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Abstract

Weighing and amalgamating evidence is a central problem in statistics, giving rise to much
debate on what methods are appropriate as well as exactly where, when and for what purposes
they should be used. On the other hand, the weighing and amalgamating of evidence within
a single isolated study (the multiple observations) in many default approaches in statistics
is surprisingly often just automatic and implicit. Now vigorous debate on basic approaches
in statistics likely comes as no surprise to statisticians and increasingly almost everyone else.
Although there is much agreement on mathematical definitions of terms and procedures in
statistics (what they are), as well as the discerning if particular instances meet these (is it
this?), when it comes to the appropriate roles for these terms and procedures in facilitating
scientific inquiry - their very purposes and what to make of them - it seems beyond agreement
for the foreseeable future. The tools are largely agreed upon, their appropriate use, where
and for what purposes, not at all. For instance, there is a fair amount of agreement on what
probabilities are, but not on what they can be used for. Many frequentests ban any use of
probability in representing (uncertain) knowledge of unknown parameters. On the other hand,
although almost all Bayesians would use probabilities to represent knowledge (or lack of it),
some Bayesians would ban any testing or empirically based assessment of these. In the case of
a single study, some statisticians would be concerned about properties of procedures that can
be discerned if the procedure would be repeatedly applied infinitely often under similar kinds
of studies or even exactly the same study conditions. Others argue this is not even sensible.

Going beyond a single isolated study, the system of scientific publication, criticism, and
meta-analysis provides more general avenues for amalgamation of evidence between rather than
just within a study and here individual statistical analyses can be understood as (first) steps in
this larger process. Perhaps unsurprisingly in this larger process there are more disagreements
as opinions vary on what contextual (extra study) information can be plugged in, where and
how. Should previous studies be amalgamated in a combined analysis, or just used to build a
judgement informed prior or just used qualitatively to refine what analysis should done to make
the study stand on its own as much as possible? In this article we lay out a general prospective
on statistics as primarily about conjecturing, assessing, and adopting idealized representations of
reality, predominantly using probability generating models for both parameters and data. That
is, an explicit prior probability distribution to represent available but rough scientific jugements
of what values the unknown parameters might have been set to and a data generating probability
distribution to represent how the recorded data likely came about if the unknown parameters’
values were set to specific possible values. This contrasts with another prospective on statistics,
as primarily being about discerning procedures with good properties that are uniform over a
wide range of possible underlying realities and restricting use, especially in science, to just those
procedures. Our perspective is perhaps more inviting of information aggregation, as reality likely
has many commonalities that can be discerned and profitably gained from. We believe it is a
perspective which can unify seemingly distinct statistical philosophies as well as provide some
guidance to resolving the current replication crisis in science - as when claims fail to replicate -
the methods used likely did not reflect reality well, if at all.
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1. Statistics as amalgamation of evidence

One of the frustrating—and fascinating—aspects of statistics, compared to many other modern

sciences, is its profusion of seemingly incompatible philosophies. The Neyman-Pearson approach is

centered around defining procedures for discriminating between hypotheses, targeting uniform type

one error for all nulls and uniformly minimum type two errors for all alternatives. The Fisherian

p-value, in contrast, evaluates the strength of evidence against a single null hypothesis without

explicit reference to any alternative, targeting a Uniform(0,1) distribution of p-values for all nulls.

Another Fisherian approach, maximum likelihood, provides estimates within a parametric model,

targeting asymptotic Normality of the maximum likelihood for all likelihoods. Bayesian inference

can be viewed as a generalization of maximum likelihood but is anathema to many because of

its assignment of probability distributions to parameters that are not the product of random pro-

cesses. It targets probability distributions that represent current understanding of the realities and

uncertainties involved. Nonparametric approaches such as bootstrap and lasso have traditionally

been shoehorned into the frameworks of hypothesis testing and interval estimation, but in recent

years the machine learning approach has focused not on those classical problems but rather on

pure prediction. They target lessening of assumptions (used to represent current understanding

of the realities and uncertainties) involved and more identification of procedures with seemingly

good properties. The decision of what information is to be combined is often dictated by prob-

ability models or inferential algorithms that themselves are chosen largely by convention. This

occurs for basic users who are taught to use t-tests for continuous data (group variances assumed

to be common to give a combined variance estimate with more degrees of freedom), χ2 tests for

discrete data (various choices of common parameters to assume in defining the expectations to test

consistency with), linear regression models (assuming all observations have common slopes given

the explanatory variables fit as well as common standard deviation), Cox models for survival data

(common proportional hazard function assumed so that it cancels out), etc., but even experienced

statisticians often do not seem to be clear as to where the choices are made of which information

to combine in their data analysis.

