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Abstract Bayesian highest posterior density (HPD)
intervals can be estimated directly from simulations via
empirical shortest intervals. Unfortunately, these can be
noisy (that is, have a high Monte Carlo error). We de-
rive an optimal weighting strategy using bootstrap and
quadratic programming to obtain a more computation-
ally stable HPD, or in general, shortest probability in-
terval (Spin). We prove the consistency of our method.
Simulation studies on a range of theoretical and real-
data examples, some with symmetric and some with
asymmetric posterior densities, show that intervals con-
structed using Spin have better coverage (relative to
the posterior distribution) and lower Monte Carlo er-
ror than empirical shortest intervals. We implement the
new method in an R package (SPIn) so it can be rou-
tinely used in post-processing of Bayesian simulations.

Keywords Bayesian computation - highest posterior
density - bootstrap

1 Introduction

It is standard practice to summarize Bayesian infer-
ences via posterior intervals of specified coverage (for
example, 50% and 95%) for parameters and other quan-
tities of interest. In the modern era in which poste-
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rior distributions are computed via simulation, we most
commonly see central intervals: the 100(1—a)% central
interval is defined by the § and 1-5 quantiles. Highest-
posterior density (HPD) intervals (recommended, for
example, in the classic book of [1]) are easily deter-
mined for models with closed-form distributions such as
the normal and gamma but are more difficult to com-
pute from simulations.

We would like to go back to the HPD, solving what-
ever computational problems necessary to get it to work.
Why? Because for an asymmetric distribution, the HPD
interval can be a more reasonable summary than the
central probability interval. Figure 1 shows these two
types of intervals for three distributions: for symmetric
densities (as shown in the left panel in Figure 1), central
and HPD intervals coincide; whereas for the two exam-
ples of asymmetric densities (the middle and right pan-
els in Figure 1), HPDs are shorter than central intervals
(in fact, the HPD is the shortest interval containing a
specified probability).

In particular, when the highest density occurs at
the boundary (the right panel in Figure 1), we strongly
prefer the shortest probability interval to the central
interval; the HPD covers the highest density part of
the distribution and also the mode. In such cases, cen-
tral intervals can be much longer and have the awk-
ward property at cutting off a narrow high-posterior
slice that happens to be near the boundary, thus ruling
out a part of the distribution that is actually strongly
supported by the inference.

One concern with highest posterior density intervals
is that they depend on parameterization. For example,
the left endpoint of the HPD in the right panel of Figure
1 is 0, but the interval on the logarithmic scale does not
start at —oo. Interval estimation is always conditional
on the purposes to which the estimate will be used.
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Fig. 1 Simple examples of central (black) and highest probability density (red) intervals. The intervals coincide for a symmetric
distribution; otherwise the HPD interval is shorter. The three examples are a normal distribution, a gamma with shape
parameter 3, and the marginal posterior density for a variance parameter in a hierarchical model.

Beyond this, univariate summaries cannot completely
capture multivariate relationships. Thus all this work is
within the context of routine data analysis (e.g., [9]) in
which interval estimates are a useful way to summarize
inferences about parameters and quantities of interest
in a model in understandable parameterizations. We do
not attempt a conclusive justification of HPD intervals
here; we merely note that in the pre-simulation era such
intervals were considered the standard, which suggests
to us that the current preference for central intervals
arises from computational reasons as much as anything
else.

For the goal of computing an HPD interval from
posterior simulations, the most direct approach is the
empirical shortest probability interval, the shortest in-
terval of specified probability coverage based on the
simulations [2]. For example, to obtain a 95% inter-
val from a posterior sample of size n, you can order
the simulation draws and then take the shortest in-
terval that contains 0.95n of the draws. This proce-
dure is easy, fast, and simulation-consistent (that is, as
n— oo it converges to the actual HPD interval assum-
ing that the HPD interval exists and is unique). The
only trouble with the empirical shortest probability in-
terval is that it can be too noisy, with a high Monte
Carlo error (compared to the central probability inter-
val) when computed from the equivalent of a small num-
ber of simulation draws. This is a concern with current
Bayesian methods that rely on Markov chain Monte
Carlo (MCMC) techniques, where for some problems
the effective sample size of the posterior draws can be
low (for example, hundreds of thousands of steps might
be needed to obtain an effective sample size of 500).

