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Abstract

Simulation-based calibration checking (SBC) is a practical method to validate computationally-
derived posterior distributions or their approximations. In this paper, we introduce a new variant
of SBC to alleviate several known problems. Our variant allows the user to in principle detect
any possible issue with the posterior, while previously reported implementations could never
detect large classes of problems including when the posterior is equal to the prior. This is made
possible by including additional data-dependent test quantities when running SBC. We argue and
demonstrate that the joint likelihood of the data is an especially useful test quantity. Some other
types of test quantities and their theoretical and practical benefits are also investigated. We
support our recommendations with numerical case studies on a multivariate normal example and
theoretical analysis of SBC, thereby providing a more complete understanding of the underlying
statistical mechanisms. From the theoretical side, we also bring attention to a relatively common
mistake in the literature and clarify the difference between SBC and checks based on the data-
averaged posterior. The SBC variant introduced in this paper is implemented in the SBC R
package.

1. Introduction

Simulation-based calibration checking (SBC; Talts et al. 2020) is a method to validate Bayesian
computation, extending ideas from Cook, Gelman, and Rubin (2006).1 While it is primarily intended
for validating sampling algorithms such as MCMC, it can be used for validating any method
implementing or approximating Bayesian inference. Published applications include variational
inference (Yao et al. 2018) and neural posterior approximations (Radev, Mertens, et al. 2022).

Throughout this paper we assume an implicit and fixed Bayesian statistical model π with data
space Y and parameter space Θ. For y ∈ Y, θ ∈ Θ the model implies the following joint, marginal,
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and posterior distributions:

πjoint(y, θ) = πobs(y|θ)πprior(θ)

πmarg (y) =

∫
Θ

dθ πobs(y|θ)πprior(θ)

πpost(θ|y) =
πobs(y|θ)πprior(θ)

πmarg (y)
.

Typically, the posterior distribution πpost is the target of inference but is impossible to evaluate
directly. While many computational approaches exist for sampling from the posterior or its
approximations, they may fail to provide a correct answer. Problems can arise from errors in how
the algorithm or the statistical model are encoded or from inherent inability of the computational
method to correctly handle a given model with a given dataset.

1.1. Self-consistency of Bayesian models

To discover problems with computation, several classes of checks can be derived from self-consistency
properties of statistical models. One such property concerns the data-averaged posterior (Geweke
2004):

πprior(θ) =

∫
Y

dy

∫
Θ

dθ̃ πpost(θ|y)πobs(y|θ̃)πprior(θ̃). (1)

SBC relies on a different property that involves the joint distribution of prior and posterior
samples from the same model (Cook, Gelman, and Rubin 2006):

πSBC(y, θ, θ̃) = πprior(θ̃)πobs(y|θ̃)πpost(θ|y). (2)

Since πobs(y|θ̃)πprior(θ̃) = πmarg (y)πpost(θ̃|y), this implies,

πSBC(y, θ, θ̃) = πmarg(y)πpost(θ|y)πpost(θ̃|y). (3)

Equation (3) immediately shows that conditional on a specific data y ∈ Y , the distributions of θ
and θ̃ in Equations (2) and (3) are identical.

SBC and related methods employ two different implementations of the same statistical model
and check if the results have the same distribution conditional on data. The first step is to define a
generator capable of directly simulating draws from πprior(θ̃) and πobs(y|θ̃), and the second step is to
define a probabilistic program that, in combination with a given posterior approximation algorithm,
samples from the posterior distribution πpost(θ|y). Each simulation from the generator yields,

θ̃ ∼ πprior(θ̃)

y ∼ πobs(y|θ̃)
θ1, . . . θM ∼ πpost(θ|y), (4)

where M is the number of posterior draws sampled. We run many such simulations and then inspect
the realized distributions of θ and θ̃ conditional on y. Specific calibration checking methods differ in
how exactly they test the conditional equality of the two distributions.
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1.2. Proposed SBC variant