Even amid the diversity of statistical methods and philosophies, though, all these approaches

involve the amalgamation of evidence. This goes for the simplest models of random sampling and

independent identically distributed data; to slightly more elaborate models with hierarchical, time-

series, and spatial structure; to elaborate multistage deep learning algorithms combining thousands

of predictors or features. Even something as basic as Fisherian p-values or likelihood-ratio testing

can be seen as a way to use the accumulation of data—that is, the piling-up of evidence—to draw

increasingly certain conclusions.

It has been said that the most important aspect of a statistical method is not what it does

with the data but rather what data it uses (Gelman, 2015). From that perspective, the power of

Bayesian, regularization, and machine-learning methods is that they can incorporate large amounts

of data into analysis and decision making.

At the same time, as datasets become larger and more diverse, there is an increasing need

to model and adjust for differences between sample (that is, available data) and population, and

between treatment and control groups in causal analysis. Amalgamation of evidence is important

but it is not trivial; it is not just a matter of throwing data into a blender. One must evaluate

data quality to decide what to include. Or, more generally, one must weight and adjust data in

light of what is known about the quality and representativeness of measurements and in light of the

consistency of different data sources with available research hypotheses. Implicitly these procedures

can be seen as deriving from different probabilistic data-generating models and prior distributions,
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but in our discussion here we focus on the information included in data analysis, not the algorithms

used to construct inferences or the models underlying these algorithms.

Some of the fiercest debates in statistical theory and practice involve the use of prior information.

For example, the well-respected statistician David Cox wrote,

“There are situations where it is very clear that whatever a scientist or statistician might

do privately in looking at data, when they present their information to the public or

government department or whatever, they should absolutely not use prior information,

because the prior opinions on some of these prickly issues of public policy can often be

highly contentious with different people with strong and very conflicting views.” (Cox

and Mayo, 2011)

We expressed disagreement, pointing for example to a problem on “the politically controversial

problem of reconstructing historical climate from tree rings”:

“We have a lot of prior information on the processes under which tree rings grow and

how they are measured. I don’t think anyone would want to just take raw numbers

from core samples as a climate estimate! All the tools from Statistical Methods for

Research Workers won’t take you from tree rings to temperature estimates. You need

some scientific knowledge and prior information on where these measurements came

from.” (Gelman, 2012)

Cox has decades of applied experience and would surely agree that prior information, in the form

of physical/biological models, are essential to making climate-related decisions based on tree rings,

and we are sure he would also agree that such models involve inevitable subjective choices. Rather,

we believe Cox is concerned about the way that Bayesian methods can be abused, what one might

call the “moral hazard” involved in a statistical method in which all modeling decisions are up for

grabs. In addition is the concern that, in most settings, including the tree-ring example, expressing

prior information as probability distributions can lead, paradoxically, to a false sense of certainty.

Hence the preference of Cox and others for inclusion of prior information in a more piecemeal, case-

by-case manner. From this perspective, the smoothness and apparent all-encompassing nature of

Bayesian inference is itself a hazard.

The paradox is that flexibility is required to combine evidence from diverse sources, but if that

flexibility is abused, the ultimate conclusions of the analysis can be dictated by the analyst rather

than by the data. Perhaps default methods for combining evidence from diverse sources will be too

hazardous? This is a concern with Bayesian inference with overconfident priors and with classical

inference when “p-hacking,” “researcher degrees of freedom,” and “the garden of forking paths”

give users the opportunity to find statistical significance from virtually any dataset (Simmons,

Nelson, and Simonsohn, 2011, Gelman and Loken, 2014a). And there is also the choice of what

statistical method to use, a decision that is typically not based itself on statistical evidence (Gelman

and O’Rourke, 2013). We offer no general solution here but we think it useful to formulate all

statistical methods as data aggregators of one sort of another and to be open about the evidence

used to form any particular statistical conclusion—and also the available evidence that, for one

reason or another, has been “left on the table” and is not yet incorporated into our inferences.

