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Abstract

We present some methods for graphing distributions of covariance matrices and

demonstrate them on several models, including the Wishart, inverse-Wishart, and

scaled inverse-Wishart families in different dimensions. Our visualizations follow the

principle of decomposing a covariance matrix into scale parameters and correlations,

pulling out marginal summaries where possible and using two and three-dimensional

plots to reveal multivariate structure. Visualizing a distribution of covariance matrices

is a step beyond visualizing a single covariance matrix or a single multivariate dataset.

Our visualization methods are available through the R package VisCov.

Keywords: Bayesian statistics, prior distribution, Wishart distribution, inverse-Wishart

distribution, statistical graphics

1 Background

Covariance matrices and their corresponding distributions play an important role in statis-

tics. To understand the properties of distributions, we often rely on visualization methods.
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But visualizing a distribution in a high-dimensional space is a challenge, with the additional

difficulty that covariance matrices must be positive semi-definite, a restriction that forces

the joint distribution of the covariances into an oddly-shaped subregion of the space.

Distributions of covariance matrices show up in classical (see Anderson, 2003) and Bayesian

statistics (see Daniels and Kass, 1999; Barnard et al., 2000; Yang and Berger, 1994):

• The sampling distribution of the covariance matrix of independent multivariate ob-

servations. If the data are generated according to a multivariate normal distribution,

then their covariance matrix has a Wishart sampling distribution (see Wishart, 1928;

Press, 1982).

• The prior for a covariance matrix in a Bayesian analysis, most simply if data are

modeled as independent draws from a multivariate normal with an unknown mean

and covariance matrix. In the same vein, a prior on the residual covariance matrix

is needed in a multivariate linear regression model (see Box and Tiao, 1973; Zellner,

1971).

• In hierarchical regression model with varying intercepts and slopes, the vector of vary-

ing coefficients for each group is often assumed to follow a multivariate normal dis-

tributed random variable with mean zero and an unknown covariance matrix, which

again needs a prior distribution for a Bayesian analysis (see Gelman and Hill, 2007).

• The covariance matrix itself may be unit-specific and drawn independently from a

population distribution of covariance matrices. Such a situation is less common but

can occur in both classical and Bayesian settings (see Oravecz et al., 2009).

In the remainder of this paper, we only consider models for prior distributions because,

as applied Bayesians, we are often in the position of choosing a family of prior distributions

or seeking to understand a prior distribution that has already been specified for an analysis.

Several classes of priors for covariance matrices have been proposed in the statistical literature

but many of their properties are unknown analytically and, as a profession, we have not yet

acquired extensive expertise with these different models. However, it would be helpful to

have a method that allows us to assess whether the distributions and the relations between

the covariance parameters are in accordance with the prior information that one has about

these parameters or with the way one wishes to constraint these parameters.
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As an example, consider the inverse-Wishart distribution, which is used often in Bayesian

modeling because it is a proper conjugate prior for an unknown covariance matrix in a

multivariate normal model (see Gelman et al., 2004). Some specific analytical results for

the inverse-Wishart have been derived; for example, the marginal distribution of a diagonal

block submatrix of draws from an inverse-Wishart distribution is also inverse-Wishart (Press,

1982), and marginal moments of such draws have been derived as well (Von Rosen, 1988).

But marginal distributions are typically not known and there is no expression for the bivariate

distribution of any two covariances. As a result, our analytical knowledge of the properties of

the inverse-Wishart distribution is still highly incomplete. Various alternatives to the inverse-

Wishart have been proposed (see Barnard et al., 2000; O’Malley and Zaslavsky, 2008), but

even fewer analytical results are known for these families, making it even more challenging

to understand precisely the properties of such distributions. Consequently, our analytical

understanding of these distributions falls short of providing us a full understanding of the

inverse-Wishart distribution.

Since analytical results are limited, researchers need other tools to study covariance

matrix distributions. Visualization provides insight into the properties of such distributions.

There is a considerable literature concerning visualization of multivariate data (e.g., Valero-

Mora et al., 2003; Theus and Urbanek, 2008; Cook and Swayne, 2007). For visualization of a

single covariance or correlation matrix, in particular, a heatmap is often used (e.g., Friendly,

2002). Yet, these existing approaches tend to focus on the visualization of a single covariance

matrix (i.e., derived from a single data set), while our approach is slightly different in that

we are visualizing distributions of covariance matrices.

Visualizing a distribution of covariance matrices is different from the visualization of

single covariance matrix (or correlation matrix). As such, there is a need for specialized

methods because not all techniques carry over easily from the single instance case to the

distribution situation. For instance, averaging a heatmap over a number of instances of

correlation matrices ends up with displaying the mean correlation matrix, which does not

capture the variability of the distribution. Certainly, the general principles of visualization

are relevant: In particular many of the principles of dynamic graphics might well apply

in our setting. On top of these existing approaches, however, we develop new methods to

visualize distributions of covariance matrices, focusing on static graphics. To cope with the

high dimensionality of multivariate distributions, we make the best use of symmetries in
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conventional classes of prior distributions of covariance matrices and visualize key aspects of

these distributions.

We propose a series of graphs to visualize covariance matrix distributions. For any joint

distribution of the covariances, we construct a grid showing the marginal distribution of

the scale and correlation parameters, along with two and three-dimensional scatterplots.