Figure 2 shows the lengths of the empirical shortest
95% intervals based on several simulations for the three
distributions shown in Figure 1, starting from the kth
order statistic. For each distribution and each specified

number of independent simulation draws, we carried
out 200 replications to get a sense of the typical size of
the Monte Carlo error. The lengths of the 95% inter-
vals are highly variable when the number of simulation
draws is small.

In this paper, we develop a quadratic programming
strategy coupled with bootstrapping to estimate the
endpoints of the shortest probability interval. Simula-
tion studies show that our procedure, which we call
Spin, results in more stable endpoint estimates com-
pared to the empirical shortest interval (Figure 3). Specif-
ically, define the efficiency as

MSE (empirical shortest interval)
MSE(Spin) ’

efficiency =

so that an efficiency greater than 1 means that Spin
is more efficient. We show in Figure 3 that, in all cases
that we experimented on, Spin is more efficient than the
competition. We derive our method in Section 2, apply
it to some theoretical examples in Section 3 and in two
real-data Bayesian analysis problems in Section 4. We
have implemented our algorithm as SPIn, a publicly
available package in R [7].

2 Methods

2.1 Problem setup
Let X4,..., X, ud F, where F is a continuous uni-
modal distribution. The goal is to estimate the 100(1 —
)% shortest probability interval for F. Denote the
true shortest probability interval by (I(«),u(a)). De-
fine G =1— F, so that F(l(a)) + G(u(a)) = a.

To estimate the interval, for 0 < A < «, find A such
that G=H(a — A) — F~1(A) is a minimum, i.e.,

AF = argminAe[O)a]{G_l(a —A) - F Q).
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Fig. 2 Lengths of 95% empirical probability intervals from several simulations for each of three models. Each gray curve
shows interval length as a function of the order statistic of the interval’s lower endpoint; thus, the minimum value of the curve
corresponds to the empirical shortest 95% interval. For the (symmetric) normal example, the empirical shortest interval is
typically close to the central interval (for example, with a sample of size 1000, it is typically near (z(26), Z(975)))- The gamma
and eight-schools examples are skewed with a peak near the left of the distribution, hence the empirical shortest intervals are
typically at the left end of the scale. The red lines show the lengths of the true shortest 95% probability interval for each
distribution. The empirical shortest interval approaches the true value as the number of simulation draws increases but is noisy
when the number of simulation draws is small, hence motivating a more elaborate estimator.

Taking the derivative,

9 -1 -1 _
- F) (- 4) - F ()] =0,
we get
1 1
fG T a—2)  FEa) " M

where f is the probability density function of X. The
minimum can only be attained at solutions to (1), or
A =0 or « (Figure 4). It can easily be shown that if
f(x) # 0 a.e., the solution to (1) exists and is unique.
Then

l(a) = F71(A"),
u(a) = G a — A%).
Taking the lower end for example, we are inter-

ested in a weighting strategy such that | = S wi Xy
(where > w; = 1) has the minimum mean squared er-

ror (MSE), E (HE?:1wz‘X(i) - l(a)Hg). It can also be

helpful to calculate MSE(X ((,2+))) = E (|| X(na+)) — l(a)]]?).

In practice we estimate A* by A such that
A= argminAE[O,a]{é_l(a —A) - F’_l(A)}, (2)

where F' represents the empirical distribution and G =
1 — F. This yields the widely used empirical shortest
interval, which can have a high Monte Carlo error (as
illustrated in Figure 2). We will denote its endpoints
by I* and u*. The corresponding MSE for the lower
endpoint is E([|X , 4} — 1(a)]?).