2. Amalgamation of evidence in the scientific process

Statistical modeling typically focuses on a particular set or stream of data which leads to some

inference or decision. But it can also be helpful to think more “sociologically” of an evolution-

like mechanism involving thousands of research hypotheses, millions of scientists, and processes of
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publication, publicity, career rewards, and replication which lead not just to specific conclusions

but also to strands of research, subfields, and allocations of research effort: as C. S. Peirce might

have put it, communal science that is and remains profitable. Particularly in the field of psychology

there has been much recent discussion of the replicability (or lack thereof) of published research

claims, and similar concerns have been raised among medical research. As Peirce (1879) wrote,

“The theory here given rests on the supposition that the object of the investigation is

the ascertainment of truth. When the investigation is made for the purpose of attaining

personal distinction, the economics of the problem are entirely different. But that seems

to be well enough understood by those engaged in that sort of investigation.”

But the current de facto procedure, in which studies are summarized by statistically-significant

estimates, has technical problems of bias and inefficiency even if we assume all researchers are

acting altruistically.

Considering the entire academic research enterprise—the processes of peer review, publication,

replication, and meta-analysis—as a grand collective effort of information aggregation, we join a

long string of concern from Peirce through Ioannidis (2016) in seeing major problems with incentives

and structure, and where simple technical fixes such as weighting studies by appraised quality can be

disastrous (Greenland and O’Rourke, 2001). Smaldino and McElreath (2016) offer a simplified but

suggestive model of problems with the current system of incentives and publication. On one hand,

the diversity of research labs must represent a strength, a potential escape from the groupthink

that is associated with central planning. But, from the statistical standpoint, much information

is lost by dividing our data into small pieces and summarizing each by a p-value. This would be

an inefficient procedure even if p-values were computed as described in the textbooks based on

pre-specified tests, but problems of drastic overestimation of effect sizes (Type M or “magnitude”

errors; Gelman and Carlin, 2014) become even worse given the documented ability of researchers at

all levels to attain statistical significance virtually at will. Systematic overestimation of effect sizes

creates a vicious cycle in which new studies are incorrectly anticipated to have a high probability

of being successful (Button et al., 2013), leading to further data whose significance is overstated.

A cleaner approach would be to analyze larger data sets directly, not by postprocessing published

estimates and p-values but by modeling larger and more diverse sets of raw data. This gives direct

access to more efficient statistical analyses and also more ability to check model assumptions. Fisher

unfortunately may have undermined the appreciation of this with his claim

“It is usually convenient to tabulate its [the likelihood’s] logarithm, since for independent

bodies of data such as might be obtained by different investigators, the “combination

of observations” requires only that the log-likelihoods be added.” (Fisher, 1956)

Although technically correct if the data generating model (which defines the likelihood) is never

questioned or assessed - but it should be. To do that adequately one needs all the individual raw

data from all studies. Here, we quickly add that the prior’s logarithm need only be added to the

likelihood’s logarithm to start a Bayesian analysis. Like the data generating model, the prior also

needs to be questioned or assessed. Again, we see a statistical and societal advantage to explicit

recognition that inference arises from amalgamation of evidence, and more openness to the sources

of this evidence and possible biases.

To step back from data analysis to the scientific enterprise more generally, various specific re-

forms of science have been proposed, including post-publication review, preregistered replication,

and publication/career credit for data quality (rather than just for novelty and statistical signif-

icance). We find it helpful to follow Peirce and think of these as steps in a larger process rather
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than merely attempts to minimize false positives in isolated studies. This quote from Peirce might

suffice “I [Peirce] do not call the solitary studies of a single man a science. It is only when a group

of men, more or less in intercommunication, are aiding and stimulating one another by their un-

derstanding of a particular group of studies as outsiders cannot understand them, that I call their

life a science.” but we also include two longer quotes below.

“Science is to mean for us a mode of life whose single animating purpose is to find out

the real truth, which pursues this purpose by a well-considered method, founded on

thorough acquaintance with such scientific results already ascertained by others as may

be available, and which seeks cooperation in the hope that the truth may be found, if

not by any of the actual inquirers, yet ultimately by those who come after them and

who shall make use of their results” (Peirce: MS 1343, 6-7, 1902).