Since a covariance matrix can be expressed as an (equiprobability or isodensity) ellipse for

a multivariate normal distribution (or, more generally, for any elliptical distribution such

as a multivariate t-distribution; Owen and Rabinovitch, 1983), we also display the distribu-

tion as a mixture of ellipses in a multivariate normal setting. We demonstrate for several

distributions—including the Wishart, inverse-Wishart, scaled inverse-Wishart, and uniform

correlation—that this series of graphs allows salient features to be visualized, analyzed, and

compared. Our ultimate goal is to offer a method and tool so that we can better understand

our multivariate models.

2 A four-layered visualization method

Before explaining the method in detail, let us first introduce some notation. A k × k co-

variance matrix Σ has variances σ2
i (i = 1, . . . , k) on its diagonal. The typical off-diagonal

element is σij = σiσjρij (i = 1, . . . , k, j = 1, . . . , k, i 6= j), where σi is the standard devia-

tion of the ith variable and ρij the correlation between the ith and jth variables. We often

separate covariances into standard deviations and scale-free correlations for interpretability.

We begin with the inverse-Wishart distribution:

Σ ∼ Inv-Wishartν(S
−1) (1)

where ν denotes the degrees of freedom and S is a positive definite k × k scale matrix. The

density of Σ is proportional to:

p(Σ) ∝ |Σ|−(ν+k+1)/2exp

(

−1

2
tr(SΣ−1)

)

. (2)

The expectation of the inverse-Wishart distribution is S/(ν − k− 1). For all illustrations of

the inverse-Wishart distribution in this paper, we assume that S is a k × k identity matrix,
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denoted Ik, which makes the variables exchangeable. However, our method can easily be

used with any other scale matrix. The distribution is proper iff ν ≥ k (and the first moment

only exists if ν > k + 1). Furthermore, if Σ follows an inverse-Wishart distribution, then

any submatrix among q (possibly permuted) variables is also inverse-Wishart (Eaton, 1983):

ΣD ∼ Inv-Wishartν−k+q(S
−1
D ) where SD is such a submatrix of S. If we take ν = k + c

(where c is a positive constant), then the degrees of freedom of the distribution of ΣD are

q+c and do not depend on k. The degrees of freedom of the distribution of a submatrix then

parallels that of the original matrix. As a consequence, we can focus on a 4 × 4 covariance

matrix distribution to study most (but not all) properties of the inverse-Wishart distribution

(because the joint marginal of two correlation coefficients ρij and ρkm without a common

variable requires at least four dimensions).

In our visualization method we start with sampling L (typically L = 1000) covariance

matrices Σ (or correlation matrices R) from their distribution and then plot the sampling

distribution of various statistics in four layers or parts. The first layer consists of univariate

histograms of the (logarithm of the) standard deviations and the correlations. The second

layer is a set of bivariate scatterplots of variances and/or correlations. Third, we construct

three-dimensional scatterplots of either two variances and a correlation that overlays iso-

density contours or three correlations. Finally, the fourth layer aims at reducing the entire

covariance matrix into scalar measures called the effective variance and the effective depen-

dence by Peña and Rodŕıguez (2003).

Our four-layered graphical representation reveals different aspects of the covariance dis-

tribution that can be used to compare the implications of different values of hyperparameters

or different distributions. A detailed explanation of the method is given below, but Figure 1

provides an illustration of the method, as generated by our R function VisCov (from the

package with the same name available on CRAN).

2.1 Layer 1: Histograms of log(σi) and ρij

For the L = 1000 draws, we display the histogram of the logarithm of the standard deviations

and the histogram of a correlation ρij (typically ρ12). Given the assumption of exchange-

ability, the histogram for each standard deviation is the same, as is the histogram for each

correlation; therefore, it is only necessary to display one of each.
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Figure 1: Visualization of an inverse-Wishart distribution with dimension k = 4, degrees of free-
dom k + 1 and an identity scale matrix, as generated by our R function VisCov. To construct this
plot, 1000 covariance matrices were sampled from the inverse-Wishart distribution. Each column
of plots refers to a different layer of the visualization method (univariate, bivariate, trivariate and
multivariate). The first column shows two histograms (of a log standard deviation and of corre-
lation). A green reference line is added to the correlation histogram, which is the density of a
correlation of a correlation matrix that is uniformly distributed. In the second column, various
scatterplots are shown. In the third column, the first plot shows 100 50% equiprobability ellipses
of normal distribution centered at the origin (based on a random subsample of the 1000 covariance
matrices). In the last column, the effective variance and dependence are shown. The covariance
matrices with extreme effective dependences are colored blue or red (for small and large effective
dependence, respectively). The points in the other plots based on these extreme effective depen-
dency matrices are also colored blue and red. The final plot in the last column shows effective
dependence as a function of a growing dimension of the leading principal submatrix. See the text
for more explanation.
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2.2 Layer 2: scatterplots

From the L draws, we can construct
(

k(k+1)/2
2

)

scatterplots for pairs of covariances, but a

smaller number of plots will suffice. The scatterplots can be found in the second column of

Figure 1, where a scatterplot of variable y versus x will be denoted as (x, y).