2.2 Quadratic programming

Let Z: Z:-L:l sz(z) Then

MSE(I) = E(l — F~1(A*))?
—E(-EI+El-F'(a")?
—E(-E}?+ (El- F1(A%))?
= Var + Bias?,



4 Ying Liu et al.

Normal, lower end Normal, upper end
) -\‘—-A—I\- -\-___../\
<
ol _ _ e b _
Gamma, lower end Gamma, upper end
& w©
c N
(0]
S o
% I
0
! _ _ 0 e e e e oY e  _  _ _ ___________
8 schools, lower end 8 schools, upper end
©
<
N
S
100 300 500 1000 2000 100 300 500 1000 2000

sample size

Fig. 3 Efficiency of Spin for 95% shortest intervals for the three distributions shown in Figure 1. For the eight-schools example,
Spin is compared to a modified empirical HPD that includes the zero point in the simulations. The efficiency is always greater
than 1, indicating that Spin always outperforms the empirical HPD. The jagged appearance of some of the lines may arise
from discreteness in the order statistics for the 95% interval.
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Fig. 4 Notation for shortest probability intervals.
where E(l) = Y1, wiEX(;) and Var = 327 w?VarX;+ Thus
23 wiwjcov(X (i), X(j)). It has been shown (e.g., [3])
that
E(X() = Qi + s QY +o(n™")

! 2(n+2) ™" ’
where ¢; = 1 — p;, Q@ = F~! is the quantile function E(A) - & ( Pigi //>

’ i ’ =) wi|Qi+ 57— 5@ |- (3)

Qi = Q(pi)) = Q(EUw) = Q(;47), and Qf = %' ; 2(n+2)



Simulation-efficient shortest probability intervals

It has also been shown (e.g., [3]) that
Pidi -
V&I‘ X(z) = mQ? + 0(n 1)

-1, fori < j,

piq;
cov(X iy, X(5)) = nJrJQQQQ;' +o(n

where Q) = m = f(éh (f(Q,) is called the density-
quantile function). Thus,

R pq Pid;
Var(l) = Z P Ql2+22wz w;j ;g@;@;‘

1=1

+o(n™t). (4)
Putting (3) and (4) together yields,

n

o Diqi 2 Pid5 ~1
- E . 249 § oy 0
2 w; n -+ QQl + o WiW; n+ 2Q1QJ

MSE(()

+2)
+0(n71). (5)

2
sz Qi+ M Qh—@(A*)]

Finding the optimal weights that minimize MSE as de-
fined in (5) is then approximately a quadratic program-
ming problem.

In this study we impose triangle kernels centered
around the endpoints of the empirical shortest interval
on the weights for computational stability. Specifically,
the estimate of the lower endpoint has the form,

. i 4+b/2
= Zi:i*—b/2wiX(i)’

where * is the index of the endpoint of the empirical
shortest interval, b is the bandwidth in terms of data
points, and w; decreases linearly when i moves away
from i*. We choose b to be of order y/n in this study.
This optimization problem is equivalent to minimizing
MSE with the following constraints:

i"+b/2
5 =
i=i*—b/2
Wi —Wi-1 Wizl — Wi—2
Xy = Xa-1)  Xa-1 = X@i-2)
for i =4*—b/2+42,...,7" " +2,...,i"+b/2
Wix — Wix—1 _ Wi+ — Wi* 41
Wix_py2 2 0
Wixqpy2 > 0
Wi — Wix41 > 0. (6)

The above constraints reflect the piecewise linear and
symmetric pattern of the kernel. In practice, Q, f, and

A* can be substituted by the corresponding sample es-
timates @, f, and A.

The above quadratic programming problem can be
rewritten in the conventional matrix form,

A 1
MSE(l) = ngDw —d"w
where
7wi*+b/2)T7
(di;) is a symmetric matrix with
2@ + B5QP), i = j
dij =4, Qi@; o
2( n—+2 pij + Qin)7 1<),
subject to
ATw > wy,

with appropriate A and wy derived from the linear con-
straints in (6).

w = (wi*_b/g,.. .
and D =

2.3 Proof of simulation-consistency of the estimated
HPD

The following result ensures the simulation-consistency
of our endpoint estimators when we use the empirical
distribution and kernel density estimate.

Under regularity conditions, with probability 1,
lim min <1wT]5nw — CZ,TLw) = min (leDw — dTw) ,
where D,, and d,, are empirical estimates of D and d
based on empirical distribution function and kernel den-
sity estimates.