“But what I mean by a ”science” (...) is the life devoted to the pursuit of truth according

to the best known methods on the part of a group of men who understand one another’s

ideas and works as no outsider can. It is not what they have already found out which

makes their business a science; it is that they are pursuing a branch of truth according,

I will not say, to the best methods, but according to the best methods that are known

at the time. I do not call the solitary studies of a single man a science. It is only

when a group of men, more or less in intercommunication, are aiding and stimulating

one another by their understanding of a particular group of studies as outsiders cannot

understand them, that I call their life a science. It is not necessary that they should

all be at work upon the same problem, or that all should be fully acquainted with all

that it is needful for another of them to know; but their studies must be so closely

allied that any one of them could take up the problem of any other after some months

of special preparation and that each should understand pretty minutely what it is that

each one of the other’s work consists in; so that any two of them meeting together shall

be thoroughly conversant with each other’s ideas and the language he talks and should

feel each other to be brethren” (Peirce: MS 1334, pp. 11-14, 1905).

3. Connections to philosophy of science and the history of statistics as a quest for
principled amalgamation

Statistical science has evolved from the growing awareness, extraction, and assessment of common-

ness in the midst of diversity. Not only can physical laws (or, as social scientists say, “law-like

relationships”) be uncovered from noisy data, in the manner of Gauss, Laplace, and their followers.

Also, variation itself can be categorized and thought of as a form of commonality: that was the

key insight of Galton, Pearson, and other statisticians who in the late 19th century applied the

concept of the probability distribution to biological variation. We have argued that in recent years

that this insight has been oversold, now that researchers have the demonstrated ability to extract

large, statistically significant, yet spurious and unreplicable findings from just about any set of

data (Gelman and Loken, 2014b); that said, from a historical point of view, the idea that variation

can itself be quantified is central to any statistical understanding of modern social and biological

sciences.

Here we focus on methods of quantifying commonness among different empirical studies and

their reported observations. Commonness refers to studies aiming at the same target (aspect of

reality) as well as being qualitatively similar evidence of that target, hopefully varying only in
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precision which can be readily assessed. On the other hand, qualitatively different data sources can

vary in their bias, which may be very difficult to assess and properly correct for so that something is

actually common. Terms from psychometrics that make the same distinctions as bias and precision

do here would be validity and reliability.

Awareness of commonness can lead to an increase in evidence regarding the target; disregarding

commonness wastes evidence; and mistaken acceptance of commonness destroys otherwise available

evidence. It is the tension between these last two processes that drives many of the theoretical and

practical controversies within statistics. A concrete but simple example that demonstrates practical

controversies nicely would be the situation depicted in the wiki entry on Simpson’s paradox (Schutz,

2017). The illustration of the quantitative version: a positive trend appears for two separate groups

(blue and red), whereas a negative trend (black, dashed) appears when the groups are combined.

The illustration clearly depicts an underlying reality of exactly the same positive trend for two

groups (both slopes equal to one) but that happen to have different intercepts, one at about 5 and

the other -7. A default application of regression modelling using the 8 data points displayed in

illustration would likely specify a single intercept, slope and standard deviation parameter. The

incorrect single intercept here is a mistaken acceptance of commonness which destroys the evidence

for common positive slopes by providing a single negative slope estimate of roughly -.6. In addition,

providing a single incorrect intercept estimate of about 9. Specifying the correct commonness here

- that of separate intercepts but a single common slope and single standard deviation parameter

captures (all the evidence for) the correct intercept and slope with no actual error, with resulting

correct estimates of the intercepts of 5 and -7, slope of 1 and single standard deviation of 0. With

realistic data, there would be errors of observation and the specifying of separate intercepts but

along with incorrect separate slopes and again common standard deviation parameter would waste

evidence providing two different slope estimates randomly varying about 1 and a biased downward

estimate of the standard deviation. One might further ask or question why the assumption of

common standard deviation was being made? Simply convenience?

