�� + �i), as a function of the initial baseline As concentration exp(✓1i). When
the initial value is very high (> 200 ppb), the mixing coe�cient is positive, which would drive
locally large As values in 2000–2001 to drop in 2012–2013. For small ✓1, the mixing coe�cient is
estimated to be negative. As a result, the portions of the aquifers that had As levels lower than
than both their local neighbors and 200 ppb in 2000–2001 are likely to become safer in average
over time. This pattern is consistent with the trend displayed for the subset of resampled wells in
Figure 5.

The middle column in Figure 9 simulates the predictive multiplicative change term
exp (↵� + (�� + ↵(✓1))�) as a function of the Laplacian � conditional on two fixed initial values
exp(✓1) = 100 and 250 ppb respectively. To give a sense of the additional observational noise, in
the rightmost column, we simulate from the actual observable change by adding back the observa-
tional noise exp (↵� + (�� + ↵(✓1))� + normal(0,�obs) + normal(0, ⌧)) .

Should we worry about the the restriction that the coe�cient ��+↵y exp(✓1/2)+↵✓✓1 only has
two degrees of freedom? First this is already an extension from the constant-di↵usion-coe�cient
model. We also consider two alternative models that replace replacing this functional form by a
linear regression on exp(✓1 or a constant. The fitted result is shown in Figure 10. The newly fitted
linear model is close to our main model fit except for the low end of the range in As concentrations.

Notably, ✓1i itself is a latent variable and we do not know its range a priori. The third and fourth
column in Figure 10 exhibit the histogram of all posterior simulation draws of the ✓1i, the histogram
of well-wise posterior mean Epost(✓1i), and the same two distribution for observed quantity ⌘2i. The
majority of ✓1i is supported on the log[10, 300] interval. Consequently, the di↵usion coe�cient, as a
function of ✓1 will rely on extrapolation beyond this support. This explains why di↵erent parametric
assumptions yield similar inference on this interval.

4.3. Overall trend

Besides mixing e↵ect, we are also interested in the direction and magnitude of the As levels change
over time. In the left panel in Figure 11, we simulate the average multiplicative well-wise change

12



0.73
0.76
0.79

0.7

0.9

1.0
0.99

  posterior mean of 
 average change

0.94

depth
 eff.

mean

median

  multiplicative change
−3 0 3

posterior mean of 
 well−wise log change 
 mean= −0.27,  sd=1.1

log As change

−3 0 3

observed  well−wise 
 log change 2014

−3 0 3
log As change

log change 2015

−0.6 −0.3 0.0
mean of log As change

PPC mean of 271 wells
 p=0.07, 0.09 

0.5 0.6 0.7 0.8

PPC sd of 271 wells
 p=0.28, 0.31 

sd of log As change

Figure 11: (1) Averaging over n2 wells, the mean change from baseline ✓1i to ✓2i is equivalent to
a 76% multiplicative change in As concentration, with 95% confidence interval (73%, 79%). The
median change is a 6% decrease. Apart from the baseline ✓, the average depth of wells decreases
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computed by 271 random wells each draw. They match with the observed mean and sd of log As
changes in the resampled wells.

−21

−14

−7

−20

−10

0

average As change

overall

intercept

As
 c

ha
ng

e 
(p

pb
) 14

obs.
 15

−80 −40 0 40

posterior predictive dis. 
 of mean As change  when 

 sample size = 271

As change (ppb)
0

As change (ppb)
−400 −200 0 200 400

posterior mean 
 of well−wise changes

observed changes in 
 validation set 2015

 mean = −12

validation set 2014 
 mean = −8

−400 −200 0 200 400
As change (ppb)

Figure 12: (1) The posterior mean of overall As change averaged over all n2 wells is 14 ppb
decreasing, among which 5 ppb of the decrease is attributed to the intercept. (2) The posterior
predictive distribution of overall As change averaged over 271 random wells. It matches with the
observed mean As changes in the resampled wells. (3) The distribution of posterior mean of n2

individual well-wise changes, among with 73% of wells are inferred to decrease. (4) The observed
well-wise change in the resampled wells.

among all wells in 2012–2013 by exp( 1
n2

Pn2
i=1(✓2i � ✓1i)) and compute its posterior mean and

95 % confidence interval, which equals 76% (95% CI (73%, 79%)). In other words, the average
As concentration (among all n2 sampling locations) decreased by 24% from 2000–2001 to 2012–
2013. Replacing the mean by median in the previous simulation, the median decrease is 6% (95%
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CI (2%,10%)). These inferred mean shifts are evaluated at the same well in the same sampling
location and is net of depth dependence. The sample mean depth of 2012–2013 wells is slightly
shallower (0.2 meter, or 1%) than from 2000–2001, which contributes to an additional 1% As mean
decrease through the �depthd term.