To see this, we first show that f),,, — D and (Zn —d
uniformly as n — oo almost surely. By the Glivenko-
Cantelli theorem, ||F — F||o “3 0, which implies Q ~»
Q) almost surely, where ~» denotes weak convergence,
ie., Q(t) — Q(t) at every t where Q is continuous (e.g.,
[10]). Tt has also been shown that [Ef(f(z)—f(z))>dz =
O(n=*°) under regularity conditions (see, e.g., [10]),
which implies that f(z) — f(z) almost surely for all
z. The endpoints of the empirical shortest interval are
simulation-consistent [2].

The elements in matrix D,, result from simple arith-
metic manipulations of Q and f, SO cfij — d;; with
probability 1, which implies,

D,, — D uniformly and almost surely,

given D is of finite dimension. We can prove the almost
sure uniform convergence of d,, to d in a similar manner.

The optimization problem minw(%wT]jnw — dTw)
corresponds to calculating the smallest eigenvalue of an
augmented matrix constructed from ljn and (fn The
above uniform convergence then implies,

lim min(w?D,w — dfw) = min(w” Dw — d¥w).

n—oo w

The same proof works for the upper endpoint.
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Fig. 5 Bootstrapping procedure to get more stable weights.

2.4 Bootstrapping the procedure to get a smoother
estimate

Results from quadratic programming as described above
show that, as expected, Spin has a much reduced bias
than the empirical shortest intervals. This is because
the above procedure takes the shape of the empiri-
cal distribution into account. However, the variance re-
mains at the same magnitude as that of the empirical
shortest interval (as we shall see in the left panel in Fig-
ure 10), because the optimal weights derived from the
empirical distribution are also subject to the same level
of variability as the empirical shortest intervals. We can
use the bootstrap [4] to smooth away some of this noise
and thus further reduce the variance in the interval.
Specifically, we bootstrap the original posterior draws
B times (in this study we set B=>50) and calculate the
Spin optimal weights for each of the bootstrapped sam-
ples. Here, we treat the weights as general functions of
the posterior distribution under study rather than the
endpoints of HPD interval of the posterior samples. We
then compute the final weights as the average of the
B sets of weights obtained from the above procedure
(Figure 5).

2.5 Bounded distributions

As defined so far, our procedure necessarily yields an
interval within the range of the simulations. This is un-
desirable if the distribution is bounded with the bound-
ary included in the HPD interval (as in the right graph
in Figure 1). To allow boundary estimates, we augment
our simulations with a pseudo-datapoint (or two, if the
distribution is known to be bounded on both sides). For
example, if a distribution is defined on (0, 00) then we
insert another datapoint at 0; if the probability space
is (0,1), we insert additional points at 0 and 1.

X 0,0 L0

xS 00 )

., X,(,B) Spin W1(B) ,WgB) e ’WE,B)

\L average

WI’WZ’”.’W

n

2.6 Discrete and multimodal distributions

If a distribution is continuous and unimodal, the high-
est posterior density region and shortest probability in-
terval coincide, at least for parameters or quantities of
interest with unimodal or approximately unimodal pos-
teriors, so that a single interval is itself a reasonable in-
ferential summary. More generally, the highest posterior
density region can be formed from disjoint intervals. For
distributions with known boundary of disjoint parts,
Spin can be applied to different regions separately and
a HPD region can be assembled using the derived dis-
joint intervals. When the nature of the underlying true
distribution is unknown and the sample size is small,
the inference of unimodality can be difficult. Therefore,
in this paper, we have focused on estimating the short-
est probability interval, recognizing that, as with inter-
val estimates in general, our procedure is less relevant
for multimodal distributions.

3 Results for simple theoretical examples

We conduct simulation studies to evaluate the perfor-
mance of our methods. We generate independent sam-
ples from the normal, t(5), and gamma(3) distributions
and construct 95% intervals using these samples. We
consider sample sizes of 100, 300, 500, 1000 and 2000.
For each setup, we generate 20,000 independent repli-
cates and use these to compute root mean squared er-
rors (RMSEs) for upper and lower endpoints. We also
construct empirical shortest intervals as defined in (2),
parametric intervals and central intervals for compari-
son. For parametric intervals, we calculate the sample
mean and standard deviation. For the normal distri-
bution, the interval takes the form of mean + 1.96sd
(for the t distribution we also implement the same form
as “Gaussian approximation” for comparison); for the
gamma, we use the mean and standard deviation to es-
timate its parameters first, and then numerically obtain
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the HPD interval using the resulted density with the
two estimates plugged in. The empirical 95% central in-
terval is defined as the 2.5%th and 97.5%th percentiles
of the sampled data points. We also use our methods
to construct optimal central intervals (see Section 6) for
the two symmetric distributions.