If k = 2, the two plots (σ1, σ2) and (σ1, ρ12) exhaust the relevant information due to the

exchangeability assumption. If k = 3, there are four non-redundant plots: (σ1, σ2), (σ1, ρ12),

(σ1, ρ23), (ρ12, ρ23). The difference between (σ1, ρ12) and (σ1, ρ23) is that there is an overlap of

variables in the former. Finally, if k > 3, five scatterplots are necessary when exchangeability

is assumed: (σ1, σ2), (σ1, ρ12), (σ1, ρ23), (ρ12, ρ23), (ρ12, ρ34). In the last plot, the correlations

have no variable in common, which illustrates out earlier claim that covariance matrices with

k = 4 are sufficient to reveal most of the interesting information about the inverse-Wishart

distribution.

2.3 Layer 3: Contour plot and three-dimensional scatterplots

Here we look at three elements of the covariance matrix simultaneously in two different ways.

Contour plot. In the contour plot approach (see third column, first plot of Figure 1), we

focus on the distribution of a specific 2× 2 marginal sub-matrix of Σ. For instance, we can

look at the sub-matrix formed by variables i and j, defined as

(

σ2
i σiσjρij

σiσjρij σ2
j

)

. (3)

Given the exchangeability assumption, we take i = 1 and j = 2 and further assume the

two variables are bivariate normal with mean vector zero. Thus, the 50% equiprobability

ellipse (the contour plot in which 50% of the bivariate normal density lies) can be plotted

(see Johnson and Wichern, 2007). It would be straightforward to use another bivariate

distribution if desired.

Each ellipse represents an idealized cloud of points in two dimensions and gives informa-

tion about the orientation and spread of the points along both axes. To avoid clutter, we

usually show fewer contour plots, and about 100 seem sufficient to visualize the pattern of

isodensity contours.

Three-dimensional scatterplot. We also include a three-dimensional scatterplot of three
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correlations: ρij, ρi,j+1 and ρi+1,j+1. The triplet (ρij, ρi,j+1, ρi+1,j+1) corresponds to a 3 × 3

correlation submatrix from the k × k correlation matrix. Other triplets of correlations can

be shown, but in order not to overload the picture, we usually take i = 1 and j = 2.

The two-dimensional scatterplots of the correlations already suggest some of the intricate

relations among the correlations under the positive semi-definiteness constraint, and the

three-dimensional scatterplot goes a step further. It has been shown by Rousseeuw and

Molenberghs (1994) that the support of the distribution of three correlations is a convex body

(called a elliptical tetrahedron). Any cross-section parallel to one of the two-dimensional

coordinate planes forms an ellipse, implying the support of the conditional distribution of

two correlation coefficients given the third one is elliptical. Hence, the general pattern in

the second plot of the third column of Figure 1 will often occur throughout this paper: For

a large enough sample, the convex hull of the points in the scatterplot will approximately

coincide with the elliptical tetrahedron, but the way the points are distributed in this volume

differs from one distribution to another.

2.4 Layer 4: Effective variance and dependence

Visualization in four or more dimensions is difficult, but visualization in fewer dimensions

cannot capture all the relevant information in a covariance distribution. Thus, we also

analyze scalar statistics that are a function of the entire covariance matrix.

Peña and Rodŕıguez (2003) have defined the effective variance Ve of a k × k covariance

matrix Σ to be

Ve = |Σ| 1k (4)

and the effective dependence as

De = 1− |R| 1k (5)

where R is the correlation matrix derived from Σ.

These two statistics facilitate comparisons over different values of k or different-sized

submatrices of Σ. The first two plots of the last column of Figure 1 give the histograms

of the effective variance and dependence under the inverse-Wishart distribution. In a third
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plot, the effective dependence of a leading i× i submatrix is given on the y-axis as a function

of i (with i = 1, . . . , k). Each k × k correlation matrix defines a line (by letting the leading

i × i submatrix grow) and the collection of lines is smoothed and shown as the light blue

background.

The most extreme matrices with respect to effective dependence are indicated by the

colored tails (blue for low values and red for large values). The matrices with very low or

very high effective dependence can be identified in the histograms via the rug, via the same

blue and red color scheme in the scatterplots and contour plots, which illustrates how the

effective dependence relates to, for instance, the bivariate distribution of the correlations.

3 Illustration of the visualization method for several

distributions

In this section, we apply the four-layered visualization method for various distributions of

covariance matrices, draw implications from the plots, and compare across distributions. Due

to space limitations, we do not present the complete graphical display (such as in Figure 1),

but focus our attention on plots that facilitate comparisons. The full four-layered plot can

be recreated using our VisCov function.

3.1 The inverse-Wishart distribution

We first reexamine several important features of the inverse-Wishart distribution with k = 4

dimensions and ν = k+1 = 5 degrees of freedom from Figure 1. First, the univariate marginal

distribution of a correlation is uniform, which is known analytically when ν = k+1. Second,

the scatterplots reveal a strong positive relationship between the (log) standard deviations,

which is also reflected in the contour plot (third layer) where ellipses stretching along only

one of the main axes are rare. In this distribution, large ellipses tend to be oriented along

one of the two principal diagonals. Third, if two variables are extremely correlated, their

standard deviations tend to be large, which shows up in the contour plot as well. Fourth,

both the bivariate and trivariate scatterplots reveal a pattern where some correlations tend

to be similar in magnitude, while the corners of the bivariate and trivariate scatterplots are

quite dense. Fifth, covariance matrices with a large degree of effective dependence (colored



10

in red) tend to have large (log) standard deviations and extreme correlations, which is

also apparent in the contour plots where extreme effective dependence coincides with small

volume in the metric space. Covariance matrices with little effective dependence tend to

have smaller ellipses and (log) standard deviations.