However, a 24% drop in average does not imply that concentrations in all wells had to decline
over a decade. The second panel in Figure 11 displays the histogram of posterior mean of well-wise
log change ✓2i � ✓1i: the log baseline change in the i-th well. The mean is �0.27 (equivalently
76% in multiplicative scale) while the standard deviation of 1.1 is much larger. This large standard
deviation reflects the intrinsic variation of individual level well-As changes, and will not shrink with
a larger sample size.

To better interpret this temporal change, we draw posterior simulations of the the linear scale
As change (in ppb) of each well. The hypothetically-lab-measured average well As in the 2012–
2013 blanket survey is 1

n2

Pn2
i=1 exp(⌘2i), which has a posterior mean of 96 ppb (95% CI: (94, 99)).

The hypothetically-lab-measured well As at these locations in 2000–2001 is 1/n2
Pn2

i=1(exp(✓1i +
�depth(d2i�d0)+normal(0,�obs))), which has a posterior mean of 110 ppb (95% CI: (104, 117)). As
for a reference, the sample mean of the first blanket survey in 2000–2001 is 109.6 ppb. For each well
in the second blanket survey, we can compute the paired change exp(⌘2i) � exp(✓1i + �depth(d2i �
d0) + normal(0,�obs)). Averaged over i = 1, . . . , n2, the mean well As change is �14 ppb with 95%
confidence interval (�7,�21), as shown in the first panel in Figure 12. More precisely, the model
interprets the overall log change ✓2 � ✓1 into two terms, the intercept ↵� and the di↵usion e↵ect
(�� + �i)�i. The intercept represents the expected change if the mixing process akin to di↵usion is
completely blocked. We can generate the linear scale of posterior distribution of the intercept by
simulation draws of 1

n2

Pn2
i=1 exp(⌘2i)(1� exp(↵�)), which has a posterior mean of �5 ppb.

Again, a 14 ppb decrease in average As concentration does not mean all wells have to drop. The
third panel in Figure 12 is the distribution of the well-wise posterior mean of As change, among
which 27% of individual wells are inferred to increase.

4.4. Posterior predictive model check on external validation data

In order to verify the pattern we discovered in the blanket survey data, we use the resampled
271 wells as a validation set to check the model fit of the blanket survey data. As a caveat, the
resampled wells are not spatially identical to the blanket survey: the former one is relative coarse
in the northeast, such their sample average of lab measurements in 2000–2001 also di↵er slightly.
Nevertheless, we still expect them to share a similar overall trend.

Because the well As is highly skewed in the blanket survey sample, the inferred mean log change
(�0.27, or �24% in multiplicative scale) is not the same as the log change of mean (the average
well As drops from 110 to 96 ppb, or �12%) at the same locations. We check the model fit in both
scales.

We first check the log changes of individual wells. We may compare the inferred well-wise
posterior mean of log well As change among the blanket survey data (the second panel in Figure
11) with the observed well-wise log As changes in the resampled dataset over a decade (the third
column in Figure 11), but it is misleading as they di↵er in sample sizes. To make the correct model
check, for each joint simulation draw, we randomly choose 271 wells from the second blanket survey
and compute the mean and standard deviation of the log As change among these 271 random wells.
The right two columns in Figure 11 visualize the posterior predictive distribution of these two
quantities, both yielding acceptable p-values when compared with the observed validation data.

We then the check the linear scale changes. Again, we randomly draw a sample of size 271
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among all n2 wells in the second blanket survey and compute the sample average change. The
second column of Figure 12 displays the histogram of 4000 posterior simulation draws of this
random average, which matches well with the observed changes in both validation sets.

5. Discussion

5.1. Limitations and assumptions

Our model in section 3.2 contains three components: (a) imputing the counterfactual lab measure-
ments from inaccurate kit data, (b) spatially smoothing the latent As surface, and (c) estimating
the mixing dynamic over time.