Figure 6 shows the intervals constructed for the stan-
dard normal distribution and the t(5) distribution based
on 500 simulation draws. The empirical shortest inter-
vals tend to be too short in both cases, while Spins
have better endpoint estimates. Empirical central in-
tervals are more stable than empirical shortest inter-
vals, and Spins have comparable RMSE for N(0, 1) and
smaller RMSE for t(5). Our methods can further im-
prove RMSE based on the empirical central intervals
as shown in the “central (QP)” row in Figure 6. The
RMSE is the smallest if one specifies the correct para-
metric distribution and uses that information to con-
struct interval estimates, while in practice the underly-
ing distribution is usually not totally known, and mis-
specifying it can result in far-off intervals (the right
bottom panel in Figure 6).

Figure 7 shows the empirical shortest, Spin, and
parametric intervals constructed from 500 samples of
the gamma distribution with shape parameter 3. Spin
gets more accurate endpoint estimates than empirical
shortest intervals. Specifically, for the lower end where
the density is relatively high, Spin estimates are less
variable, and for the upper end at the tail of the den-
sity, Spin shows a smaller bias. Again, the lowest RMSE
comes from taking advantage of the parametric form of
the posterior distribution, which is rarely practical in
real MCMC applications. Hence the RMSE using the
parametric form represents a rough lower bound on the
Monte Carlo error in any HPD computed from simula-
tions.

Figure 8 shows the intervals constructed for MCMC
normal samples. Specifically, the Gibbs sampler is used
to draw samples from a standard bivariate normal dis-
tribution with correlation 0.9. We use this example to
explore how Spin works on simulations with high au-
tocorrelation. Two chains each with 1000 samples are
drawn with Gibbs sampling. For one variable, every ten
draws are recorded for Spin construction, resulting in
200 samples, which is roughly the level of the effective
sample size in this case. This is a typical senario in
practice when MCMC techniques are adopted for mul-
tivariate distributions. Again Spin greatly outperforms
the empirical shortest interval in case of highly corre-
lated draws.

We further investigate coverage probabilities of the

different intervals constructed (Figure 9). Empirical short-

est intervals have the lowest coverage probability, which

is as expected since they are biased towards shorter in-
tervals (see Figure 6 and Figure 7). Coverage probabil-
ities of Spin are closer to the nominal coverage (95%)
for both normal and gamma distributions. Comparable
coverage is observed for central intervals. As expected,
parametric intervals represent a gold standard and have
the most accurate coverage.

Figure 10 shows the bias-variance decomposition of
different interval estimates for normal and gamma dis-
tributions under sample sizes 100, 300, 500, 1,000 and
2,000. We average lower and upper ends for the normal
case due to symmetry. For both distributions, Spin has
both well-reduced variance and bias compared to the
empirical shortest intervals. The upper end estimates of
empirical central intervals for the gamma have a large
variance since the corresponding density is low so the
observed simulations in this region are more variable.
It is worth pointing out that the computational time
for Spin is negligible compared to sampling, thus it is
a more efficient way to obtain improved interval esti-
mates. In the normal example shown in the left panel
in Figure 10, rather than increasing the sample size
from 300 to 500 to reduce error, one can spend less
time to compute Spin with the 300 samples and get a
even better interval.

We also carried out experiments with even bigger
samples and intervals of other coverages (90% and 50%),
and got similar results. Spin beats the empirical short-
est interval in RMSE (which makes sense, given that
Spin is optimizing over a class of estimators that in-
cludes the empirical shortest as a special case).