We argue for the following variant of the SBC check: First, project the potentially high-dimensional
parameter and data space into a scalar test quantity f : Θ × Y → R. Second, compute the rank
of the prior draw in the posterior conditional on y. Specifically, we take the number of posterior
sample draws where the test quantity is lower than in the prior draw, and, if there are any ties,
choosing the rank randomly among the tied positions:

Nless :=
M∑
m=1

I
[
f(θm, y) < f(θ̃, y)

]
Nequals :=

M∑
m=1

I
[
f(θm, y) = f(θ̃, y)

]
K ∼ uniform(0, Nequals)

Ntotal := Nless +K,

where I[P ] denotes the indicator function for predicate P . The procedure simplifies if there are no
ties, which will be true for most practical test quantities over models with continuous parameter
space. When no ties occur, we have Ntotal = Nless. Then, if the probabilistic program and the
generator implement the same probabilistic model, we have

Ntotal ∼ uniform(0,M). (5)

See Theorems 4 and 3 in Appendix A for a formal statement and proof. As a result, once we obtain
a set of draws from empirical distribution of Ntotal via multiple simulations, we can perform a test
for uniformity. The process is then repeated for all test quantities we want to consider. If we are
using MCMC to sample from πpost, the posterior sample typically needs to be thinned to ensure
that θ1, . . . , θM are approximately independent (Talts et al. 2020, Säilynoja, Bürkner, and Vehtari
2021). The overall SBC process is illustrated in Figure 1.

While it is possible to use numerical tests for uniformity with SBC, we generally prefer to use
visualisations of the rank distribution as they are more informative than numerical summaries
and discourage dichotomous thinking. Most prominent are rank histograms and plots of empirical
cumulative distribution functions (Säilynoja, Bürkner, and Vehtari 2021).

Our proposed SBC variant improves upon the way SBC has been previously reported and used
in two major ways:

• We let test quantities depend on both data and parameters, while previous work only considered
quantities that depend on the parameters. In practice, these test quantities were almost
exclusively just the individual parameters themselves.

• Previous formulations of SBC required uniformity of Nless. However, even if the probabilistic
program is exactly correct, Nless will not be uniform if Pr(Nequals > 0) > 0, that is, if
ties can occur. With our improved SBC procedure, we can handle test quantities that have
distributions with point masses and thus ties between f(θ̃, y) and (f(θ1, y), . . . , f(θM , y)).
Resolving ties lets us use SBC for models with discrete parameters as well as in some other
special cases, such as when a theoretically strictly positive test quantity suffers underflow and
some prior/posterior sample draws are numerically zero.
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Figure 1: Schematic representation of SBC with S simulations. The generator is responsible
for generating draws from the prior distribution θ̃ ∼ πprior(θ̃) and from the observational model
y ∼ πobs(y | θ̃). The draws from the observational model are then treated as input for the probabilistic
program and the associated algorithm which takes M posterior draws θ1, . . . θM . Each test quantity
projects both the prior draw and the posterior draws (potentially using data) onto the real line,
letting us compute a single rank (Ntotal). Finally, deviations from discrete uniform distribution are
assessed statistically or visually.

1.3. Practical considerations

SBC will be satisfied if the generator, probabilistic program, and posterior approximation algorithm
are in harmony: The generator and the probabilistic program should correspond to the same
data-generating process. At the same time the posterior approximation algorithm (including the
associated tuning parameters) provides samples that have at most a negligible difference from the
correct posterior for the probabilistic program, given the data simulated from the prior. Failure
indicates that at least one of the components is mismatched to the others. However, by itself, SBC
cannot determine where exactly the problem lies. As a result, two broad classes of SBC use cases
arise:

• We have code to simulate data and a probabilistic program we trust, and the goal is to check
that an algorithm correctly samples from the posterior.

• We have an algorithm that we trust is correct and trustworthy code to simulate data, and the
goal is to check that we correctly implemented our probabilistic program.