Our approximation to the di↵erential equation (13) is in line with Ramsay et al. (2007)’s
approach to parameter estimation in general di↵erential equations by fitting well As surface using
a collection of basis functions. To this end, the spatial modeling part (8) describes the static log
As surfaces by tensor products of B-spines. This spatial component is similar to Stone (1988)’s
approach to approximating a thin plate spline. Instead of penalizing the roughness directly, the
smoothness penalization in our model is achieved by the prior of spline coe�cients (15). The B-
spline approach was later criticized in spatial smoothing and interpolation for regions with irregular
shapes and boundaries, and its alternatives include products of P -splines (Eilers and Marx, 1996),
soap-film splines (Wood et al., 2008), and spatial spline regression (Sangalli et al., 2013). In our
data (Figure 1), the outer boundary of the sampled wells is approximately convex, but there do exist
several holes inside, because the wells are mainly located around the residential settlements, which
are clustered and separated by open rice fields. Nevertheless, these human-settlement-holes do
not define hard physical barriers for groundwater flows, hence we adopt simple Euclidean distance
without extra modeling of the holes.

Our analysis relies on several assumptions. First, we modeled the log scale of the well As con-
centration and a constant observational error. We make this log transformation based on evidence
from the residual plots in Figures 3 and 6: After the log transformation of observations, the error
term has similar scales for di↵erent observations, which otherwise is highly skewed in the linear
scale. That said, we do not expect the observational error to be of exact same variance after the
log transformation. This heterogeneity of variance may still exist, although it s partially remedied
by a flexible regression form (Gaussian process or bivaraite splines in our model). Second, we learn
the di↵erentiation equation of the log As surface with one-step time-discretization (12 years). This
is only reasonable to explain the long term dynamic. We expect to better model the moderate the
short term variation by through more frequent monitoring and sampling in future research. Third,
the assumed dynamic (13) is isotropic, while the groundwater flow can be more complicated based
on local geological structures. Fourth, the ✓1-varying mixing e↵ect coe�cient is only reasonable
for the interval where ✓1 is supported in observations. The claim on extreme values (>300 µg/L)
relies on extrapolations. Lastly, we model the dependence on well depth, but do not model other
potential selection mechanism of well-reinstallation, a potential confounder. Most households rein-
stalled their wells during the decade separating the two surveys but those who did so with the goal
of reducing their arsenic exposure did so outside the depth range disturbed by irrigation pumping
that was considered for this analysis (Jamil et al., 2019). The shallower well reinstallations analyzed
here are therefore less likely to be biased.
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5.2. Practical implications of inferred spatiotemporal trends

Our analysis shows considerable variability in arsenic concentrations, but fortunately, no indication
from the two larger surveys conducted a decade apart that low-arsenic portions of the shallow
aquifer became systematically contaminated over time. In particular, for wells meeting the local
safety range (As <50 µg/L), the inferred mixing dynamic suggests they are unlikely to be elevated
due to neighboring influence. Consequently, the well-switching should be more systematically
encouraged in Araihazar and many other parts of Bangladesh.

This mixing e↵ect could have been a concern because groundwater flow patterns have been
thoroughly altered by irrigation pumping drawing large volumes of water from shallower aquifers
during each winter season throughout the region (Harvey et al., 2006).

The documented decline in mean arsenic for the study region is of considerable interest as well
because it provides new evidence that accelerated groundwater pumping has been withdrawing
arsenic from the shallow aquifer, albeit at the cost of redepositing this arsenic in rice fields (Dittmar
et al., 2007). These withdrawals are compensated each year at the onset of the monsoon by
recharge of low-arsenic surface water. The resulting flushing of the shallow aquifer has evidently
only partially been compensated by a release of arsenic from arsenic sands through a previously
proposed exchange process (van Geen et al., 2008; Mozumder, 2019). The much larger pool of
arsenic present in aquifer sediments compared to the pool of arsenic in groundwater has therefore
delayed the decline in groundwater arsenic concentrations due to flushing but has probably also
anchored the distribution of arsenic to the local geology. This has prevented greater convergence of
concentrations to the areal mean due to the turning on and o↵ of irrigation pumps. Such conclusions
could not have been reached with a detailed statistical analysis of the available data.

5.3. The merit of field kits

In agreement with with previous findings (van Geen et al., 2003; Mailloux et al., 2020), our model
confirms a considerable variation in individual well As, both spatially (between neighboring wells
or villages, explained by �obs in (7)), and temporally (despite an overall trend, individual wells are
likely to drop or incline over a decade, explained by ⌧ in (12)).