4 Results for two real-data examples

In this section, we apply our methods to two applied
examples of hierarchical Bayesian models, one from ed-
ucation and one from sociology. In the first example, we
show the advantages of Spin over central and empirical
shortest intervals; in the second example, we demon-
strate the routine use of Spin to summarize posterior
inferences.

Our first example is a Bayesian analysis from [8] of
a hierarchical model of data from a set of experiments
performed on eight schools. The group-level scale pa-
rameter (which corresponds to the between-school stan-
dard deviation of the underlying treatment effects) has
a posterior distribution that is asymmetric with a mode
at zero (as shown in the right panel of Figure 1). Cen-
tral probability intervals for this scale parameter (as
presented, for example, in the analysis of these data by
[5]) are unsatisfying in that they exclude a small seg-
ment near zero where the posterior distribution is in
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Fig. 6 Spin for symmetric distributions: 95% intervals for the normal and t(5) distributions, in each case based on 500
independent draws. Each horizontal bar represents an interval from one simulation. The histograms of the lower ends and the
upper ends are based on results from 20,000 simulations. The dotted vertical lines represent the true endpoints of the HPD
intervals. Spin greatly outperforms the raw empirical shortest interval. The central interval (and its quadratic programming
improvement) does even better for the Gaussian but is worse for the t(5) and in any case does not generalize to asymmetric
distributions. The intervals estimated by fitting a Gaussian distribution do the best for the normal model but are disastrous

when the model is wrong.

fact largest. Figure 11 shows the 95% empirical short-
est intervals and Spin constructed from 500 draws. The
results of empirical shortest intervals for 8 schools are
from including the zero point in the simulations. Spin
has smaller RMSE than both empirical shortest and
central intervals (Figure 11 and Figure 12).

For our final example, we fit the social network model
of [11] using MCMC and construct 95% Spins for the
overdispersion parameters based on 200 posterior draws.
The posterior is asymmetric and bounded below at 1.
Figure 13 is a partial replot of Figure 4 from [11] with
Spins added. For this type of asymmetric posterior we
prefer the estimated HPDs to the corresponding central
intervals as HPDs more precisely capture the values of
the parameter that are supported by the posterior dis-
tribution.

5 Results for BUGS examples

In this section, we apply our methods to 60 examples
from BUGS [9]. The 60 examples include 5398 param-
eters. For each parameter 1000 MCMC samples are
drawn using Stan [12], and upper and lower endpoints
of empirical HPD and Spin intervals are estimated. The
above procedure is conducted for 100 times and the
Monte Carlo variance is calculated. Since we do not
know the true endpoints of the intervals, we define the
efficiency only based on variance as

Var(empirical shortest interval)
Var(Spin) ’

efficiency =

We compute the average computational efficiency for
all the parameters in each of the 60 models. Figure 14
shows the efficiency of Spin against HPD intervals ver-
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Fig. 7 Spin for an asymmetric distribution. 95% intervals for the gamma distributions with shape parameter 3, as estimated
from 500 independent draws. Each horizontal bar represents an interval from one simulation. The histograms are based on
results from 20,000 simulations. The dotted vertical lines represent the true endpoints of the HPD interval. Spin outperforms
the empirical shortest interval. The interval obtained from a parametric fit is even better but this approach cannot be applied
in general; rather, it represents an optimality bound for any method.

sus the average computation time (in seconds per ef-
fective sample size). It can be seen that almost all the
examples result in efficiency greater than 1. We inves-
tigate the example corresponding to the lowest point.
It turns out that many of the parameters in this spe-
cific example are not from unimodal distributions, un-
der which cases HPD is actually not reasonable.

6 Discussion

We have presented a novel optimal approach for con-
structing reduced-error shortest probability intervals

(Spin). Simulation studies and real data examples show
the advantage of Spin over the empirical shortest inter-

val. Another commonly used interval estimate in Bayesian

inference is the central interval. For symmetric distri-
butions, central intervals and HPDs are the same; oth-
erwise we agree with [1] that the HPD is generally

preferable to the central interval as an inferential sum-
mary (Figure 1). In our examples we have found that
for symmetric distributions Spin and empirical central
intervals have comparable RMSEs and coverage proba-
bilities (Figures 6, 9, and 10). Therefore we recommend
Spin as a default procedure for computing HPD inter-
vals from simulations, as it is as computationally stable
as the central intervals which are currently standard in
practice.