We believe, this simple contrived example from wiki nicely shows a lack of concern regarding

the need to represent reality (correctly specifying common and non-common parameters) as well as

one can or at least well enough for statistical procedures to provide reasonable answers. The usual

training in statistics likely suggests the default use of a common intercept in multivariate regression

analysis as well as the occasional need to consider interactions (with the statistical custom of always

specifying separate intercepts for interaction terms - the lower order terms). But here, without the

interaction, evidence is destroyed while with the interaction, it is wasted. The result is misleading

descriptive or predictive inference with the former or inefficient descriptive or predictive inference

with the latter.

Better descriptive or predictive inferences comes from better underlying representations of re-

ality. Note that for descriptive or predictive inference, reality as it is now (and likely to persist)

is the only reality that needs to be represented well enough. On the other hand, for causal or

transportable inference, both current realities and how those can be changed (causal) or local and

remote realities (to transport between) need to be well represented. For instance, randomization

creates two similar in expectation realities, one which presumably can be modified in a hopefully

simple way (though maybe seldom as hopeful as additive). Causal and or transportable inference

is of course much more challenging, but this should not lead to a disregard for representing a single

current reality well for descriptive or predictive inference.

Statistical science historically emerged out of the conjecture, assessment and reasoned accep-

tance of the commonness of observations made by different members of the community of as-

tronomers. Among a set of apparently related observations, some combination was conjectured to
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be better than just enumerating the set, but a justification for how to weight observations, whether

repeatedly made by the same astronomer or by different astronomers, was completely lacking and

desperately sought. Astronomers and others would often reflect on how to determine which was

dataset was the best (thus implicitly assigning weights of 0 to all the remaining data), anticipating

that was the obvious solution, but they had yet to learn that, as Stigler (2016) put it, “the details

of individual observations had to be, in effect, erased to reveal a better indication than any single

observation could on its own.” In the modern world of social media we similarly speak of the

wisdom of crowds, an idea which is often illustrated using an example of Galton (1907).

The problem of information aggregation attracted the attention of brightest minds at the time,

mathematicians and philosophers including Laplace and Gauss, and its resolution finally came from

a recognition of a common object being measured by all and the reasonableness of a common error

probability model for all—regardless of whether the same or different astronomers were making the

observations. That involved a model both for common target of reality (“the” aspect of reality the

observation was attempting to get right) and a common observational error that is the same for all.

According to Stigler (1986), it was the idea of “dealing with observations made by various other

observers under different conditions—that actually ‘spurred’ on the development.” The probabilis-

tic error model, along with the willingness to use it on data from multiple sources, was the key

technological insight needed. In gambling, probability models had provided a means to determine

the best bet regarding outcomes from games and or devices that had common chance outcome

mechanisms; in contrast, in astronomy the error probability model representing common errors

provided a means to determine the best combination for some target taken as common and hence

the best weights for the combination of observations (O’Rourke, 2002, Keynes, 1911). In much

of statistical practice, probability models provide a formal mathematical basis for amalgamating

and assessing commonness which then sets out the best combinations for various purposes. For

a thorough historical account see Hald (1998) or Stigler (1986). More recently, machine learning

methods have moved to more algorithmic, less model-based approaches—not from any perceived

defect with the probability models but rather for computational reasons when dealing with “big

data”—but, again, the principle remains that data from different sources can and will be pooled in

a single procedure (unless trivially based on single observations).

A repeated broadening of what was taken as common can be briefly outlined here as starting with

the above-mentioned initial recognition of a common object being measured and the reasonableness

of a common error model that implied the weights for the best combination. The next step is

extending or revising to still a common object being measured but now a differing error model,

one that allows for a source of error that affects all observations taken on that day, but that itself

was represented as being drawn from a common distribution of error distributions (a recognition

of a commonness at a higher level). This extension/revision implies different weights for the best

combination. Earlier, in a different context than astronomy (ratios of male to female births in

different cities), the reasonableness of a common error model was kept but the object being measured

itself was not taken as common, but instead being conjectured/represented as being a draw from

common distribution of objects. That is, the objects themselves that were being measured were

allowed to vary but in line with being drawn from a shared probability distribution. At this point the

purposeful designing or bringing-about of commonness in the observations’ underlying distributions

emerges. An early instance was Peirce’s recognition that random sampling and random assignment

of treatments induce a common distribution for sample and population, or treatment and control

group. Nowadays we might frame all these problems using multilevel models with variance at the

observation level and, in the astronomy context, variance components for individual measurement