The field kit measures As concentrations with much less precision compared to laboratory
measurements, exhibiting both large bias and variance. On one hand, this measurement error
amplifies the already-large noise-to-signal ratio in observations, on top of the spatial and temporal
variations. Takings the face value of field kit measurements increases the chance of incorrect and
inconsistent labeling. That said, laboratory precision is not necessary when concentrations range
across several orders of magnitude (van Geen et al., 2005). Health-based thresholds are often
somewhat arbitrary. The health impacts of drinking water that contains 9 or 11 µg/L As are to
first approximation a linear function of exposure and therefore not that di↵erent, for instance.
What is more important is for rural residents in Bangladesh to know if their well As is closer to 1
or 100 µg/L.

On the other hand, field kits comes with the distinct advantage that the cost of the measurement
is an order of magnitude lower and, perhaps, more importantly that the result can be delivered on
the spot. Bringing a sample to the laboratory and the result back to the well owner is logistically
much more complicated. By incorporating information from the quality-control sample, spatial
smoothing, and dynamic pattern over time, our statistical model calibrates the individual filed kit
results and makes personalized probabilistic prediction for each well (Figures 7 and 8), which is
helpful for residents to distinguish current safe and unsafe wells, and instructive for determining
future well-installation locations.
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Looking forward, either for the purpose of better understanding the dynamic pattern or moni-
toring individual household exposures, the high variability in groundwater As or other toxicants in
the environment calls for more frequent and extensive sampling. Imprecise but widely-accessible
field kit tests in companion with flexible statistical modeling that facilitates this open-ended data
gathering can provide a balance between total cost and accuracy in many areas of geoscience re-
search and policy.
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A. Supplementary material

A.1. Replication data and code

Available at https://github.com/yao-yl/As-measurement-code.

A.2. Graphical representation of models

Figure 13 and 14 summarize the model for 271 re-identified wells (section 2.2), and the model for
blanket survey data (section 3.2, the main model) in graphs.

✓2000 ✓2014 ⇡ ✓2015

ỹ2000 ỹ2014 ỹ2015

process model

observation model

Gaussian process prior

cubic spline

Figure 13: Graphical summary of the model for 271 resampled wells. The observed arsenic con-
centration ỹ is modeled by a noisy realization of the baseline value ✓, and ✓ is placed a Gaussian
process prior for spatial smoothness. The change from ✓2010 to ✓2014 and ✓2015 is modeled by an
auto regression with cubic splines.
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w2
kit error

process model

observation model

year 2000–2001

mixing dynamic
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Figure 14: Graphical summary of the model for blanket survey data (section 3.2). We model the
spatial distribution by a spline, and the temporal dynamic is modeled by an autoregression on the
initial baseline value and the Laplacian. The field kit is calibrated back to the hypothetical lab reading
⌘2, and further linked to the baseline value ✓2 via a Gaussian noise.

A.3. Knots of bivariate B-spline

In section 3.2, the spatial modeling (7) relies on bivariate B-splines. We place the inner knots on a
uniform grid spanned by equally-spaced vertical coordinates x̃N1 , . . . , x̃

N
N1

and horizontal coordinates
x̃E1 , . . . , x̃

E
N2

such that x̃Ni+1 � x̃Ni = x̃Ej+1 � x̃Ej = x0. In other words, the inner knots are placed on
the vertexes of x0 ⇥ x0 blocks.

The spacing is chosen such that there are 30 inner knots of longitudes, which results in x0 = 293
meters, N1 = 30, and N2 = 22. For a comparison, the posterior mean of the length scale ⇢ from
the Gaussian process regression (2) is estimated to be 381 meters.

On each coordinate, we construct the usual cubic spline basis functions with knots x̃N1 , . . . , x̃
N
N1

or x̃E1 , . . . , x̃
E
N2

. The number of basis functions on each dimension is N1 + 3 = 33 and N2 + 3 = 25.

20

https://github.com/yao-yl/As-measurement-code


Figure 15: Left: Illustration of one-dimensional cubic spline basis functions and their first two
derivatives. Right two panels: We build the bivariate splines from the tensor product of one dimen-
sional B-splines. The knots are represented by black crosses on the graph. They are equally-spaced,
and trimmed outside sample range.

We consider the tensor product of these two dimensions,

Bl(x
N
2i, x

E
2i) = BN

l (x
N
2i)B

E
l (x

E
2i),

where l is the rearranged index of the product basis functions, ranging from 1 to 25⇥ 33 = 825.
We prune the knots by remove the blocks not covering any observed wells from blanket surveys.

The pruned knots have holes inside, and we remove these holes by completing the convex hull of
the pruned knots. After this procedure, the number of not-constant-zero basis function is L = 485.
We relabel the index l from 1 to 485. We plot the trimmed knots with reference to observations in
Figure 15.

