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Summary. The Millennium Villages Project (MVP) is a ten-year integrated rural development

project implemented in ten sub-Saharan African sites. We describe the design for causal

inference about the MVP’s effect on a variety of development indicators. Causal inference for

the MVP context presents many challenges: a nonrandomized design, limited baseline data for

candidate controls, and the assignment of treatment to only ten sites, limiting effective sample

sizes. We develop and carry out a matching procedure tailored to small samples and designed

to facilitate communication with subject-matter experts. We propose hierarchical Bayesian

causal models for multiple outcomes that account for uncertainty in baseline covariates and

ameliorate the problem of “multiple comparisons.” This paper provides a case study of the

careful design of a non-randomized study, with clear pre-specification of the procedure and

matches before outcome data are available.

1. Introduction

The Millennium Villages Project (MVP) is a ten-year economic development project that

operates in ten clusters of rural sub-Saharan African villages in ten distinct countries. The

MVP implements a multi-sector package of community-level interventions at each of the
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ten sites (Sachs and McArthur, 2005; Sanchez et al., 2007). See Mitchell et al. (2015a) for

background on the project and our overall plan to evaluate it. This paper describes the

design for causal inference about the MVP’s effect on a variety of development indicators.

Causal inference for the MVP context presents many challenges: a nonrandomized design,

limited baseline data for candidate controls, and the assignment of treatment to only ten

sites, limiting effective sample sizes. We develop and carry out a matching procedure tailored

to small samples and designed to facilitate communication with subject-matter experts.

We propose hierarchical Bayesian causal models for multiple outcomes that account for

uncertainty in baseline covariates and ameliorate the problem of “multiple comparisons.”

The MVP began in 2005, without designating control villages and only collecting data

in the project sites, i.e. the “Millennium Villages” (MVs). At each MV, resources were

concentrated in a core area of roughly 1000 households called the “MV1.” (The remainder

of each MV is called the “MV2,” where a subset of interventions were implemented. We do

not utilize the MV2 areas in this study.) Today, at the project’s end-line, funding is available

for surveying areas both inside and outside the MVs to conduct causal inference. Our causal

design includes matching to select control villages, collection of outcome data in treatment

and control villages, and then regression to estimate causal effects. Our outcomes are

defined in Mitchell et al. (2015a), and include indicators of poverty, agriculture, education,

gender equality, health, environmental sustainability, and infrastructure.

We define the causal effect of the MVP in terms of potential outcomes, outcomes that

would have happened with the MVP or without. Focusing on a particular outcome from our

list of development indicators, let y(1) be the outcome for a unit (an individual, household,

or village) that would have occurred had the unit been within a Millennium Village, and y(0)

the outcome that would have occurred had the unit not been within a Millennium Village.

The causal estimand is then defined as a comparison between y(1) and y(0), usually as a

difference, ratio, or odds ratio, averaged over a finite or superpopulation. Even with control

data, estimation of causal estimands relies on untestable assumptions, whose justifications

rely on context-specific knowledge.

One necessary assumption is the stable unit treatment value assumption, which requires

that potential outcomes for any unit do not vary with the treatments assigned to other units

(i.e. units do not interfere with one another), and for each unit there are no different versions

of the treatment which lead to different potential outcomes (Imbens and Rubin, 2015,

Chapter 1). Essentially, this assumption ensures that the potential outcomes introduced

above are well-defined. In our evaluation, we consider only two levels of treatment: either

a unit (an individual, household, or village) is within a Millennium Village,† or a unit is far

enough away from any areas where the project operated that it cannot be affected by it. We

aim to minimize interference by limiting our control pool to areas at least ten kilometers

away from the MV, outside a “buffer zone” of very likely interference. The Millennium

†Here we ignore issues of migration and define treatment as being in a Millennium Village in

2015, regardless of the duration of stay in the Millennium Village.
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Villages themselves are far apart from each other and situated in different countries, so we

assume no interference among them.

A second assumption needed for estimating causal effects is unconfoundedness (Rubin,

1976, 1978, 2008; Imbens and Rubin, 2015; Gelman and Hill, 2007; Greenland et al., 1999;

Bang and Robins, 2005; Angrist and Pischke, 2009). This assumption requires that the

distribution of potential outcomes should be the same for the MVs and control areas,

conditional on the observed pre-treatment variables. To make unconfoundedness plausible,

we want to control for many variables that are not affected by treatment (Rosenbaum,

1984). These need not be temporally before treatment, as long as the project could not

have affected them (e.g. temperature).

For our design, we follow matching with regression, since the combination of the two

methods is more robust than each alone (Rubin, 1973; Rubin and Thomas, 2000; Ho et al.,

2007; Kreif et al., 2011; Abadie and Imbens, 2011; Robins et al., 2000; Robins and Rotnitzky,

2001; Bang and Robins, 2005). Successful matching avoids extrapolation to areas of poor

overlap, which would rely heavily on the correctness of the regression model. If the stable

unit treatment value assumption holds, and we include enough pre-treatment variables

to satisfy unconfoundedness, a combination of matching and regression should do well to

approximate results from a randomized experiment (Dehejia and Wahba, 1999; Dehejia,

2005; Shadish et al., 2008).

We begin by discussing data sources for pre-treatment variables to use in both the

matching and regression. Our search for relevant pre-treatment data was informed by

researching the site-selection process, assembling documents and correspondences to learn

about treatment assignment. Next, we describe the matching procedure to select controls for

eachMV, and propose models to be fit to the outcome data. We assess the unconfoundedness

assumption using our pre-treatment variables. Finally, we present a design analysis (i.e.

“power calculation”) and the data collection plan.

2. Data sources in the control pool

We require pre-treatment variables in the ten countries, measured at a fine enough geo-

graphic resolution, to be able to identify matched controls and for regression adjustment in

our causal models. Below we discuss identified sources of data.

Geographic data

For the ten countries, we collected geographic data from geographic information system

(GIS) databases, including agroecological zone, travel time to nearest city of more than

100,000 population, soil composition, vegetation index, temperature, elevation, and popu-

lation density (Dixon et al., 2001; Joint Research Centre: Land Resource Management Unit;

ISRIC: World Soil Information; GPWv3; GADMv2, 2012; IRI/LDEO; The CGIAR Con-
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sortium for Spatial Information (CGIAR-CSI)). See Appendix B.1 for the list of geographic

variables.

We need to be able to match the MV1s to controls of comparable geographic area. Given

this requirement, and the scale of the geographic variables, the data were processed using

fishnets with square grid cells approximately equal in area to each country’s MV1 (ranging

from 2km × 2km to 12km × 12km). These grid cells are a partition of the area in each

country, making them a convenient choice for matching units. We consider the treatment

units to be grid cells that overlap the MV1, and have either at least 40% area in MV1 and

MV2 combined or have at least 20% area in MV1. These treatment units are two to four

contiguous grid cells within each country. The set of candidate control grid cells excludes

any grid cells that overlap the MV2 or a ten-kilometer buffer zone enveloping the MV.

Census data

Georeferenced census data and corresponding administrative boundary data is often difficult

to procure and process, especially from pre-2005. We are working to resolve this issue, but

due to time and resource constraints, census data was not usable in time for selection of

matched controls.

Demographic and Health Surveys

Many of our outcomes of interest are measured by the Demographic and Health Surveys

(DHS), using survey tools similar to ours (MVP, 2011; Rutstein and Rojas, 2006). The DHS

employs two-stage cluster sampling, with census enumeration areas as primary sampling

units (i.e. clusters) (Measure DHS/ICF International, 2012, p.4,15). To protect anonymity,

the DHS reports the GPS locations of cluster points displaced by up to five kilometers in

rural areas (Measure DHS/ICF International, 2012; DHS, 2014). Therefore, DHS data are

not associated with grid cells, but rather, with DHS buffers, circles around DHS cluster

points with a five kilometer radius. We approximate the enumeration area boundary with

the DHS buffer (a reasonable approximation if there is spatial smoothness in the DHS

variables). The disadvantage of DHS data for our purposes is that it is geographically

sparse, with 350-900 out of 8000-600,000 enumeration areas sampled per country, and 20-30

households sampled within each enumeration area, see Figure 1.

3. Selecting control villages

As discussed above, our matching units are grid cells of equal size to the MV1 treatment

areas. Associated with these grid cells are geographic variables, and associated with DHS

buffers are wealth, education, and health variables. Below we describe how we handle these

different spatial divisions (grid cells and DHS buffers). We wish to select the “best” subset

of five grid cells per country (see Section 6 for justification of our choice of five).
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For seven of the ten countries (all but Tanzania, Nigeria, and Ethiopia), the treatment

grid cells overlap at least one DHS buffer. For these seven countries we restrict the set

of candidate matches to grid cells overlapping DHS buffers, allowing us to have some pre-

treatment data on many outcomes of interest in our matched control areas.‡ Restricting

the matches to areas with DHS data does not worsen the match on geographic variables

enough to cause concern for subject-matter experts. Thus, we prefer to know pre-treatment

values of our outcome variables measured by the DHS, as this has been shown to reduce

bias in observational studies (Cook et al., 2008; Steiner et al., 2010). Due to the geographic

sparsity and anonymity displacements of the DHS data, we must assume spatial smoothness

in the health, wealth, and education variables. We consider DHS data overlapping any of

the treatment grid cells as relevant to all two to four contiguous treatment grid cells.