methods, astronomers, and other factors that could induce systematic error.
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In Bayesian inference, the prior density is just multiplied by the factors of the likelihood which

quantify the information coming from the data (conditional on the assumed class of models). The

prior can then be seen, mathematically, as just one more data point. To make this absolutely clear,

each observation defines a likelihood (the probabilities of observing that very observation for the

various parameter values the parameters can take), the study likelihood is a multiple of those sin-

gle observation likelihoods (conditioned on other observations if observations are not independent)

and the posterior is proportional to the prior multiplied by the combined study likelihood. That

multiplication can be rearranged and re-expressed in any way that does not change that. Taking

logarithms, the log posterior is proportional to the sum of the log prior and all the individual log

likelihoods - a “weighted combination” with the “weights” determined by functional form of the

prior density and individual likelihoods. Some authors object to the prior being in this combination,

using what could be seen as an apple and oranges argument, arguing that now what is being amal-

gamated is of a different nature. Reid and Cox (2015) express concerns with “merg[ing] seamlessly

what may be highly personal assessments with evidence from data possibly collected with great

care,” instead preferring to use prior information “largely or entirely qualitatively.” We disagree

and rather see this seemingly outright refusal to consider possible representations of commonness

between prior and observations as simply “blocking inquiry” by disallowing a possibly profitable

to science representation of the unknown that may well be a “powerful aid to the formation of

true and fruitful conceptions,” to paraphrase Peirce. For the purpose of the present paper, it is

not necessary to resolve this disagreement but just to point out that it can viewed as a question

of amalgamation of evidence (rather than as a dispute of objectivity vs. subjectivity, which is how

Bayesian/non-Bayesian debates are often framed, for further discussion of this topic see Hennig

and Gelman, 2016)

From our perspective one can “interpret the parameter prior in a frequentist way, as formalizing

a more or less idealized data generating process generating parameter values” (Hennig and Gelman,

2016). One of earliest to concretely express this view was Francis Galton who constructed a physical

machine to clearly demonstrate both parameter and observation generation. It involved a two stage

quincunx. The top level represented the generation or setting of the unknown parameter (the prior)

and the second level the generation of a single noisy observation of each observed object’s value (the

data generating model or likelihood). By tracing back from a chosen value of noisy observations

(the slot the pellet ended up in) and identifying all the various values of unknowns parameters

that had generated them, a crude sample from the posterior is identified and obtained. Though

clunky and limited (just single unknown parameter with a singe observation from each) it fully

demonstrated how Bayesian inference uses probability generating models, both for parameter values

and observations, to amalgamate commonness between observations and then those observations

and the prior).

There are real risks of taking things as common in a sense that in reality they are not, whether

between the parameter generating process and the data generating process or among the data gen-

erating process for different observations themselves. We used the phrase “conjecture, assessment,

and reasoned acceptance of the commonness” to emphasize that. But similar scientific judgment is

required in deciding how to combine measurements—the “likelihood” part of the model—and we do

not see the risks of model error as being qualitatively different when considering data-combination

rules as when considering how to express prior information; see also Evans (2016) on this point.

Bayesian models “domesticate” uncertainty by turning it into (probabilistically represented)

variation; in the jargon of economics, transforming Knightian uncertainty into quantifiable risk.

Such procedures gain statistical efficiency at the cost of making mathematical assumptions about

the distributions and more importantly, independence of error terms (strong replication) and thus
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induce skepticism among many potential users; however, alternative approaches that appear to

avoid such assumptions can generally be seen to be performing information aggregation in some

other way, for example avoiding pooling across data sources but then averaging over time (Gelman,

2013). In just about any situation where a decision needs to be made, some choices need to be

made regarding pooling of data.

Comparing the technique of nearest neighbors to linear regression will help clarify what we

mean by unavoidable choices being made for pooling. For simplicity, consider a single x variable

and its role in predicting a single y variable. A linear regression model conjectures a single common

intercept and common slope for predicting the expected value of y from all values of x.i as well as a

common standard deviation parameter. The probability model for all observations is taken to be the

same Normal(u + b*x.i,sd) and all observations provide evidence for just three parameters. Nearest

neighbors tries to avoid specifying any commonness of expected values of y for differing values of

x at all by allowing expected values to vary arbitrarily by neighborhoods. The technique identifies

these neighborhoods from the observations and takes averages only within neighborhoods (never

across). It usually specifies the size of these neighborhoods. Taking the size of the neighborhoods

as 2, requires that a single nearest neighbor is found for every observation and taken to have the

same expectation - referred to as NN1. Nearest neighbors does not actually avoid specifying some

commonness though as NN0 is not taken as an acceptable procedure (having no neighbors, all

observations must be taken as islands on their own). So commonness of expectation between at

least two observations is forced. Then to achieve better “good” properties, commonness is then

allowed over a larger number of observations depending on the data set - referred to as NNk.