We set the bandwidth parameter b in (6) to \/n,
which seems to work well for a variety of distributions.
We also carried out sensitivity analysis by varying b and
found that large b tends to result in more stable end-
point estimates where the density is relatively high but
can lead to noisy estimates where the density is low.
This makes sense: in low-density regions, adding more
points to the weighted average may introduce noise in-
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Fig. 8 Spin for MCMC samples. 95% intervals for normal samples from Gibbs sampler, in each case based on 200 draws. Each
horizontal bar represents an interval from one simulation. The histograms are based on results from 20,000 simulations. The
dotted vertical lines represent the true endpoints of the HPD intervals. Spin greatly outperforms the raw empirical shortest
interval. The central interval (and its quadratic programming improvement) does even better. Again the intervals estimated

by fitting a Gaussian distribution do the best.

stead of true signals. Based on our experiments, we be-
lieve the default value b = \/n is a safe general choice.

Our approach can be considered more generally as
a method of using weighted averages of order statis-
tics to construct optimal interval estimates. One can
replace Q(A*) in (5) by the endpoints of any reason-
able empirical interval estimates, and obtain improved
intervals by using our quadratic programming strategy
(such as the improved central intervals shown in Figure
6).

One concern that arises is the computational cost
of performing Spin itself. Our simulations show Spin
intervals to have better simulation coverage and ap-
preciably lower mean squared error compared to the
empirical HPD, but for simple problems in which one
can quickly draw direct posterior simulations, it could
be simpler to forget Spin and instead just double the
size of the posterior sample. Many times, though, we

find ourselves computing Bayesian models using elab-
orate Markov chain simulations for which it can take
many steps of the algorithm, or for which each step
is computationally expensive (for example in models
with differential equation solvers), so that hours or even
days of computing time are required to obtain an effec-
tive sample size of a few hundred posterior simulation
draws. In such cases, the computational cost of Spin is
relatively small. Thus we think Spin makes sense as a
default option for posterior summaries, especially with
simulations that are costly.

‘We have demonstrated that our Spin procedure works
well in a range of theoretical and applied problems, that
it is simulation-consistent, computationally feasible, ad-
dresses the boundary problem, and is optimal within a
certain class of procedures that include the empirical
shortest interval as a special case. We do not claim,
however, that the procedure is optimal in any universal
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Fig. 10 Bias-variance decomposition for 95% intervals for normal and gamma(3) examples, as a function of the number of
simulation draws. Because of the symmetry of the normal distribution, we averaged its errors for upper and lower endpoints.
Results from Spin without bootstrap are shown for normal for description purpose.

sense. We see the key contribution of the present paper
as developing a practical procedure to compute short-
est probability intervals from simulation in a way that
is superior to the naive approach and is competitive (in
terms of simulation variability) with central probability
intervals. Now that Spin can be computed routinely, we
anticipate further research improvements on posterior
summaries.
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Fig. 13 95% central intervals (black lines) and Spins (red lines) for the overdispersion parameters in the “How many X’s do
you know?” study. The parameter in each row is a measure of the social clustering of a certain group in the general population:
groups of people identified by first names have low overdispersion and are close to randomly distributed in the social network,
whereas categories such as airline pilots or American Indians are more overdispersed (that is, non-randomly distributed). We
prefer the Spins as providing better summaries of these highly skewed posterior distributions. However, the differences between
central intervals and Spins are not large; our real point here is not that the Spins are much better but that they will work
just fine in routine applied Bayesian practice, satisfying the same needs as were served by central intervals but without that

annoying behavior when distributions are highly asymmetric.
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Fig. 14 Computational efficiency (ratio of Monte Carlo variances in repeated simulations) of Spin compared to empirical
HPD intervals, plotted vs. average computation time (in seconds per effective sample size), for each of 60 BUGS examples.
Spin outperforms empirical HPD intervals in almost all the cases, typically with computational efficiency around 1.7. The one
point at the bottom of the graph comes from a model which has many parameters with bimodal posterior distributions, in
which case the highest posterior density interval can be difficult to interpret in any case.