Our matching procedure is separate for each MV1 (i.e. for each country), with exact

matching on categorical variables followed by non-exact matching on continuous variables.

3.1. Exact matching variables

We match exactly on country, and, given the project’s emphasis on farming systems, we

also match exactly on agroecological zone.

Each of the ten countries containing an MV is divided into administrative units, whose

names and functionality differ from country to country. Each MV is contained within

a district (or local equivalent of district). For survey administration logistics, we limit

matched controls to the MV district, or any districts that border the MV. Furthermore, we

suspect that areas closer to the MV are likely to be better matches than areas farther away.

For some countries, the district containing the MV is small enough that there are few

grid cells within the district. Therefore, we follow Stuart and Rubin (2008) and choose

matches both inside and outside the district, matching on continuous variables described

below. There is a tradeoff between a preference for within-district matches (government

programs are sometimes implemented at this level) and wanting close matches on the con-

tinuous variables. The literature does not offer much guidance beyond a suggestion to use

prior knowledge and previous studies. We therefore defer to subject matter experts who

recommend constraining at least two of the five matched grid cells to be within the district

containing the MV.

‡The MVP collected baseline data in all ten treatment sites, using survey tools similar to the

DHS. It can be argued that these data should be used in the matching, especially for Tanzania,

Nigeria, and Ethiopia, which have no pre-treatment DHS data available in the treatment areas.

However, MVP baseline data is of varying quality, and its comparability to DHS data can only

be evaluated for countries with DHS data near project baseline, see Table ??. We therefore omit

project baseline data from consideration in our matching procedure.
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Fig. 1: A map of Uganda in the region surrounding the Millennium Village (MV). The core

area that receives the full set of interventions, the MV1, is colored in black. The areas that

received a subset of interventions, the MV2, are striped. A ten kilometer buffer is shaded in

blonde. The DHS buffers, circles around DHS cluster points with a five kilometer radius, are

drawn as circles. Treatment and comparison grid cells are in white and black, respectively,

with comparison grid cells displayed for demonstration only. District boundaries are in

different shades of gray (GADMv2, 2012). The MV is located in Isingiro district.

3.2. Non-exact matching variables

To make unconfoundedness as plausible as possible, we want to match on many pre-

treatment variables. If assignment to treatment is unconfounded given covariates, then

assignment is unconfounded given the propensity score, the average assignment probabili-

ties for subpopulations with common values of the covariates (Rosenbaum and Rubin, 1983).

It is simpler to find close matches using a scalar (the propensity score) rather than all co-

variates jointly. However, with so few treatment units (few grid cells, clustered into only

ten MVs), it is difficult to fit propensity score models with many covariates. The models

may vary substantially from country to country, increasing the number of parameters to

estimate. We therefore choose to directly match on the variables of interest, and employ

other methods of dimensionality reduction.

Our first form of dimensionality reduction involves selecting only the most relevant
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variables (Ho et al., 2007, p.217). For each continuous geographic variable, our data include

the grid cells means and standard deviations (see Appendix B.1). We drop the standard

deviation variables, except for the standard deviation associated with elevation, because

it captures a ruggedness of terrain that is considered important. Among the thousands of

variables available in the Demographic and Health Surveys (DHS), we choose a set closely

resembling our outcomes of interest, see Appendix B.2.

Our second form of dimensionality reduction is creating indices of related variables.

DHS computes a household asset index using the first principal component of a list of

assets (similar to those measured by the MVP) (Filmer and Pritchett, 2001; Michelson

et al., 2013). We use this as our measure of wealth. We create two additional indices for

health and education. The variables used to create these indices are listed in Appendix B.2.

Our procedure to create indices involves the following. First, we aggregate variables

measured within the household to a household-level variable x
(k)
h for each household h and

variable k. We then standardize each variable by its mean and standard deviation across

all households in the country: x̃
(k)
h =

x
(k)
h

−E(x
(k)
h

)
√

V ar(x
(k)
h

)
. Next, we “reorient” each variable so that

larger values indicate higher economic development. Finally, for household h, its education

(health) index is the mean of all x̃
(k)
h where k is a variable that belongs to the education

(health) index. If a variable is missing for a particular household, it contributes zero to the

index (future work will explore more sophisticated methods of handling this missingness).

Using the same procedure, we create a temperature index from four temperature geographic

variables (see Appendix B.1).

We let Sgeo denote the set of remaining geographic variables (with temperature combined

into one index), and let SDHS denote the set of three DHS indices.

3.3. Small area estimation

We fit small area models for each of the three DHS indices, using geographic data to im-

prove our estimates (Ghosh and Rao, 1994; Ghosh and Natarajan, 1999; Nadram, 2000; Rao,

2003; Jiang and Lahiri, 2006). To account for design variables used in the DHS two-stage

cluster sampling, our models include levels for clusters and regions within each country

(Measure DHS/ICF International, 2012, p.4,15). Furthermore, we include the cluster sam-

pling weights in the model, as recommended in the literature, since cluster sizes are not

released by the DHS (Zheng and Little, 2003, 2004, 2005; Chen et al., 2010; Si et al., 2015).

We fit Fay and Herriot (1979) models, where the lowest level of the model is approx-

imated by a non-Bayesian calculation without a complete model for the complex survey
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data structure (Zaslavsky, 2011):

x̂d ∼ N(Xd, vd) for DHS clusters d

Xd ∼ N

(
e
T
d γ +

3∑

l=1

βlI(wd ≥ κl) + φr[d], σ
2
cluster

)
for DHS clusters d (1)

φr ∼ N
(
0, σ2

φ

)
for regions (/state/province) r within a country

where x̂d is the standard design-based estimate of the mean DHS index in sampled cluster

d and vd its sampling variance. The ed are the geographic variables, and wd is the sampling

weight for cluster d from the DHS. We use a “degree-0 spline” with knots κl chosen to be

the sampling weights’ quartiles (Zheng and Little, 2004). Where not otherwise specified,

our priors are weakly informative.

Converting geographic data from grid cell level to DHS buffer level

In model 1, the geographic variables act as predictors at the DHS cluster level, which can

be geographically identified as a DHS buffer (due to the displacement for anonymity). This

requires us to convert the geographic data from grid cells to DHS buffers.

Let overlapc,d be the percent of grid cell c overlapped by DHS buffer d. Geographic

variables are means across each grid cell area (see Section 3.2), except for the administrative

units and the elevation standard deviation. For each such variable VAR, and for each DHS

buffer d, compute:

VARd =

∑
c overlapc,dVARc∑

c overlapc,d
.

Then, using a similar procedure for the second moment of the elevation variable, we compute

the standard deviation of elevation within DHS buffer d as follows:

ELEV STD2
d =

∑
c overlapc,d(ELEV STD2

c + ELEV M2
c)∑

c overlapc,d
− ELEV M2

d,

where ELEV Mc and ELEV STDc are the mean and standard deviation of elevation within

grid cell c (see Appendix B.1). In model 1, we use administrative units to partially pool

across regions. To convert from grid cell administrative unit data to DHS buffers, we take

the mode across grid cells overlapping the DHS buffer:

ADMINd = modeoverlapc,d>0{ADMINc}.

We then take the first three principal components of the geographic variables (now at

the DHS buffer level) to include as ed in model 1.

Converting small area estimates from DHS buffer level to grid cell level

After fitting model 1, we have samples of Xd from the posterior distribution for each DHS

cluster d. We convert to samples from the posterior at the grid cell level by computing, for
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each grid cell that overlaps at least one DHS buffer:

Xc =

∑
d overlapc,dXd∑
d overlapc,d

.

This procedure only computes DHS indices for grid cells that overlap DHS buffers.

Though in the future we will improve our small area estimation procedure (via the inclusion

of census variables, for example), due to time and data constraints we do not currently use

our model to impute DHS data in grid cells not overlapping DHS buffers.