The basis function is evaluated at location x1i and x2i, which are stored by two matrices B(x1)
and B(x2) with dimension 4574⇥ 485 and 8295⇥ 485 respectively.

Finally we compute the Laplacian of basis functions. This is straightforward for tensor products
for

�Bl(x
N
2i, x
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l (x
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2i)B

E
l (x
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2i) +�BE

l (x
E
2i)B

N
l (x

N
2i).

We store this product �B(x2), Laplacian basis evaluated at x2, by a 8295⇥ 485 matrix.
The matrix of basis functions B(x1), B(x2) and �B(x2) only come into the log joint density

via matrix multiplication, during which employ sparse matrix algebra.

A.4. Imputation result of pointwise Laplacian

Figure 16 displays the posterior mean of the Laplacian �i from the fitted blanket survey data. A
positive Laplacian means the well has lower As value than its neighboring wells. The Laplacian
is not scaling invariant. In our computation, we standardize the input matrix �B by a factor
1000, and standardize the location coordinate xN, xE by a factor 9.1 km (so as to make them
unit-scaled).To interpret the scale of the Laplacian, we use the heuristic from the finite di↵erence
approximation
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Figure 16: The posterior mean of the Laplacian �i in year 2000. A positive Laplacian means the
well has lower As value than its neighboring wells. On the right is the histogram of the posterior
mean of well-wise Laplacian.
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Figure 17: Column (1) The posterior mean of inferred log As changes of n2 individual well: ✓2i�✓1i.
(2) The observed log changes in the 271 resampled well. (3-5) The subset of wells with inferred or
observed changes more than doubling (first row) or less than halving (second row). The fitted model
is able to match certain local patterns in the validation set.

Using the average closest distance in the second survey, h = 28 meters, a unit scale of Laplacian is
approximately exp(1000(28/9100)2) = 1.01 in multiplicative factor, i.e., Laplacian= ±1 equivalents
being 1% lower/higher than all closest well in the neighborhood.

One caveat is that the pointwise value of the Laplacian �i is unlikely to be estimated accurately,
not only because the latent variable ✓ is not observable, but also because the spline fit implicitly
penalizes the roughness. That said, we view the fitted �i as an extracted feature to represent the
neighboring di↵erence.

Posterior predictive check of the inferred Laplacian. How reliable is our conclusion concerning
the di↵usion-like process of homogenisation of arsenic concentrations? The challenge in checking
the model is that all associated quantities describing the process, the baseline log As value ✓1, ✓2
and the pointwise Laplacian, are latent variables. Nevertheless, we have already seen a consistent
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pattern in Figure 5 and 9. We further check the model claim by visually checking if the model
is able to pick the spatially local change pattern. The leftmost panel in Figure 17 visualizes the
posterior mean of inferred log As changes of n2 individual well: ✓2i � ✓1i, and the second column is
the observed log changes in the 271 resampled well. To reduce overlapping, we also draw the subset
of wells that have inferred or observed changes more than doubling or less than halving. Although
we cannot completely separate noise, the fitted model is able to match certain local patterns in the
validation set. The local regions with drastic changes are colored in agreement in the fitted model.

A.5. Dependence on well depth

The first and third panel in Figure 18 displays the relation between well depth and log As con-
centration in the resampled dataset and blanket survey 2000. A direct univariate regression has
coe�cient 0.12, which ignores the spatial dependence on well depth. In our model, the poste-
rior mean of �depth is 0.03 and 0.064 (95% CI: (0.057, 0.07)) in the resampled and blanket-survey
dataset. The latter one has smaller standard deviation for its larger sample size.

It is previously known that among shallow (<30 m) wells, the well As is positively correlated
with well depth even after controlling the spatial variation (Gelman et al., 2004), although this
correlation does not necessarily imply a causal relation between them.

Our model for blanket surveys contains both the spatial distribution and the depth dependence.
The well-wise are therefore the controlled-comparison: the inferred well-wise change given the
same well depth. Overall the depth dependence is weak compared with spatiotemporal variations.
From 2000–2001 to 2012–2013, the average well depth decreased by 0.23 meters, which adds to
1� exp(�0.2⇥ 0.06) = 1% decrease in the sample mean As concentration.
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Figure 18: Dependence of well-As on well depth. First column: the observed As concentration-well
depth in the 271 resampled dataset in 2015. Second column: the posterior distribution of �depth
from the first model and resampled dataset, and the histogram of the well depth in the sample.
Right two columns: the same scatterplot and histogram, inferred using the second model and larger
dataset.
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