Additionally, a common variance is usually assumed between neighborhoods (a secondary feature).

That is to get combinations based on more than one observation, and variance estimates from more

than a few isolated points in each neighborhood, you treat non-common points and non-common

parameters “grudgingly” as common—simply to improve properties for estimating what you can.

This alternative approach to statistics avoids relying on probability models, instead aiming for

procedures that work well under weak assumptions—for example, instead of assuming a distribu-

tion is Gaussian, you would just want the procedure to work well under some conditions on the

smoothness of the second derivative of the log density function. These approaches also evolved

in astronomy, with Legendre developing least squares regression without requiring the probability

generating models that Gauss had assumed and used to get the exact same technique.

Instead of requiring probability model assumptions, this approach requires a choice of good

properties (why minimize squared error?) over a class of problems to be dealt with (where values

of unknowns are constrained in some way such as being linear in regression or proportional hazards

in survival analysis). Probability models make representations that try to get at some aspect of

reality that cannot be directly assessed but do provide indirect checks on their adequacy. On

the other hand, alternative approaches choose properties to be optimal under for a given class of

applications (e.g. applications having linear expectations or proportional hazards) with no direct

justification for the goodness of the property nor guarantees of a particular application belonging

to that class. That is, with no way to assess the goodness of the property or belonging within that

appropriate class, without making some representation of reality to average or maximize over.

Given sufficient flexibility, data aggregation can always be seen as appropriate, but if the data

to be combined are too different—and if there is no good model to bridge these differences—there

will be little or any practical gain from pooling, and indeed there can be a risk if analysts might use

inappropriately strong models that do not sufficiently account for variation among data sources.

With regards to exactly when observations have something in common amongst them so that

aggregation can be applied to useful effect, there is always some judgment involving “replication (or
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exchangeability) on some level by the statistician” (Hennig and Gelman, 2016). For a replication

to be a true replication and not a mere duplication, there must not be complete dependence, and

for a replication to be strong there must be as much independence as is possible. Often data-

analytic procedures are set up in terms of observations that can be taken as independent under

reasonable assumptions. It is these unit-of-analysis contributions that we wish to understand how

to conjecture, extract, and assess of commonness from. In astronomy, the units of analysis were

simply individual observations and they were understood as being independent.

An extreme case often arising in social science is when differing scales (for example, aggres-

siveness, anger, etc.) are used for assessing treatment effects in different randomized experiments.

It can be challenging, especially given what is reported in such studies, to specify probability

generating models for these different outcomes that had common parameters. This points to the

interplay between design of experiments, data collection, and analysis, as expressed for example by

Cox (2016). Cleaner data collection puts less of a burden on analysis; conversely, the sorts of “big

data” which arise from social media, etc., are messy and require more assumptions in order to make

causal inferences and generalize from sample to population. This in turn increases computational

requirements, both from sample size and model complexity, and helps explain why much of the work

of modern applied and theoretical statistics centers on algorithms and computing. Again, this is

all happening within the context of information aggregation; see, for example, Li, Srivastava, and

Dunson (2016).

By identifying a target of getting reality right, and an aspect of that reality being common as

part of what makes commonness applicable, we are placing ourselves in the larger philosophical

community defined by Peirce, Ramsay and others. As we put it elsewhere (Hennig and Gelman,

2016), “Although there is no objective access to observer-independent reality, we acknowledge that

there is an almost universal human experience of a reality perceived as located outside the observer

and as not controllable by the observer. We see this reality as a target of science, which makes

observed reality a main guiding light for science. We are therefore ‘active scientific realists’ in the

sense of Chang (2012), who writes: ‘I take reality as whatever is not subject to one’s will, and

knowledge as an ability to act without being frustrated by resistance from reality’ and ‘Active

scientific realism implies that finding out the truth about objective reality is not the ultimate aim

of science, but that science rather aims at supporting human actions.’” We add here that we strive

for more than just not being frustrated by resistance from reality; rather, we want our findings and

claims that aim at truth to be “beliefs which succeed for reasons connected to the way things are”

(Misak, 2016).