Millennium Village Start date DHS dates census dates

Potou, Senegal 2006 2005, 2010-11 2002, 2013

Tiby, Mali 2006 2001, 2006 1998, 2009

Bonsaaso, Ghana 2006 2003, 2008 2000, 2010

Pampaida, Nigeria 2006 2003, 2008 1991, 2006

Koraro, Ethiopia 2005 2000, 2005, 2011 1994, 2007

Sauri, Kenya 2005 2003, 2008-9 1999, 2009

Ruhiira, Uganda 2006 2000-1, 2006, 2011 2002, 2013

Mayange, Rwanda 2006 2000, 2005, 2010 2002, 2012

Mbola, Tanzania 2006 2004-5, 2010 2002, 2012

Mwandama, Malawi 2006 2000, 2004, 2010 1998, 2008

3.4. Matching algorithms

After restricting to neighboring districts and the MV’s agroecological zone (and for seven

countries, to grid cells overlapping DHS buffers), our matching algorithm considers each

possible set of five control grid cells to determine the set that best matches the treatment

grid cells, with “best” defined below. Our search space is restricted to sets with at least

two of the five matched controls lying within the district (see Section 3.1). For each set of

control grid cells, we compute the match’s “badness score,” a measure of covariate imbalance

described below.

After the exact-matching restrictions, let Nin-district be the number of candidate con-

trol grid cells in the district containing the MV and Nout-of-district the number in this

district or any districts neighboring the MV. Thus, the number of possible matches is∑5
nin=2

(
Nin-district

nin

)
∗
(
Nout-of-district

5−nin

)
. If this number is greater than the number that can

be considered in 48 hours, we instead first find the best two within-district matches, fol-

lowed by the best three matches to complement these. This reduces the search space to∑5
nin=2

(
Nin-district

nin

)
+
(
Nout-of-district

5−nin

)
. If this reduction is still insufficient to reduce the runtime

to within 48 hours, we limit the search space using a variable thought by subject-matter

experts to be highly correlated with the potential outcomes (e.g. the asset wealth index).

We restrict control grid cells to be within an allowable margin of the mean of this particular

variable amongst the treatment cells.
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As mentioned above, in Tanzania, Nigeria, and Ethiopia, treatment cells do not overlap

with DHS buffers. We therefore do not restrict control grid cells to overlap DHS buffers for

those three countries. In Kenya and Uganda, the treatment cells do overlap DHS buffers, but

Kenya only contains one grid cell within the district and agroecological zone that overlaps

DHS buffers, and Uganda contains none. Therefore, for Kenya and Uganda we select two

or three within-district matches using geographic data alone, but restrict the remaining

matches to areas with DHS data.

3.5. Imbalance measures

Matching the joint distribution of the covariates between treatment and control implies that

the simple difference in outcome means is unbiased for the treatment effect. However, with

many covariates, estimates of the joint density are subject to the curse of dimensionality

(Imai et al., 2008, p.498; Stuart, 2010, p.11). We follow the common procedure of work-

ing with lower-dimensional summaries (Ho et al., 2007, p.221), considering one matching

variable at a time. For each variable k, let the (sample) means be x
(k)
t , x

(k)
fc , and x

(k)
mc for

the treatment cells, the full set of candidate control cells, and the matched control cells,

respectively. Let the standard deviations be s(k), s
(k)
t , s

(k)
fc , and s

(k)
mc for all grid cells, the

treatment cells, the full set of control cells, and the matched control cells, respectively.

The standardized difference in means is widely recommended to check balance: xt−xmc

s(k)

(see Stuart (2010, p.11), Imbens and Rubin (2015, Chapter 14, p.310-311), and Imai et al.

(2008, p.498)). We also compare the differences in variance using the logarithm of the ratio

of standard deviations between treatment and comparison groups, ln
s
(k)
t

s
(k)
fc

before matching,

and ln
s
(k)
t

s
(k)
mc

after matching (Imbens and Rubin, 2015, Chapter 14, p.312).

Since we do not anticipate analyzing the MV1 grid cells separately, we do not examine

within-pair statistics (Imbens and Rubin, 2015, Chapter 15, p.355-357). We combine the

above scores into an overall “badness score” for a match, first by creating a badness score

for the standardized difference in means:

mean badness =
1

|Sgeo|

∑

k∈Sgeo

|x
(k)
t − x

(k)
mc|

σ(k)
+ wDHS

1

|SDHS |

∑

k∈SDHS

|x
(k)
t − x

(k)
mc|

σ(k)
, (2)

where wDHS is a weight used to increase the influence of DHS variables on the choice of

matches. We also create a badness score for the differences in variance:

var badness =
1

|Sgeo|

∑

k∈Sgeo

∣∣∣∣∣ ln
s
(k)
t

s
(k)
mc

∣∣∣∣∣+ wDHS

1

|SDHS |

∑

k∈SDHS

∣∣∣∣∣ ln
s
(k)
t

s
(k)
mc

∣∣∣∣∣. (3)

We combine these two into a total badness score as follows:

badness = wmean ∗mean badness + var badness,

where wmean is a weight that favors matching closely on means rather than variances.
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Because the DHS variables are much closer to our outcomes of interest (they summarize

pre-treatment values of the outcome variables), we set wDHS = 10. We set wmean = 2,

assigning more importance to mean matching as opposed to variance matching.

As mentioned above, not all treatment grid cells overlap with DHS buffers, requiring

modification of the above badness scores. For Tanzania, Nigeria, and Ethiopia (whose treat-

ment cells do not overlap any DHS buffers) we drop the terms that measure the imbalance

on DHS variables in expressions 2 and 3. For Kenya and Uganda we also consider matched

control grid cells that do not overlap DHS buffers. In the above badness scores, this is han-

dled by computing sample means and standard deviations using available cases. In future

work, more sophisticated methods should be employed to handle the missingness of DHS

data (we drop grid cells with missingness in the geographic variables, as this missingness is

pre-treatment and the treatment grid cells have no missing geographic values).

Another complication with the above badness scores occurs when either s
(k)
t or s

(k)
mc is

zero, making the variance badness infinite or undefined. When both s
(k)
t = 0 and s

(k)
mc = 0,

we replace

∣∣∣∣∣ ln
s
(k)
t

s
(k)
mc

∣∣∣∣∣ with zero, because this represents a good match (i.e. no badness).

When s
(k)
t = 0 and s

(k)
mc 6= 0, we replace

∣∣∣∣∣ ln
s
(k)
t

s
(k)
mc

∣∣∣∣∣ with
∣∣∣∣∣ ln

1
10 s

(k)
c

s
(k)
mc

∣∣∣∣∣. The idea here is that if

the variance in the treatment group is zero, we want to enforce the variance in the matched

control group to be small. The choice to aim to reduce the standard deviation to one tenth

that of the full control group is ad hoc. When s
(k)
mc = 0 but s

(k)
t 6= 0 (which is much more

rare), we simply allow the badness to be infinite, thereby eliminating these few matches

from consideration.

3.6. Subject-matter experts’ review

The above process included extensive dialogue with subject-matter experts, who can better

determine whether differences between control and treatment are of concern. We presented

plots (as shown in Figure 2) to development economists, public health practitioners, geogra-

phers, and agricultural scientists. These displays allowed the experts to see the differences

in means and variances discussed above. If they voiced concerns about a particular variable,

we reran the above algorithm with an adjusted badness score that gives more weight to the

unbalanced variable. Alternatively, we began the procedure by restricting the control pool

to grid cells within a range that corresponds more closely to the treatment cells.

3.7. Selecting villages

After the selection of matched control grid cells described above, our field teams listed all

villages for which a majority of households fall within each grid cell’s boundary. Village

names may have changed since the start of the project, ten years ago. It is not uncommon

for a village to split or for a few villages to merge. Though we do not want to use post-
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treatment information, we need our sampling frame to reflect the current villages, so we use

the most recent village lists available.

Our field teams collected population data to determine the size (numbers of households

or people) of each village listed. We restrict our sampling frame to villages within the range

of the corresponding MV site village sizes. If for a particular grid cell no villages are within

this range, we take as a control village the one closest to the range. After determining

the sampling frame of villages, we randomly select one village per grid cell to serve as our

control villages.

This procedure was pre-registered with The Registry for International Development

Impact Evaluations (International Initiative for Impact Evaluation, 2013), including code

to perform the randomization with the promise to use a specific future NASDAQ index as

a random seed. This prevents alterations to control village selection once outcome data are

available.

3.8. Case studies

Instead of describing the path to our final matches for all ten countries, we use Uganda

and Ghana as case studies to show some of the most common issues that arose. For ease

of notation, define dk =
|x

(k)
t −x(k)

mc|

σ(k) , the standardized absolute mean difference and vk =
∣∣ ln s

(k)
t

s
(k)
mc

∣∣ the absolute log variance ratio. Define a mean operator,Mi∈S xi ≡
1
|S|

∑
i∈S xi.

The original proposed badness score was

mean badness = 10 M
k∈SDHS

dk + M
k∈Sgeo

dk

var badness = 10 M
k∈SDHS

vk + M
k∈Sgeo

vk, (4)

badness = 2 ∗mean badness + var badness.

We always weight the mean badness twice as much as the variance badness, so henceforward

we drop this last line from our specification of badness scores.

Ghana

Optimization of the badness score resulted in a successful match in Ghana, representing

our experience in eight (out of ten) countries. Unlike other countries, when we restrict

selection to areas with DHS data and to the agroecological zone of the Ghana MV (tree

crop), there are only two candidate control grid cells within the same district as the MV

(Amansie West). Therefore, the matching procedure optimizes over the remaining three

matches, which must come from outside Amansie West.