The right column of Figure 2 uses ν = k+50, rather than ν = k+1 in the left column with

k = 4 in both cases. This figure compares two types of scatterplots (containing log standard

deviations and correlations), the contour plots, and the histogram of effective dependencies.

When ν = k+50, there is less dependence among the log standard deviations and among the

correlations, but the marginal distributions of both log standard deviations and correlations

become heavily concentrated. A similar pattern can be seen in the contour plots: The length

of the major and minor axes decreases, as well as the eccentricity. For a large number of

degrees of freedom, the effective dependence becomes very small, which is in line with the

fact that the marginal correlations tend to be close to zero.

Both Figures 1 and 2 support the observation in Gelman et al. (2004) that the inverse-

Wishart is quite restrictive, in part due to the fact that it only has one degrees of freedom

parameter, ν. When the degrees of freedom are set to ν = k+1, the marginal distribution of

the correlation is uniform, but the joint distribution of the correlations is far from uniform.

There tends to be an abundance of mass in the extreme corners of its support and often severe

effective dependence. Increasing the degrees of freedom concentrates the distribution around

its expectation (here Ik/(ν − k − 1)), which is a strong prior that may not be appropriate

in a particular research situation.

We also compare different values of dimensionality, k, which does not lead to qualita-

tively different conclusions when looking at the first three layers of our visualization method.

However, the distribution of effective dependences is pushed toward the upper bound of one

when k increases (and ν = k+1). Figure 3 compares two histograms of effective dependence

for the inverse-Wishart distributions with k = 4 and k = 100. Proof 1 in Appendix shows

that limk→∞ 1 − E
(

|R| 1k
)

= 1, which is also apparent from the histogram when k = 100.

The intuition behind this property is that the average proportion of explained variability

of the variables increases with the number of variables, just as a simple R2 increases in a

regression if more predictors are added.

In order to mitigate the restrictiveness of the inverse-Wishart distribution, separation

strategies have been proposed where the covariance matrix is decomposed so that different
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Figure 2: Visualization of an inverse-Wishart distribution (via 1000 simulations) with dimension
k = 4, degrees of freedom k+ 1 and k+ 50, and an identity scale matrix. The plots in the left and
right columns use ν = k+1 and ν = k+50 respectively. The first row represents the scatterplot of
two log standard deviations, the second row depicts the scatterplot of two correlations (that share
a common variable), the third row shows 100 contour plots, and the last row contains histograms
of the effective dependences. See the text for more explanation.
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Figure 3: The distribution of the effective dependence of an inverse-Wishart distribution with
dimension k = 4 (left panel) and k = 100 (right panel) based on 1000 simulations with ν = k + 1
and an identity scale matrix.

priors can be specified on the factors of the covariance matrix. The next three subsections

will be devoted to three separation strategies based on different decompositions of Σ.

3.2 Separation strategy with marginal correlation matrix from the

inverse-Wishart

Barnard et al. (2000) propose the following decomposition:

Σ = diag(σ1, . . . , σk) ·R · diag(σ1, . . . , σk), (6)

where R has the marginal distribution of the correlation matrix in the inverse-Wishart dis-

tribution. The notation diag(σ1, . . . , σk) refers to a diagonal matrix obtained by placing the

σi’s on the diagonal. In other words, the standard deviations are integrated out, leaving the

marginal distribution of the correlation matrix, and then replacement of standard deviations

can be taken from any marginal distribution to form a new joint distribution of the covari-

ance matrix. As derived by Barnard et al. (2000) (see also the first part of Proof 1 in the

Appendix), the kernel of the density function of R is:

p(R) ∝ |R| (ν−1)(k−1)
2

−1

(

k
∏

i=1

|Rii|
)−

ν
2

(7)

where Rii is the ith principal sub-matrix of R (obtained from R by removing row and
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column i). There are several options for the prior distribution on each σi (see O’Malley

and Zaslavsky, 2008). In this paper, we assume each σi is distributed as a folded standard

normal:

σi
i.i.d∼ N+(0, 1) (8)

for i = 1, . . . , k.

Thus, the standard deviations are not affected by the degrees of freedom by construc-

tion, as is reflected in the first row of Figure 4. Similarly, the correlations are independent

of the standard deviations, as is reflected in the second row. However, the univariate and

joint distributions of the correlations are similar to those from the previous inverse-Wishart

distribution because they depend on the same degrees of freedom parameter, ν. Increasing

ν would move the marginal distribution of a correlation from a uniform distribution toward

a peaked distribution around zero. Again, we see a star-like pattern in the bivariate scat-

terplots. Thus, despite some increased flexibility, this distribution has many of the same

problems as the previous inverse-Wishart distribution.

3.3 Separation strategy with a uniform prior distribution on the

correlation matrix

An alternative distribution for Σ is obtained with a separation strategy in which the matrix

R in Equation 6 has a joint uniform distribution (Barnard et al., 2000) on its support, the

space of all k × k correlation matrices. Here we again assume each σi has a folded standard

normal distribution.