The classical view of statistics, briefly mentioned before, of being primarily about procedures

to get estimates, tests, confidence intervals, etc. with certain good properties (often common prop-

erties for all possible unknowns) has limitations when moving beyond simple settings. We believe

scientific research would be more effective if statistics was viewed instead as primarily about conjec-

turing, assessing, and adopting idealized representations of reality, predominantly using probability

generating models for both parameters and data that can make the most out of commonness, for

example using hierarchical models with group-level predictors so that unexplained group-level vari-

ance is low and more information can be pooled from different sources (Gelman, 2006). It seems

to be already widely supported for probability generating models for data “[providing an] explicit

description in idealized form of the physical, biological, . . . data generating process,” that is es-

sentially “to hypothesize a data generating mechanism that produces observations as if from some

physical probabilistic mechanisms” (Reid and Cox, 2015.) We have argued that limiting probability

generating models just for data while banning them for parameters is too restrictive for much of

science.
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Our belief in the efficacy of information aggregation, using continuous parameters to determine

the level of partial pooling, is supported by a belief that reality though never directly accessible is

continuous, that different experiments, treatments, and outcomes are connected somehow rather

than distinct severed islands on their own. Differing considerations and purposes can then be

brought to bear on what best combinations (estimates, summaries) follow. From a slightly different

direction Tibshirani (2014) argues that enforcing sparsity is not primarily motivated by beliefs

about the world, but rather by benefits such as computability and interpretability, indicating how

considerations other than correspondence to reality often play an important role in statistics and

more generally in science. Tibshirani’s view fits squarely within the alternative “classical,” or non-

Bayesian, approach in which techniques are chosen based on various robust operational properties

rather than being viewed as approximations of reality. With this in mind, when we indicated that

we considered generating models as an idealization, we need to point out that they could be in

fact just be fictions—useful fictions if they lead to an ability to act without being frustrated by

resistance from reality. Sometimes fictions do seem turn out to be connected with how things

actually are. But if they are just accidental, with anything more than just in the short term, we

suspect these will not be as profitable for scientific practice as by definition science (unendingly)

tries to get reality right, or at least less wrong.

4. Conclusion

The foundations of statistics remain controversial, even among its leading practitioners, in a way

that biology, say, or chemistry or physics are no longer. In many ways, statistics looks more like

social sciences such as sociology, economics, and political science which are riven by deep ideological

divisions—but with the difference that statistics is a field of mathematics and computing in which

ideology does not seem to play any obvious role. However, the mathematics and computing just

defines and implements the tools (where there is much agreement), the purposes to which they

should be put and what to make of what results from their use in particular applications is more

than just mathematics and computing. Here there is very little agreement!

Whatever the historical sources and ultimate resolutions of the debates within the field of statis-

tics, we see the combination of evidence as central to any statistical method, and we view methods

as stronger to the extend that they can incorporate diverse sources of information, weighting or

adjusting appropriately to account for inevitable problems of data quality and representativeness.

Furthermore, we see statistical concepts of data integration, and the quantification of uncer-

tainty and variation, as central to serious understanding and reforms of the currently-broken system

of scientific publication and promotion.

Finally, all these concerns relate to longstanding questions in the philosophy of science, following

a skeptical tradition of Peirce, Meehl, and others. Ironically, various modern abuses of statistics

such as the chase for statistical significance or, more generally, the deterministic thinking that

leads researchers to establish certitude beyond the capabilities of their data, arise from skeptical

ideas in statistics such as Fisher’s warnings about overinterpreting chance variation or the Neyman-

Pearson-Wald rigorizing of certain stylized statistical decision problems.

When amalgamating evidence we typically are at least one step beyond available theory—it

only feels like amalgamation if it cannot be done automatically—but we should not let this stop

us from trying. It is through recognizing, formalizing and modeling our attempts at combining

information—and by recording and learning from our failures—that we will do better.
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