Optimizing with the original proposed badness score (4), we obtained a reasonably good

match, but with population density roughly 30% higher in one control grid cell than in the
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treatment areas. Subject-matter experts suggested we improve the match on population.

In response, we increased the weight on the population variable to match the collective

importance of the DHS variables, see badness score (5). The grid cell with the highest

population density was replaced with a grid cell with population roughly equal to that of

the MV. After consultation with subject-matter experts, this was determined to be the final

match, see Figure 2.

mean badness = 10 M
k∈SDHS

dk + M
k∈Sgeo

k 6=POPD

dk + 10dPOPD (5)

var badness = 10 M
k∈SDHS

vk + M
k∈Sgeo

k 6=POPD

vk + 10vPOPD

Uganda

Uganda demonstrates a case in which the badness score does not afford us a semi-automated

procedure largely free from human input. In fact, the badness score itself did not drive the

selection in Uganda. Instead, we used visualization and input from experts to arrive at our

final matches. Our experience with the matching process in Tanzania was similar.

Optimizing with the original proposed badness score, subject matter experts were un-

happy with the match on population density. We increased the weight on population density,

but this made the match on travel time to major cities very poor, with little overlap. This

tradeoff is easily seen via a two-dimensional plot of the two variables, see Figure 3. Controls

with population density similar to the MV are closer to major cities and controls with ac-

cess to major cities similar to the MV have lower population density. Both access to major

cities and population density are correlated with access to health and education services,

and therefore to our outcomes (Balk et al., 2004; Roberts et al., 2006; Gage, 2007; Linard

et al., 2012). Thus, we take some matches that are a good match on population density,

and some that are a good match on access to major cities. To do this, we dropped the

variance contributions to the badness score for each of these variables to allow the matches

to have higher variance than the treatment areas.

Using a badness score with only population and access to major cities,

mean badness = 10dPOPD + 2dACCESS (6)

var badness = 0,

we examined two-dimensional plots to find the relative weights we wanted to give each

variable (see Figure 3b). We used this ratio of weights including other variables in the
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badness score,

mean badness = 10 M
k∈SDHS

dk + M
k∈Sgeo

k 6=POPD, ACCESS

dk + 25dPOPD + 5dACCESS (7)

var badness = 10 M
k∈SDHS

vk + M
k∈Sgeo

k 6=POPD, ACCESS

vk + 0 ∗ vPOPD + 0 ∗ vACCESS,

but the match on population density was unsatisfactory, see Figure 3c. We increased the

weights on the population and access, using the other variables only as tie breakers,

mean badness = 10 M
k∈SDHS

dk + M
k∈Sgeo

k 6=POPD, ACCESS

dk + 100000dPOPD + 20000dACCESS (8)

var badness = 10 M
k∈SDHS

vk + M
k∈Sgeo

k 6=POPD, ACCESS

vk + 0 ∗ vPOPD + 0 ∗ vACCESS.

The resulting match is shown in Figures 3d and 4. We also plot the final matches with each

variable on a scale from the minimum value in Uganda to the maximum value in Uganda,

see Figure 5.

In addition to seeing the limitations of the badness score, our experience with Uganda’s

matching points to the challenge of how to prioritize matching variables. The relative

importance of matching variables was unclear prior to receiving feedback on candidate

matches from subject-matter experts. For example, we were encouraged to include the

standard deviation of elevation as a matching variable, as it captures a ruggedness of terrain

that agricultural and food security experts deemed important. However, when presented

with the matches, the improved match on population far outweighed the worsened match

on standard deviation of elevation. The literature does not present a way to easily compare

the two variables’ prognostic value for our outcomes, nor does our information regarding

the treatment assignment (i.e. the selection of Millennium Village sites).
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Fig. 2: This plot displays values for the matching variables in both the treatment grid cells

and matched control grid cells in Ghana when the matches are found by optimizing the

badness score in equation (5). Each circle corresponds to a grid cell. Black circles are

treatment grid cells, while the colorful circles are the matched controls. We use the colors

to identify each matched control cell, to allow for inspecting across variables (e.g. one

cell/color may do well on one variable, and badly on another). Filled-in circles represent

within-district grid cells, and empty circles the out-of-district grid cells. For the DHS indices

(education, assets, and health), we also present the 95% posterior intervals, to represent

the uncertainty from our small area estimation procedure. There are fewer black circles for

these indices because only a subset of the treatment grid cells overlap DHS buffers.
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Uganda: using original badness score
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Uganda: using only access and population
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Uganda: weighting access and population higher
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Fig. 3: For Uganda’s matching, we first exact match on agroecological zone (highland

perennial), and restrict candidate matches to either Isingiro or Ruhaama districts. We

restrict to areas with Demographic and Health Surveys (DHS) data outside of the district

containing the Millennium Village (Isingiro), but allow non-DHS areas inside of the district,

i.e. in Ruhaama. After these restrictions, the remaining candidate control grid cells are

displayed as circles in this figure. We compare population density in 2005 (the average

number of people per square kilometer) versus travel time to major cities (in minutes). In

filled-in black squares are the four treatment grid cells. We fill in the chosen control grid

cells in gray.
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Fig. 4: This plot displays values for the matching variables in both the treatment grid cells

and matched control grid cells in Uganda when the matches are found by optimizing the

badness score in equation (8). Each circle corresponds to a grid cell. Black circles are

treatment grid cells, while the colorful circles are the matched controls. We use the colors

to identify each matched control cell, to allow for inspecting across variables (e.g. one

cell/color may do well on one variable, and badly on another). Filled-in circles represent

within-district grid cells, and empty circles the out-of-district grid cells. For the DHS indices

(education, assets, and health), we also present the 95% posterior intervals, to represent

the uncertainty from our small area estimation procedure. There are fewer black circles for

these indices because only a subset of the treatment grid cells overlap DHS buffers.
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Fig. 5: This plot displays values for the matching variables in both the treatment grid cells

and matched control grid cells in Uganda when the matches are found by optimizing the

badness score in equation (8). Each circle corresponds to a grid cell. Black circles are

treatment grid cells, while the colorful circles are the matched controls. We use the colors

to identify each matched control cell, to allow for inspecting across variables (e.g. one

cell/color may do well on one variable, and badly on another). Filled-in circles represent

within-district grid cells, and empty circles the out-of-district grid cells. For the DHS indices

(education, assets, and health), we also present the 95% posterior intervals, to represent

the uncertainty from our small area estimation procedure. There are fewer black circles for

these indices because only a subset of the treatment grid cells overlap DHS buffers. The

axes for these three indices extend from the minimum value in Uganda to the maximum

value in Uganda, in order to provide context.
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4. Candidate models for causal inference

We have many outcomes of interest, defined in Mitchell et al. (2015a), including a subset

of Millennium Development Goal (MDG) indicators and a number of indicators that are

relevant to systems delivery, which we refer to as ‘MVP indicators.’ In this section, we

suggest some causal models that we will fit to the end-line outcome data. The analysis

will fork in many ways, with different modeling choices. In the end-line evaluation, we will

report and compare all results to reduce the scope for fishing (i.e. deciding to report a

model based on the realization of the conclusion, see Humphreys et al. (2013); Gelman and

Loken (2013)).

Our strategy will begin with single-outcome models whose results will serve as a type

of data summary. From the single outcome models we will build up to a multi-outcome

model that includes all outcomes and will allow the treatment effects on related indicators

to inform each other via partial pooling, as recommended in Gelman and Tuerlinckx (2000)

and Gelman et al. (2012). We define groups of related indicators based on the domains that

they address, as follows:

• poverty indicators: composed of our MDG 1 indicators, MVP agriculture indicators

(a.1 to a.4), and MDG indicator 8.15 (access to mobile phones);

• education indicators: composed of our MDG 2 and 3 indicators, and MVP education

indicators (b.1 to b.3);

• child health indicators: composed of our MDG 4 and 7 indicators, and MVP health

indicator c.1;

• maternal health indicators: composed of our MDG 5 indicators; and

• HIV-malaria indicators: composed of our MDG 6 indicators.

Our data summary begins by fitting single-outcome models separately to each indicator

from Mitchell et al. (2015a), and reporting all results. Next, for each of the above groups of

indicators, we will create a summary measure using the treatment effect estimates from the

single-outcome model regressions. With many separate analyses, there may be concerns

about multiple comparisons: the idea that testing many hypotheses makes it very likely

that at there will be at least one assertion of statistical significance (i.e. an uncertainty

interval for the treatment effect not including zero), even when all null hypotheses are true

(i.e. all treatment effects are exactly zero). As one way to alleviate these concerns, we will

reduce the number of comparisons by creating two overall summary measures: one of all

the indicators and one limited to the Millennium Development Goal indicators and proxies.

Later in this section we give a more complete perspective on multiple comparisons.