Investigating the properties of such distribution requires an efficient algorithm to draw

a correlation matrix uniformally, which is not straightforward for k ≥ 3 due to the positive

semi-definiteness restriction. Recently, Joe (2006) proposed such an algorithm that was

further refined by Lewandowski et al. (2009) where the correlation matrix R is a bijective

function of (k−1)(k−2)/2 partial correlations. Partial correlations are correlations between

the residuals of two variables when each is regressed on some subset of the other variables.

The simplest approach is to condition on all variables before the ith when defining the

partial correlation between the ith and jth variables where i < j. In that case, each partial

correlation can be drawn independently from a symmetric Beta distribution spread over the

(−1, 1) interval with both shape parameters equal to αi = η + (k − i− 1)/2 where η > 0 is
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Figure 4: Visualizing a covariance matrix distribution based on decomposing an inverse-Wishart
distributed covariance matrix into a correlation matrix and standard deviations. In the left column,
ν = k+1 while ν = k+50 in the right column and the standard deviations have a folded standard
normal distribution. The number of realizations is 1000 (only 100 50% equiprobability ellipses in
the final row are shown) and the dimension is k = 4 in both cases.
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a hyperparameter. Lewandowski et al. (2009) prove that

p(R|η) = c(k, η)|R|η−1 (9)

where c(k, η) is a normalization constant first given in Joe (2006). Thus, iff η = 1, then

R has a joint uniform distribution, and Lewandowski et al. (2009) prove that the marginal

distribution of each correlation is symmetric Beta over the (−1, 1) interval with both shape

parameters α = k/2. Thus, the marginal distribution of each correlation becomes more

concentrated around zero as k increases in order to satisfy the positive semi-definiteness

constraint on the correlations jointly. However, the distribution of Σ is not uniform because

its density also depends on the realizations of the standard deviations.

We visualize the implied distribution of Σ in Figure 5 with k = 4 and k = 50. Again, the

correlations are independent of the standard deviations by construction. However, unlike

the distributions that we have seen thusfar, the scatterplot of pairs of correlations does not

follow a star-like shape. Rather, the correlations seem to be less dependent on each other.

Also, a comparison of the evolution of 1 − |Rp,k|
1
p as a function of p reveals two important

points. First, the range of the effective dependencies is large for small k and very narrow for

large k. In fact, the distribution of the effective dependence converges to 1−exp(−1) = 0.631

as k → ∞ (see Proof 2 in Appendix). Second, for large k, the effective dependence of the

leading submatrix increases almost linearly but increases more erratically for small k.

3.4 The scaled inverse-Wishart distribution

As a final separation strategy, the scaled inverse-Wishart distribution makes use of an over-

parametrized distribution (in which there is a trade-off between sets of parameters). The

covariance matrix is decomposed as follows (see O’Malley and Zaslavsky, 2008):

Σ = diag(ξ1, . . . , ξk) ·Q · diag(ξ1, . . . , ξk). (10)

Q has an inverse-Wishart distribution with degrees of freedom ν and identity scale matrix:

Q ∼ Inv-Wishartν(I). (11)
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In this case, ξi is not a standard deviation because Q does not have ones on its diagonal. In

other words, the ith standard deviation is
√

ξ2iQi,i. Nevertheless, we take the distribution

for each ξi to be folded standard normal.
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Figure 6: The scaled inverse-Wishart with ν = k + 1 (left column) and ν = k + 50 (right column)
with k = 4. The number of realizations is 1000 (only 100 50% equiprobability ellipses in the third
row are shown).

The scaling operation has no effect on the correlations, so the correlational properties of

the scaled inverse-Wishart distribution are the same as those of the unscaled inverse-Wishart
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distribution. One motivation for the scaled inverse Wishart distribution is to mitigate the

dependence between the standard deviations and the correlations that plagues the unscaled

inverse-Wishart distribution. However, the scaling does not completely eliminate this de-

pendence.

In Figure 6, similar patterns as for the unscaled inverse-Wishart are seen in the scatter

and contour plots for ν = k + 1. The dependence between the standard deviation and

correlation is weaker, confirming the aforementioned property. When ν = k+ 100, the plots

are quite different from those of the unscaled inverse-Wishart because the distribution of Σ

is dominated by ξ (with large variability) as the correlations tends toward zero.

3.5 The Wishart distribution

The Wishart distribution, prominent in multivariate statistics (see Johnson and Wichern,

2007; Press, 1982), is the sampling distribution of (n − 1)S, where S is the k × k sample

covariance matrix calculated from a sample of size n normal observations on k variables

with mean vector µ0 and population covariance matrix Σ0 (see Wishart, 1928). As can be

seen from Figure 7, the marginal distribution of a covariance matrix depends on k (when

ν = k + 1). As the dimension increases, there is less variability in standard deviations,

correlations and effective dependence. Moreover, Proof 3 in the Appendix shows that the

effective dependence again converges to 1 − exp(−1) as k diverges. If one seeks similar

marginal distributions for the standard deviations as k varies, different values of ν must be

used (and not always ν = k + 1).