We will create these summary measures as follows: we standardize country- and outcome-

specific treatment effects using the “divide by 4 rule” for binary outcomes and dividing
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continuous outcomes by twice their respective standard deviations in the control group (see

Section 6, and Gelman (2008); Clingingsmith et al. (2009)). Next, we will reorient the treat-

ment effects so that larger is better. We will then average the transformed treatment effects,

weighting all outcomes equally. Lastly, we will average across countries q and outcomes k:

1

number of countries

∑

q

1

number of outcomes

∑

k

τ
(k)
q

2σ
(k)
q I(k is continuous) + 4I(k is binary)

,

where the average is either across all outcomes (to create the overall summary measure)

or across all outcomes within a group (to create group-level summaries). These summary

measures are sometimes referred to as average effect size estimates (O’Brien, 1984; Cling-

ingsmith et al., 2009). The multi-outcome model will have parameters that correspond to

these group-level and overall summary measures. We expect that the average treatment

effect estimate will be similar for the multi-outcome model and the above constructed sum-

mary. However, the group-level treatment effects will be shrunk towards each other in the

multi-outcome model.

Before introducing our causal models, we describe their common structure and notation.

Causal inferences can be biased if we adjust for variables affected by treatment (Rosenbaum,

1984), so we restrict to adjusting for pre-treatment variables. Additionally, we are limited

to adjusting for aggregate baselines. We only have panel (i.e. longitudinal) data in the MVs

(see Section 7), but not in control villages, since deidentification of the data from external

surveys (e.g. Demographic and Health Surveys, as well as country censuses) prevents us

from identifying the villages and individuals surveyed in the past.

After the selection of comparison grid cells described in Section 3, we will (randomly)

select one village per grid cell. Though many of our pre-treatment variables are measured

at the grid cell level, for clarity of exposition we do not present our models with a grid

cell level included. However, we propose to include a grid cell level as a diagnostic during

model assessment. Let j index a village, zj be the indicator of treatment, and xj be a

vector of pre-treatment covariates (indexed by l), including small area estimates of wealth,

education, and health indices, see Section 3.3. These pre-treatment covariates are mostly

measured at the grid cell level, and not at the village level. Lastly, let y
(k,t)
i denote the

individual-level outcome k at time t (similarly let y
(k,t)
j denote the village-level outcome).

Where not otherwise specified, priors on parameters are weakly informative. Our es-

timands are superpopulation average treatment effects, conditional on covariates (Gelman

et al., 2014, Chapter 8). Thus, we imagine that the villages were “sampled” from a pop-

ulation of villages with similar covariates, with high levels of political buy-in, where MVP

treatment would not have been disrupted by financing shortages or political instability

(Mitchell et al., 2015a). We will perform posterior predictive checks on the models pro-

posed below in order to iteratively adjust them, expanding when necessary (Gelman et al.,

2014, Chapters 6 and 7).



Causal inference for an observational study with small sample sizes and incomplete baseline 21

4.1. Single-outcome models

We consider a ladder of models, starting with simple models and building to more complex

models. The first few rungs of the ladder include only one outcome at a time, and treatment

effects that do not vary across countries. The first rung of the ladder includes no covariates,

and pools across countries. For each outcome k that is continuous we will fit a linear model,

y
(k,2015)
i ∼ N

(
δ
(k)
0 + τ (k)zj[i], σ

2
y

)
for individuals i,

where τ (k) is the treatment effect for outcome k. The second rung of the ladder includes

no covariates but does include partial pooling over villages and countries. While the third

rung of the ladder includes covariates (xj) as well,

ŷ
(k,2015)
j ∼ N

(
x
T
j δ

(k)
q[j] + τ (k)zj, σ

2
village + vj

)
for villages j

δ(k)
q ∼ N

(
δ(k),Σ(k)

)
for countries q (9)

Σ(k) = diag(σδ)Ωdiag(σδ)

σδ,l ∼ Cauchy(0, 2.5) for covariates l

Ω ∼ LKJcorr(2),

where ŷ
(k,2015)
j is the estimated village-level indicator, and vj its variance. We use a

separation-strategy prior that decomposes the variance-covariance matrix into variance and

correlation components, specifying separate priors for each component (McCulloch and

Meng, 2000). We place weakly informative priors on the variances recommended by Gel-

man (2006), and a weakly informative prior on the correlation matrix whose probabilities

are inversely proportional to its determinant (Lewandowski et al., 2009). For binary out-

comes, we will fit analogous logistic models, and in the next section we describe models for

the mortality outcomes.

We may relax the exchangeability of villages within country via additional levels to

the models, or a conditional autoregressive (CAR) spatial model. We propose to add

interactions between the treatment indicator and covariates to assess sensitivity to the

assumption that the coefficients of the pre-treatment covariates do not vary by treatment

group. However, we may not have the precision to estimate these interactions without

strong regularization via prior distributions. For example, one model we propose to fit will

interact the linear predictor with the treatment indicator, replacing the village level of the

above model with ŷ
(k,2015)
j ∼ N

(
x
T
j δ

(k)
q[j] + τ (k)zj + γxT

j δ
(k)
q[j]zj, σ

2
village + vj

)
for villages j.

We center the xj so that τ (k) can be interpreted as a superpopulation average treatment

effect, E[yj(1)− yj(0)].

Mortality outcomes - survival models

For mortality indicators, standard methods used by the DHS are described in Rutstein and

Rojas (2006, p.92-94). We can use these methods to compute village-level mortality rates,
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and fit a village-level model. Alternatively, we can fit a survival model. For the under-5

mortality rate, the end-line study period is 2010-2015, following the conventions in Rutstein

and Rojas (2006); UN Millennium Project (2014). With women’s birth histories collected

in 2015, we will have birth and death dates (if the child died) for any child age 0-5 years

alive during this study period. The complications with considering under-5 mortality in

2010-2015 are: we want a child born before 2010 to contribute to the analysis only during

the study period, and we want only ages 0-5 to contribute to the analysis. To accomplish

this we propose the following method:

Let J0i be child i’s joining time, which equals 2010 for children born before 2010, and

equals the calendar year of birth for children born after 2010. Let A0i be child i’s age

adjustment, which equals the child’s age in 2010 for children born before 2010, and equals

zero for children born after 2010. Let T ∗
i be child i’s survival time, i.e. how many years

child i lives in total. Then Ti = T ∗
i −A0i is the survival time since the joining time J0i. The

censoring time in years since the joining time is Ci = min(5−A0i, 2015−J0i) because children

born before 2010 are censored when they reach age 5 and those born after 2010 are censored

in 2015. The observed data are (Ui, δi,xj[i]) where Ui = min(Ti, Ci), δi = I(Ti ≤ Ci)

indicates whether the child died, and xj[i] are covariates, including treatment indicator,

country effect, and other variables.

Ci may depend on Ti because both may depend on A0i: for children born before 2010,

Ci = 5 − A0i while Ti = T ∗
i − A0i. Thus, we want to condition on A0i in our analysis so

that Ci and Ti are more plausibly independent. We also want to condition on J0i because

otherwise (Ui, δi,xj[i]) may not be i.i.d. (independent and identically distributed): for a

child with a smaller value of J0i, the observation (Ui, δi,xj[i]) is more likely to be (Ti, 1,xj[i]),

while for a child with a larger value of J0i (but same value of covariates xj[i]), the observation

(Ci, 0,xj[i]) is more likely. In addition to including A0i and J0i as covariates, we need to

include the interaction of A0i and treatment in order to account for the possible benefits

that children born before 2010 may have had from getting the treatment for a few years

prior to joining the study period.

Finally, we fit a survival analysis model (Cox, 1972; Ibrahim et al., 2001) adjusting for

the variables mentioned above, analogous to the proposed models in the previous section.

The coefficient of treatment, τ (k), represents a log hazard ratio, comparing the hazard of

death among children in a treatment village to those in a control village, among children

with the same covariates adjusted for in the model , ages 0-5 during 2010-2015. We can also

use the model to compute other summaries of the treatment effect (including the difference

or ratio of the probability of a child surviving to age 5 in treatment versus control villages)

by estimating the baseline survivor function.
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Difference-in-differences methods

Previous evaluations of the MVP, Clemens and Demombynes (2011) and Pronyk et al.

(2012), as well at the proposal for the new northern Ghana MV evaluation, ITAD evaluation

for Northern Ghana (2013), use difference-in-differences methods. Difference-in-differences

uses measurements at two time points, baseline and end-line (and possibly also time points

in between), and an assumption of additivity to difference out time-invariant effects and

identify the effect of treatment. Additivity requires the potential gains over time to be the

same across treatment and comparison groups, adjusted for covariates.

Instead of additivity, our models above, often known as ANCOVA models, assume un-

confoundedness given the baseline outcome variables and other covariates. Difference-in-

differences and ANCOVA models each make different assumptions, neither makes strictly

fewer assumptions than the other (Imbens and Wooldridge, 2009, p.70). Imbens and

Wooldridge (2009) suggest that unconfoundedness given baseline is, in general, more attrac-

tive. To test the sensitivity to these assumptions, we propose to fit difference-in-differences

models analogous to our above models, for any outcome k for which we have an estimate

of baseline. If there are large discrepancies between the two types of models, we will have

to conclude that we are uncertain which to trust.

Without individual-level data at baseline in the control villages, we cannot fit an individual-

level difference-in-differences model. In a difference-in-differences model analogous to model

9, the estimated baseline is subtracted from the 2015 outcome and not included in covariates

xj . This enables us to difference out any time-invariant grid cell-level effects.

Varying treatment effects

We propose to fit our above models allowing for treatment effects to vary by Millennium

Village (i.e. country), with partial pooling (Hill and Scott, 2009; Feller and Gelman, 2014).

Extending our model 9, we will fit a model that allows the treatment effects to vary by

country, correlated with the pre-treatment covariates linear predictor:

ŷ
(k,2015)
j ∼ N

(
x
T
j δ

(k)
q[j] + τ

(k)
q[j]zj + γxT

j δ
(k)
q[j]zj , σ

2
village + vj

)
for villages j

τ (k)q ∼ N
(
τ
(k)
0 + ωxT

q δ
(k)
q , σ2

τ

)
for countries q

δ(k)
q ∼ N

(
δ(k),Σ(k)

)
for countries q

Σ(k) = diag(σδ)Ωdiag(σδ)

σδ,l ∼ Cauchy(0, 2.5) for covariates l

Ω ∼ LKJcorr(2).

Due to the small numbers of villages in each country, estimates of τ
(k)
q will have high

variance unless σ2
village, the unexplained variance between villages, is small. In this model
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we center the xj by country means so that τ
(k)
q can be interpreted as a superpopulation

average treatment effects for each country.

Accounting for uncertainty from small area estimation

A subset of variables in xj will be small area estimates and we want our intervals for

the treatment effects to honestly reflect the uncertainty in our procedure. To account

for uncertainty in each such xj , we add a level to the hierarchical causal models: xj ∼

N (x̂j , varj), where varj is the posterior variance from the small area estimation procedures

described in 3.3 (see Gelman et al. (2014, p.474) for a similar example). We may transform

xj to make normality a better approximation to the posterior distribution.

4.2. Joint-outcome models

Our outcomes k = 1, ...,K (where K = 51, see Mitchell et al. (2015a)) target different

populations (e.g. infants, women, etc.). These outcomes are grouped into five related groups

of outcomes (poverty, education, child health, maternal health, HIV-malaria) indexed by

g = 1, ..., 5.

We standardize the outcomes so that they are on the same scale, and the positive

direction is better (higher standard of living). To avoid the issue of different populations,

the joint-outcome model we propose uses estimates of the outcomes at the village level,

ŷ
(k,2015)
j , with estimated variance-covariance matrix Σ̂y:




...

ŷ
(k,2015)
j

...


 ∼ N







...

θ
(k)
j

...


 , Σ̂y


 for villages j

θ
(k)
j ∼ N(θ

(g[k])
j + x

T
j δ

(k)
q[j] + τ

(k)
q[j]zj , σ

2
village,within-group) for villages j and outcomes k

θ
(g)
j ∼ N(0, σ2

village,between-group) for villages j and outcome groups g

τ (k)q ∼ N(ωxT
q δ

(k)
q + τ (g[k])q , σ2

τ,within-group) for countries q and outcomes k

τ (g)q ∼ N(τq, σ
2
τ,between-group) for countries q and outcome groups g

τq ∼ N(τ, σ2
τ,between-country) for countries q

δ(k)q ∼ N
(
δ(k),Σ(k)

)
for countries q

Σ(k) = diag(σδ)Ωdiag(σδ)

σδ,l ∼ Cauchy(0, 2.5) for covariates l

Ω ∼ LKJcorr(2).
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4.3. Multiple comparisons

The probability of making at least one error is larger with estimation of many outcomes

than with a single outcome. This is the concern of “multiple comparisons,” and it is usually

framed in terms of Type I errors: asserting statistical significance (i.e. an uncertainty

interval for the treatment effect not including zero) even when the null hypothesis is true

(i.e. the treatment effect is exactly zero). One way to circumvent this concern is to consider

only our overall summary measure proposed above or the corresponding parameter τ in the

joint model.

Another perspective views the null hypothesis as an uninteresting event to condition on,

because we do not believe that any treatment effect is exactly zero. This is unrelated to the

Millennium Villages Project, but is a general statement about continuous parameters: they

equal zero with probability zero. However, it is plausible that all the treatment effects are

close to zero relative to the error in the data. In this situation, claims that the treatment

effects are nonzero (i.e. statistical significance) are not errors, but two different errors can

arise. Type M (magnitude) error is the expected absolute value of the estimate divided by

the true effect size, if it is statistically significant (Gelman and Carlin, 2013). Type S (sign)

error is the probability that the estimated treatment effect has the incorrect sign, if it is

statistically significant. Gelman and Tuerlinckx (2000) and Gelman et al. (2012) show that

hierarchical modeling can reduce both these types of errors.

5. Assessing unconfoundedness and sensitivity analysis

Although unconfoundedness cannot be tested directly, there are analyses that can assess

its plausibility (Altonji et al., 2005; Imbens and Rubin, 2015, Chap.21). Imbens and Rubin

(2015) describe three methods, one of which can be done before outcome data are available.

Sensitivity analyses relax (rather than assess) unconfoundedness, obtaining ranges of plau-

sible values for the treatment effects. We conduct the one analysis which can be done at the

design stage (i.e. before outcome data are available): assessment of unconfoundedness using

pseudo-outcomes. We also outline the remaining two ways to assess unconfoundedness and

our proposed sensitivity analyses.

Considering outcomes at the grid-cell level, the unconfoundedness assumption is:

yc(0), yc(1) ⊥ zc | xc (unconfoundedness). (10)

A related assumption is subset unconfoundedness, which leaves out the pth pre-treatment

variable from the conditioning set:

yc(0), yc(1) ⊥ zc | x(−p)
c (subset unconfoundedness). (11)

This assumption cannot be tested for the same reason unconfoundedness cannot be tested:

we do not observe yc(1) if zc = 0 and we do not observe yc(0) if zc = 1 (Imbens and Rubin,

2015). Suppose, however, that one of our pre-treatment variables is a good proxy for one



26 S. Mitchell et al.

of the potential outcomes (e.g. yc(0)). This variable, x
(p)
c , can serve as a pseudo-outcome

in a testable version of unconfoundedness:

x(p)
c ⊥ zc | x(−p)

c (pseudo-outcome unconfoundedness). (12)

The link between the unconfoundedness assumption (10) and the testable assumption (12)

depends on two steps: linking assumptions (10) and (11) and linking assumptions (11) and

(12). Both links are based on heuristic arguments that rely on subject-matter knowledge,

neither are probabilistic theorems.

While it is theoretically possible that subset unconfoundedness (11) holds but uncon-

foundedness (10) does not, in practice it is rare if all the xc are pre-treatment variables.

More concerning is the more plausible scenario that unconfoundedness (10) holds but subset

unconfoundedness (11) does not, because conditioning on x
(p)
c is critical.

Subset unconfoundedness (11) and pseudo-outcome unconfoundedness (12) are most

closely related when x
(p)
c serves as a good proxy for yc(0) or yc(1). This is most plausible

when x
(p)
c is a lagged version of the outcome (Imbens and Rubin, 2015). In our analysis,

the DHS variables are composites of outcome measures and are therefore some of the best

pseudo-outcomes. However, for this same reason they might be critical to condition on,

calling into question the subset unconfoundedness assumption.

For pseudo-outcomes, we consider only continuous (not categorical) variables. We con-

sider nine geographic variables: access to major cities, cation exchange capacity of the soil,

percent clay composition of the soil, soil pH, enhanced vegetation index, land surface tem-

perature, elevation, elevation standard deviation (i.e. roughness of terrain), and population

density. From the DHS we consider three variables: an asset wealth index, education index,

and health index, see Appendix B.

We always include categorical variables (agroecological zone and district or neighboring

districts) in x
(−p)
c , and perform exact-matching as described in Section 3.1. We then use

the continuous variables (except for the pseudo-outcome) in matching procedures described

in Section 3.4. Lastly, we fit a simple hierarchical model,

x(p)
c ∼ N

(
δ0,q[c] + x

(−p)
c

T
δ + τzc, σ

2
grid-cell

)
for grid cells c (13)

δ0,q ∼ N(δ0, σ
2
δ ) for countries q.

In addition to this model, we also conduct t-tests of the pseudo-outcome between treatment

and matched control groups.