3.6 A new distribution

Our visualization tool may help in the evaluation of customized distributions. For example,

assume that we define the following prior distribution on covariance matrices:

Σ = diag(σ1, . . . , σk) ·Λ ·D ·Λ′ · diag(σ1, . . . , σk). (12)

where Λ is a k × k randomly generated orthogonal matrix (draw a k × k matrix W with

standard normal deviates, calculate the singular value decomposition W = UDV ′ and

then set Λ = UV ′), D is a diagonal matrix of eigenvalues whose marginal distribution can
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be any distribution whose support is positive. Here we draw each diagonal element of D

from a Beta(0.5, 5) distribution, which tends to yield a few eigenvalues close to one and

many eigenvalues close to zero. Again, each σi is a standard deviation and has a folded

standardized normal distribution.

We investigate the properties of this customized distribution in Figure 8. The correlations

are concentrated around zero but not as strongly as we have seen with other covariance

distributions. The effective dependence is a function of the eigenvalues only and is centered

around 0.69 (a value close to the limiting value for the uniformly distributed correlation

matrices as k diverges).

4 Comparison of distributions

In order to select a prior in an empirical application, researchers must know the properties

of the various choices for a covariance distribution. In this section, we compare these four

distributions with regard to the marginal and joint distributions of the covariances and the

dependence on k.

First, for the inverse-Wishart distribution, as ν gets larger, the correlations are con-

centrated around zero. For the scaled inverse-Wishart, a similar pattern is evident for the

correlation when ν = k + 1, but the standard deviations depend heavily on the prior for

each ξi. In the previous section, we drew these scale parameters independently from a folded

standardized normal distribution, so the dependence among the standard deviations is small

and driven by Q. When R is the marginal correlation matrix of the inverse-Wishart dis-

tributed covariance matrix, the correlations are more dependent than when R is given a

joint uniform distribution.

Second, the size of the covariance matrix affects some of its properties in different ways

across distributions. For the distributions derived from the inverse-Wishart, we can invoke

an exchangeability property so only a few plots are needed to understand univariate and

bivariate properties of the covariances, even if k is large. However, the effective dependence

is a function of k and its sampling distribution depends on the distribution of the covariance

matrix. In particular, ifR is given a joint uniform distribution, then the effective dependence

is bounded away from units as k diverges, which is not the case for the inverse-Wishart

distribution. If a researcher wants to use a prior that is dependent on the dimensionality,



21

−1.1 0.0 1.1

−
1.

1
0.

0
1.

1

X1

X
2

log(σ1)

F
re

qu
en

cy

−6 −4 −2 0

0
10

0
20

0

ρ12

F
re

qu
en

cy

−1 0 1

0
20

0
50

0

Effective Variance

F
re

qu
en

cy

0.000 0.015

0
50

15
0

Effective Dependence

F
re

qu
en

cy

0.0 0.5 1.0

0
10

0
20

0
0 10 30 50

0.
0

0.
4

0.
8

p (size of leading subR)

1
−

su
bR

 1 p

−1 0 1−
1

0
1

−1
0

ρ1:2

ρ 1
:3 ρ 2

:3

log(σ2)

lo
g(

σ 1
)

−7.8 −3.9 0.0

−
7.

8
−

3.
9

0.
0

ρ12

lo
g(

σ 1
)

−1 0 1

−
7.

8
−

3.
9

0.
0

ρ23

lo
g(

σ 1
)

−1 0 1

−
7.

8
−

3.
9

0.
0

ρ23

ρ 1
2

−1 0 1

−
1

0
1

ρ34

ρ 1
2

−1 0 1

−
1

0
1

Figure 8: Visualization of a customized distribution of covariance matrices. To construct the plot,
1000 covariance matrices (dimension k = 50) were simulated and plotted.



22

our visualization tool can be used to gauge its properties.

5 Conclusion

We have introduced a four-layered visualization method for a distribution of covariance

matrices by using histograms, scatterplots and contour plots. The four layers of plots com-

plement each other, enabling a researcher to visualize a distribution of covariance matrix

from different perspectives. As we have seen in the examples, this novel method of visual-

ization effectively reveals important properties of distributions, which are not known from

analytical results.

This method can be applied to any proper distribution for covariance matrices. Thus,

the method is useful not only to deepen our understanding of existing statistical models, but

also in understanding newly proposed distributional families.

An obvious limitation of the method is that it cannot visualize at once a family of

distributions that is dependent on the dimensionality of the variable set; in that case, it is

necessary to draw plots for at least several values of k.

Appendix

A Analytical results of the effective dependence

A1 Proof 1: limk→∞ 1−E
(

|R| 1k
)

= 1 for an inverse-Wishart distri-

bution

We consider the marginal distribution of the correlation matrix R derived from Σ that

has an inverse-Wishart distribution with scale matrix Ik. We need to consider a trans-

formation of variables from Σ to the correlation matrix R and the standard deviations

S = diag(ξ1, . . . , ξk). Since the Jacobian of this transformation is given by 2k(
∏k

i=1 ξi)
k
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(Barnard et al., 2000), we have:

f(R,S) = f(Σ)× Jacobian

= c−1
1 |Σ|− ν+k+1

2 exp

(

−1

2
tr(Σ−1)

)

2k(
k
∏

i=1

ξi)
k

= c−1
1 2k|R|− ν+k+1

2

k
∏

i=1

ξ
−(ν+1)
i exp

(

− rii

2ξ2i

)

where rii is the ith diagonal element of R−1 and c1 is the normalizing constant for the

inverse-Wishart. Integrating out S gives:

f(R) =

∫

∞

0

f(R,S)dξ1 . . . dξk

= 2
kν
2 c−1

1 Γ
(ν

2

)k

|R| 12 (ν−1)(k−1)−1

k
∏

i=1

|Rii|−
ν
2

where Rii is the i
th principal submatrix of R.

Because c1 = 2
kν
2 Γk(

ν
2
), the density function of R is:

f(R) =
Γ(ν

2
)k

Γk(
ν
2
)
|R| 12 (ν−1)(k−1)−1

k
∏

i=1

|Rii|−
ν
2 (A1)

where Γk(·) is the k-dimensional multivariate gamma function. By definition,

E(|R|1/k) =
∫

|R| 1k f(R)dR

=
Γ(ν

2
)k

Γk(
ν
2
)

∫

|R| 12 (ν−1)(k−1)−1+ 1
k

k
∏

i=1

|Rii|−
ν
2 dR

Now, we obtain the upper bound of E(|R| 1k ) in terms of k by applying Hölder’s inequality,
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letting p = k2/2 and q = k2/(k2 − 2).

E(|R| 1k ) = Γ(ν
2
)k

Γk(
ν
2
)

∫

|R|− 1
k2 (|R| 12 (νq−1)(k−1)−1

k
∏

i=1

|Rii|−
νq

2 )
1
q dR

≤ Γ(ν
2
)k

Γk(
ν
2
)

{
∫

|R|− 1
k2

k2

2 dR

}
2
k2

{

∫

|R| 12 (νq−1)(k−1)−1

k
∏

i=1

|Rii|−
νq

2 dR

}1/q

Evaluating the first integral by the normalizing constant in Joe (2006) and the second by

Equation A1,

E(|R| 1k ) ≤ Γ(ν
2
)k

Γk(
ν
2
)

{

2
∑k−1

i=1 (k−i−1)(k−i)
}

2
k2

{

k−1
∏

i=1

Beta

(

k − i

2
,
k − i

2

)k−i
}

2
k2 Γk

(

νk2

2(k2−2)

)
k2−2

k2

Γ
(

νk2

2(k2−2)

)k× k2−2
k2

.

It can be shown that:

lim
k→∞

Γ(ν
2
)k

Γk(
ν
2
)

Γk

(

νk2

2(k2−2)

)
k2−2
k2

Γ
(

νk2

2(k2−2)

)k× k2−2
k2

= 1.

Further, by using the approximation Beta(x, x) ∼
√
2π x2x−1

(2x)2x−
1
2
(derived by applying the

Stirling’s formula), we get:

log

{

2
∑k−1

i=1 (k−i−1)(k−i)

k−1
∏

i=1

Beta

(

k − i

2
,
k − i

2

)k−i
}

2
k2

≈ 2

k2

k−1
∑

i=1

(k − i)

{

1

2
log 2π − 1

2
log (k − i)

}

.

As k → ∞, the right-hand side of the inequality goes to −∞. In sum, it has been shown

that the upper bound of E(|R| 1k ) goes to 0 as k → ∞. Since E(|R| 1k ) ≥ 0, it implies that

limk→∞E(|R| 1k ) = 0, leading to limk→∞(1− E(|R| 1k )) = 1.
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A2 Proof 2: For a uniformly distributed correlation matrix, the

effective dependence converges to 1− exp(−1)

We consider the correlation matrix R, which follows a uniform distribution. By definition,

E(|R| 1k ) =
∫

|R| 1k f(R)dR

= c−1
2

∫

|R| 1k dR

where c2 = 2
∑k−1

i i2
∏k−1

i=1 {Beta(12(i+ 1), 1
2
(i+ 1))}i (Joe, 2006).

Using the normalizing constant to evaluate the integral above, we get:

∫

|R| 1k dR = 2
∑k−1

i ( 2
k
+i)i

k−1
∏

i=1

{

Beta

(

1

2
(i+ 1) +

1

k
,
1

2
(i+ 1) +

1

k

)}i

As a consequence, E(|R| 1k ) becomes:

E(|R| 1k ) = 2
∑k−1

i ( 2
k
+i)i
∏k−1

i=1 {Beta(12(i+ 1) + 1
k
, 1
2
(i+ 1) + 1

k
)}i

2
∑k−1

i i2
∏k−1

i=1 {Beta(12(i+ 1), 1
2
(i+ 1))}i

Next, we approximate the logarithm of E(|R| 1k ) by a first-order Taylor expansion (a prime
′ refers to a first derivative):

log(E(|R| 1k )) = (k − 1) log 2 +
k−1
∑

i=1

i

{

log Beta

(

1

2
(i+ 1) +

1

k
,
1

2
(i+ 1) +

1

k

)

−

log Beta

(

1

2
(i+ 1),

1

2
(i+ 1)

)}

≈ (k − 1) log 2 +
k−1
∑

i=1

i

k
log Beta

(

1

2
(i+ 1),

1

2
(i+ 1)

)

′

= (k − 1) log 2 +
k−1
∑

i=1

i

k

Beta
(

1
2
(i+ 1), 1

2
(i+ 1)

)

′

Beta
(

1
2
(i+ 1), 1

2
(i+ 1)

)

= (k − 1) log 2 +
2

k

k−1
∑

i=1

i

(

ψ(
1

2
(i+ 1))− ψ(i+ 1)

)
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where ψ(·) is the digamma function, defined as ψ(x) = Γ(x)′

Γ(x)
.