We perform the above procedure (matching, fitting model 13, and conducting t-tests)

for each pseudo-outcome, recording each treatment effect interval of uncertainty. We only

have DHS data for both treatment and control groups in seven of the ten countries (see

Section 3). Therefore, we split our assessment of unconfoundedness into two parts. In one

part, we drop the DHS variables from the pre-treatment covariates and pseudo-outcomes

and perform the procedure using data from all ten countries. In the other part, we include

DHS variables and limit our analysis to data from the seven countries with DHS data.
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Without DHS variables, using data from all ten countries, we assess the nine possible

geographic pseudo-outcomes by examining the treatment effect interval of uncertainty from

fitting model 13. Only enhanced vegetation index had an interval that did not contain zero.

With DHS variables, using data from only seven countries, we assess all twelve possible

pseudo-outcomes by examining the treatment effect interval of uncertainty from fitting

model 13. Cation exchange capacity of the soil, elevation, and population density all had

intervals that did not contain zero. None of the t-test results were significant. These

four variables are not particularly compelling pseudo-outcomes, and neither our matching

procedure nor modeling strategy included inspections or checks (e.g. examining plots such

as Figure 2 to inspect the matching, or posterior predictive checks of model fit). Therefore,

we do not (yet) abandon attempts at causal inference.

A second method of assessing unconfoundedness splits the comparisons into two groups

and estimates the treatment effect with “treatment” equal to the group variable (Imbens

and Rubin, 2015, Chap.21). In the MVP setting, splitting the few comparison areas (five

per country) in two may result in poor balance on pre-treatment variables. Therefore, this

pseudo-treatment may be found to be significant, even if unconfoundedness holds. A third

method looks at robustness to the set of pre-treatment variables, comparing treatment ef-

fects based on different versions of subset unconfoundedness (11). We propose to implement

these two approaches once outcome data are available.

Additionally, in our final evaluation report, we will conduct a variety of analyses to assess

sensitivity to the unconfoundedness assumption. In particular, we will use the assumption-

free results of Ding and VanderWeele (2015) to produce a bound on the treatment effect,

creating plots similar to their Figure 1 on p.15, showing the extent of confounding required

to explain away estimated treatment effects. The results of Ding and VanderWeele (2015)

handle binary and nonnegative§ outcomes, on the odds ratio, risk ratio, or difference scales.

We also propose parametric sensitivity analysis that assumes a particular model, using ideas

and software from Carnegie et al. (2015a,b). We will extend models (4.2)-(4.4) in Carnegie

et al. (2015b) to include a hierarchical structure, and create plots similar to Figure 1 on p.16,

showing true treatment effects given the observed data and an assumed level of confounding.

6. Design analysis

We perform design analysis (i.e. power calculations) to recommend the number of control

villages and magnitude of sampling within each (Gelman and Hill, 2007). We examine four

outcomes: annualized consumption (a measure of income), weight for age z-score, measles

immunization, and bednet usage. We simplify the simulations by considering each MV as a

§Outcomes can be made nonnegative if they are bounded from either below or above and trans-

formed. For example, with a lower-bound on weight for age z-scores of -10 (presumably no one can

be alive below such a z-score), all values can be shifted by 10 and the sensitivity bounds derived

in Ding and VanderWeele (2015) can be applied.
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single village. This is justifiable because the villages compromising each MV are contiguous,

and are plausibly more highly correlated than the control villages, which are more spatially

scattered. We consider the intra-household correlation to be zero (equivalently, that we

sample one person per household) and assume simple random sampling of individuals and

households, no nonresponse, and that treatment effects and coefficients of pre-treatment

covariates are constant across countries. For continuous outcomes our model to generate

data and estimate treatment effects is

y
(k)
j ∼ N

(
δ
(k)
0,q[j] + x

T
j δ

(k) + τ (k)zj , σ
2
village + σ2

y/nj

)
for villages j

δ
(k)
0,q ∼ N(δ

(k)
0 , σ2

δ ), (14)

xj ∼ N (x̂j ,ΣSAE) ,

where zj is an indicator of treatment for village j, xj is a vector of the true village-level co-

variates, and x̂j are small area estimates. We account for small area estimation uncertainty

as described in Section 4 with ΣSAE , a diagonal matrix whose elements are the poste-

rior variances from the small area estimation procedures. For binary outcomes (measles

immunization and bednet usage), we fit an analogous model.

We simulate imperfect matching by drawing pre-treatment variables from a Normal

distribution centered at the MVP baselines with a ten percent coefficient of variation. We

consider these generated values to be estimates from a small area estimation model, the x̂j

in the model above. We compare power with large (50% coefficient of variation) posterior

variance from small area estimation (the diagonal of ΣSAE) to zero baseline uncertainty,

see Figure 7.

We use MV data from years 0 and 5 (2005 and 2010) to obtain reasonable values for

δ(k), σδ and σy by taking posterior medians from fitting the following model,

y
(k,2010)
i ∼ N

(
δ
(k)
0,q[i] + xj[i]δ

(k), σ2
y

)
for individuals i (15)

δ
(k)
0,q ∼ N(δ

(k)
0 , σ2

δ ),

with the analogous logistic regression for binary outcomes. To set reasonable values for

σvillage we fit a basic hierarchical model to DHS data, whose clusters are of similar order of

magnitude to the MVs.

Using these values for the parameters and baselines, we generate data frommodel 14 (and

the analogous logistic model) taking τ (k) to be a range of values (see our standardization

described in the next paragraph). We fit these same models to obtain estimates of treatment

effect τ (k). We compute, via simulation, the power (the probability that the estimated

treatment effect is statistically significant) for each value of τ (k), for 50 or 200 individuals

per control village, and for either 2, 5, or 10 control villages matched to each MV. In each

MV we sample 300 individuals due to recommendations for the adequacy component of the

evaluation (Mitchell et al., 2015a).
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We standardize the treatment effects across outcomes, dividing continuous outcomes by

twice their standard deviations (Gelman, 2008), and dividing logistic regression coefficients

by four (Gelman and Hill, 2007, p.82). We take treatment values ranging from zero to one

half on this scale, i.e. zero to one standard deviation in the outcome.

In Figure 6 we plot power as a function of treatment effect for the four outcomes and in

Figure 7 we examine different simulation conditions for the weight for age z-score outcome.

Results for the difference-in-differences versions of the models yielded similar results. The

usual gains in efficiency from ANCOVA models (as compared to difference-in-differences,

see McKenzie (2012)) were not seen here, perhaps because the baselines are not at the

individual level, but rather, at the village level.

The plots in Figure 6 show that increasing the number of households (or individuals)

sampled per control village from 50 to 200 does not improve the power substantially. Sim-

ilarly, increasing the number of control villages per Millennium Village from five to ten

does not result in large gains in power. These patterns are due to the fixed number of

treatment clusters and the intra-village correlation, as can be seen by examining Figure

7d, which shows results when intra-village correlation is set to zero. In Figure 7b we see

that increasing the sample size in the MVs from 300 to 600 households (or individuals)

does not improve the power substantially. In contrast, we see in Figure 7c that lowering

the baseline uncertainty to zero does appreciably increase the power. These conclusions

led us to recommend sampling five control villages, with 50 households sampled per control

village. Furthermore, we will work to improve our small area estimates in parallel with data

collection.

In Figure 8, in Appendix C, we plot the Type M (magnitude) error, the expected absolute

value of the estimate divided by the true effect size, if it is statistically significant (Gelman

and Carlin, 2013). We see that when the true treatment effect is small, this exaggeration

factor is large. We obtain similar results for the Type S error, the probability that the

estimated treatment effect has the incorrect sign, if it is statistically significant. The models

we fit in this design analysis use flat priors for the treatment effects, so when the true

treatment effect is small, the rate of Type S errors is near 50%, dropping off as the true

treatment effect gets larger (Gelman and Tuerlinckx, 2000). We propose to reduce these

errors through partial pooling, as in the joint model proposed in Section 4.2.
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(d) Power for bednet usage.

Fig. 6: Power (the probability that the estimated treatment effect is statistically significant)

as a function of treatment effect for four different outcomes: (a) annualized consumption, in

USD (PPP 2005), (b) weight for age z-score, (c) measles immunization, (d) bednet usage;

and different sample sizes: 50 or 200 children or households (hhs) per control village, 300

children or hhs per Millennium Village, and 2, 5, or 10 control villages per Millennium

Village. We fit a model that assumes unconfoundedness given baseline outcomes.
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(a) Power for weight for age z-score, 300 chil-

dren per MV, taking baseline uncertainty into

account, intra-village correlation set to 0.08.
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(b) Power for weight for age z-score, 600 chil-

dren per MV, taking baseline uncertainty into

account, intra-village correlation set to 0.08.
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per MV, no baseline uncertainty, intra-village

correlation set to 0.08.
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Fig. 7: Power (the probability that the estimated treatment effect is statistically significant)

as a function of treatment effect for weight for age z-score, with either: 300 or 600 children

per Millennium Village (MV); taking baseline uncertainty or not; intra-village correlation

set to 0.08 or zero.
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7. Survey Data Collection: Sampling Design

Within each MV1 and control village, we will collect cross-sectional survey data using a two-

stage design: households will be sampled in stage I, followed by people within households

in stage II (Lohr, 2010; Särndal et al., 1992). Mitchell et al. (2015b) conduct a simulation

study to determine the optimal sampling plan for our multi-module survey, choosing simple

random sampling rather than probability proportional to size sampling of households.

For each of the ten MV1s, we sample 300 households out of roughly 1000 households.

As described above, we randomly selected one village per matched grid cell, giving C =

5 distinct control villages for each MV1. Sampling in each control village is identical to

sampling in the MV1 cross-sectional sample, with sample sizes divided by C (e.g. 300/C

households sampled in each control village). Full demographic censuses are conducted in

the MV1s but not the control villages, since the project has not operated in those areas.

Thus, before sampling in each control village we must collect a household list: a list of all

non-abandoned households with GPS coordinates identifying their locations. After choosing

a random sample from each control village’s household list, we will conduct a demographic

census in those sampled households to form the sampling frame for the within-household

sampling.

7.1. Post-treatment design variables

The survey sampling design variables are characteristics of the population in 2015, and are

therefore post-treatment: the number of household members (of different age-sex categories)

per household in 2015. To achieve ignorability of the sampling scheme, these design variables

will be included in the candidate causal models proposed in Section 4. Alternatively, design-

based weighting can be used, avoiding the adjustment for post-treatment variables. We

propose to try both techniques and assess the sensitivity of the results.

8. Future work

Survey data collection in the treatment and control villages across the ten sites will be

completed by December, 2015. After data are processed, outcome analyses will proceed as

proposed in Section 4.

In parallel with data collection, we will improve on the small area models from Section

3.3 so that the results can be used in the candidate causal models. We plan to finish

acquiring and processing census data, whose variables may serve as good predictors of

the Demographic and Health Surveys (DHS) variables (pre-treatment measurements of the

outcomes). We may fit multivariate small area models (DeSouza, 1992; Datta et al., 1998;

Raghunathan et al., 2007; Li and Zaslavsky, 2010), and allow the slope parameters to vary

by cluster or region. We will perform posterior predictive checks in order to iteratively

adjust these small area models (Gelman et al., 2014, Chapters 6 and 7), and compare
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estimates to the project baseline data in countries with DHS data near project baseline (see

Table ??).

The above proposal, together with Mitchell et al. (2015a), functions to reduce the num-

ber of measurement and causal modeling choices made after outcome data are available.

This work represents our pre-registration to increase credibility and transparency. Though

our proposal is uniquely tailored to the Millennium Villages Project design, many aspects

address features of other social policy evaluations, e.g. retrospective design, area-level in-

terventions, and sparsity of baseline data.
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A. Software

For fitting multilevel models we use Stan in R, (Stan Development Team, 2013; R Develop-

ment Core Team, 2014). For geographic data processing we use ArcGIS (ERSI, 2013).

B. Data in candidate comparison areas: available variables

B.1. Geographic data variables

Below we list geographic variables compiled from from geographic information system (GIS)

databases and used in the matching procedure described in Section 6.4Selecting comparison

villagessubsection.6.4 of the main paper.

• GADMv2 and GPWv4 - administrative boundaries (these do not correspond exactly with

the census administrative names) (GPWv3; GADMv2, 2012)

• PCT MV1, PCT MV2, PCT BUFF - Percent of total grid cell area in the MV1, MV2, and

ten kilometer buffer zone around the MV

• Agroecological zones (Dixon et al., 2001)

– AEZ 1 - Percent of total grid cell area in the “Irrigated” agroecological zone

– AEZ 2 - Percent of total grid cell area in the “Tree crop” agroecological zone

– AEZ 5 - Percent of total grid cell area in the “Highland perennial” agroecological zone

– AEZ 6 - Percent of total grid cell area in the “Highland temperate mixed” agroecolog-

ical zone

– AEZ 7 - Percent of total grid cell area in the “Root crops” agroecological zone

– AEZ 8 - Percent of total grid cell area in the “Cereal-root crops mixed” agroecological

zone

– AEZ 9 - Percent of total grid cell area in the “Maize mixed” agroecological zone

– AEZ 11 - Percent of total grid cell area in the “Agro-pastoral millet/sorghum” agroe-

cological zone

– AEZ 12 - Percent of total grid cell area in the “Pastoral” agroecological zone

– AEZ 13 - Percent of total grid cell area in the “Sparse (arid)” agroecological zone

– AEZ 14 - Percent of total grid cell area in the “Coastal artisanal fishing” agroecological

zone
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– AEZ COAST - Percent of total grid cell area that is either water, coastal land, or island

and is not captured by the agroecological zone data set. Calculated as 100−
∑

j AEZ j

• Access to major cities (Joint Research Centre: Land Resource Management Unit)

– ACCESS M - Mean (across the grid cell area) of the travel time in minutes to major

cities of more than 100,000 population (1987-2004)

– ACCESS STD - Standard deviation (across the grid cell area) of the travel time in

minutes to major cities of more than 100,000 population (1987-2004)

• Soil variables (ISRIC: World Soil Information)

– CEC M - Mean cation exchange capacity in cmol/kg (1950-2005)

– CEC STD - Standard deviation of cation exchange capacity (1950-2005)

– CLY M - Mean percent clay composition of the soil (1950-2005)

– CLY STD - Standard deviation of percent clay composition of the soil (1950-2005)

– PH M - Mean soil pH (1950-2005)

– PH STD - Standard deviation of soil pH (1950-2005)

• Vegetation index (IRI/LDEO)

– EVI 1 M - Mean Enhanced Vegetation Index (2000-2005)

– EVI 1 STD - Standard deviation of Enhanced Vegetation Index (2000-2005)

• Temperature (IRI/LDEO)

– LST D1 M - Mean MODIS Land Surface Temperature Day (2002-2005)

– LST D1 STD - Standard deviation of MODIS Land Surface Temperature Day (2002-

2005)

– LST D2 M - Mean MODIS Land Surface Temperature Day (2005-2010)

– LST D2 STD - Standard deviation of MODIS Land Surface Temperature Day (2005-

2010)

– LST N1 M - Mean MODIS Land Surface Temperature Night (2002-2005)

– LST N1 STD - Standard deviation of MODIS Land Surface Temperature Night (2002-

2005)

– LST N2 M - Mean MODIS Land Surface Temperature Night (2005-2010)

– LST N2 STD - Standard deviation of MODIS Land Surface Temperature Night (2005-

2010)

• Elevation (The CGIAR Consortium for Spatial Information (CGIAR-CSI))

– ELEV M - Mean elevation in meters (2008)

– ELEV STD - Standard deviation of elevation (2008)

• Population density (GPWv3)

– POPD M - Mean 2005 population density in persons per square kilometer. Grid cells

which fall within the GPWv4 water mask have been assigned a value of zero. (1990-

2000 data, projected to 2005)

– POPD STD - Standard deviation of 2005 population density. Grid cells which fall

within the GPWv4 water mask have been assigned a value of zero. (1990-2000 data,
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projected to 2005)

B.2. Demographic and Health Surveys variables

Below we list the variables from the Demographic and Health Surveys (DHS) that were

used to construct three indices: an asset wealth index (created by the DHS), and education

and health indices created via the procedure described in Section 3.2 of the main paper.

• Asset wealth index: the first principal component of a list of assets (source of

water, type of toilet facility, materials used for housing construction, ownership of

TVs, radios, bicycles, land, livestock)

• Education index: head of household’s education level in years, children’s school

attendance status in the previous year

• Health index:

– household-level variables:

ownership of a bed net

place for hand-washing observed

soap/cleaning agent observed

– within-household measurements, aggregated to household level:

sought treatment for childs last diarrhea episode

vaccinated children for measles

women took malaria medicine during pregnancy (all births in last 5 years)

average length for age z-score for children within a household

proportion of children under-5 who slept under bednet the night before

average number of ANC visits per woman per birth (in last 5 years)

proportion of children in household with fever who get treatment

proportion of women in household who are aware of AIDs

proportion of women in household who use any method of contraception
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C. Type M errors

consumption
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(a) Type M error for annualized consumption.

weight for age z−score
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(b) Type M error for weight for age z-score.
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(c) Type M error for measles immunization.

bednet
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(d) Type M error for bednet usage.

Fig. 8: Type M errors (the expected absolute value of the estimate divided by the true

effect size, if it is statistically significant) as a function of treatment effect for four different

outcomes: (a) annualized consumption, in USD (PPP 2005), (b) weight for age z-score, (c)

measles immunization, (d) bednet usage; and different sample sizes: 50 or 200 children or

households (hhs) per control village, 300 children or hhs per Millennium Village, and 2, 5, or

10 control villages per Millennium Village. We fit a model that assumes unconfoundedness

given baseline outcomes.
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