As ψ(x) = log x− 1
2x

+ o( 1
x2 ) (Abramowitz and Stegun, 1972), we find that:

log(E(|R| 1k )) ≈ (k − 1) log 2 +
2

k

k−1
∑

i=1

i

{

log
1

2
(i+ 1)− 1

i+ 1
− log(i+ 1) +

1

2(i+ 1)
+ o(

1

i2
)

}

= −k − 1

k
+

1

k

k−1
∑

i=1

o

(

1

i

)

Consequently, this leads to:

lim
k→∞

log(E(|R| 1k )) = −1

and also:

lim
k→∞

E(|R| 1k ) = exp(−1)

In the same way, it can be shown that limk→∞E(|R| 2k ) = exp(−2). Thus,

lim
k→∞

Var(|R| 1k ) = exp(−2)− (exp(−1))2 = 0

These results imply that the effective dependence converges to 1 − exp(−1) = 0.631 in

probability.

A3 Proof 3: For a Wishart distributed correlation matrix, the

effective dependence converges to 1− exp(−1)

Again, we consider the marginal distribution of the correlation matrixR derived from Σ that

has aWishart distribution with scale matrix Ik. We need to consider a transformation of vari-

ables from Σ to the correlation matrix R and the standard deviations S = diag(ξ1, . . . , ξk).

Since the Jacobian of this transformation is given by 2k(
∏k

i=1 ξi)
k (Barnard et al., 2000, see

also Proof 1),
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f(R,S) = f(Σ)× Jacobian

= c−1
3 |Σ| ν−k−1

2 exp

(

−1

2
tr(Σ)

)

2k

(

k
∏

i=1

ξi

)k

= 2kc−1
3 |R| ν−k−1

2

k
∏

i=1

ξν−1
i exp

(

−1

2
ξ2i

)

where c3 is the normalizing constant for the Wishart. The density function of R is then:

f(R) =

∫

∞

0

f(R,S)dξ1 . . . dξk

= 2
kν
2 c−1

3 Γ
(ν

2

)k

|R| ν−k−1
2

As c3 = 2
kν
2 Γk(

ν
2
), we get:

f(R) =
Γ(ν

2
)k

Γk(
ν
2
)
|R| ν−k−1

2

where Γk(·) is the k-dimensional multivariate gamma function. By definition, this leads to:

E(|R|1/k) =
∫

|R| 1k f(R)dR

=
Γ(ν

2
)k

Γk(
ν
2
)

∫

|R| ν−k−1
2

+ 1
k dR

Using the normalizing constant to evaluate the integral above (Joe, 2006), the result is:

E(|R|1/k) = Γ(ν
2
)k

Γk(
ν
2
)
2
∑k−1

i=1 (ν−k−1+ 2
k
+i)i (A2)

k−1
∏

i=1

{

Beta

(

ν − k − 1

2
+

1

k
+
i+ 1

2
,
ν − k − 1

2
+

1

k
+
i+ 1

2

)}i

As f(R) is a density function,
∫

f(R)dR = 1 and it follows:

∫

Γ(ν
2
)k

Γk(
ν
2
)
|R| ν−k−1

2 dR =
Γ(ν

2
)k

Γk(
ν
2
)

∫

|R| ν−k−1
2 dR = 1
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Again, by using the results of Joe (2006), we get:

Γ(ν
2
)k

Γk(
ν
2
)
2
∑k−1

i=1 (ν−k−1+i)i

k−1
∏

i=1

{

Beta(
ν − k − 1

2
+
i+ 1

2
,
ν − k − 1

2
+
i+ 1

2
)

}i

= 1

This implies that:

Γ(ν
2
)k

Γk(
ν
2
)
=

1

2
∑k−1

i=1 (ν−k−1+i)i
∏k−1

i=1

{

Beta(ν−k−1
2

+ i+1
2
, ν−k−1

2
+ i+1

2
)
}i

Substituting the previous result in Equation A2 gives

E(|R| 1k ) = 2
∑k−1

i (c−1+ 2
k
+i)i
∏k−1

i=1

{

Beta(1
2
(i+ c) + 1

k
, 1
2
(i+ c) + 1

k
)
}i

2
∑k−1

i (c−1+i)i
∏k−1

i=1

{

Beta(1
2
(i+ c), 1

2
(i+ c))

}i

In the same way as in Proof 2, it can be shown that:

log(E(|R| 1k )) ≈ (k − 1) log 2 +
2

k

k−1
∑

i=1

i

{

log
1

2
(i+ c)− 1

i+ c
− log(i+ c) +

1

2(i+ c)
+ o

(

1

i2

)}

= −k − 1

k
+

1

k

k−1
∑

i=1

o

(

1

i

)

Thus, it follows that:

lim
k→∞

log(E(|R| 1k )) = −1

and also that:

lim
k→∞

E(|R| 1k ) = exp(−1)

In the same way, it can be shown that limk→∞E(|R| 2k ) = exp(−2). Thus,

lim
k→∞

Var(|R| 1k ) = exp(−2)− (exp(−1))2 = 0

These results imply that the effective dependence for a Wishart distribution converges to

1− exp(−1) = 0.631 in probability.
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