In practice, those classes overlap and mix: we are rarely completely certain of the correctness
of any algorithm, generator, or probabilistic program. Additionally, SBC as a simulation method
has no way to inform us about a discrepancy between the process that generated real data and
the assumptions of our statistical model. For reliable inference, SBC thus needs to be combined
with other elements of Bayesian workflow that can detect model misspecification, such as posterior
predictive checks or analysis of residuals (Gabry et al. 2019; Gelman et al. 2020; Kay 2021).

4



1.4. Importance of test quantities

It has been generally believed that methods based on Equation (2), including SBC, are never
sensitive to some classes of mismatches between the generator and the probabilistic program—most
notably that it is impossible to detect if the probabilistic program samples from the prior distribution
and ignores the information in the data (e.g., Equation (1.3) of Lee, Nicholls, and Ryder 2019,
although with incorrect reasoning; Appendix M.2 of Lueckmann et al. 2021; Schad et al. 2022; Zhao
et al. 2021; Ramesh et al. 2022; Cockayne et al. 2020).

In this paper we show that the choice of test quantities greatly influences the usefulness and
sensitivity of SBC. We show that using test quantities that depend on data makes it possible to
detect any conceivable mismatch between the generator and the probabilistic program. Thus, we
demonstrate that the belief in inherent limitations of SBC has relied on overly restrictive and
sometimes plainly incorrect assumptions. We discuss useful classes of test quantities that have not
been used so far and provide characterization of possible remaining undetected failures. We provide
simulation studies as well as theoretical analysis of SBC to support our findings. We hope that our
theoretical framework can serve as a basis for a better understanding of the properties of SBC and
related methods. All of the techniques discussed are implemented in the SBC R package (Kim et al.
2022).

The rest of the paper is structured as follows: Section 2 discusses related work, Section 3
summarizes the theoretical results we derived, Section 4 shows results of simulation case studies
and Section 5 discusses the results and our recommendations for practical use of SBC.

2. Related work

Prior contributions to validation of Bayesian computation can be roughly split into works that focus
on the data-averaged posterior, those that focus on the SBC property, and other relevant works
that do not directly invoke any self-consistency property.

2.1. Data-averaged posterior

The idea of using simulations via a generator to verify Bayesian computation can be traced back to
Geweke (2004) who compared the moments of the prior and the data-averaged posterior distributions
for multiple test quantities. The paper proposed to integrate a transition kernel for an MCMC
sampler targeting πpost into a scheme that samples πjoint directly. This lets us obtain the data-
averaged posterior from a single run of this sampler, potentially reducing the computational cost
but increasing implementation burden. Geweke’s formalism allows the test quantities to depend on
data, although all the examples actually shown only depend on parameters. Comparing the mean
vector and covariance matrix of the prior distribution and the data-averaged posterior distribution
is also discussed by Yu et al. (2021), who use repeated fits to build the data-averaged posterior.

2.2. SBC-like checks

The identity of prior and posterior distributions conditional on a specific dataset as a tool to check
computation was proposed by Cook, Gelman, and Rubin (2006), and further refined by Talts et al.
(2020) who introduced SBC as it is currently used. Specific variants of SBC have been proposed
for variational inference (Yao et al. 2018), Bayes factors (Schad et al. 2022), neural posterior
approximators (Radev, D’Alessandro, et al. 2021; Radev, Mertens, et al. 2022), and Gaussian
processes (Mcleod and Simpson 2021).
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Gandy and Scott (2020) proposed a procedure similar to SBC that can work with shorter
sequences of Markov transitions than a full fit, reducing computational cost. This is, however, less
relevant for algorithms that need a nontrivial warmup phase to adapt to the specific posterior (e.g.,
the adaptive Hamiltonian Monte Carlo sampler implemented in Stan; Carpenter et al. 2017). This
is because warmup is a fixed cost that occurs during every model fit even if fewer post-warmup
draws are needed.

Prangle et al. (2014) proposed an SBC-like procedure for approximate Bayesian computation
(ABC). They note that the possibility that the probabilistic program simply samples from the prior
distribution cannot be ignored in this context and resolve this issue by separately inspecting ranks
for some subsets of the simulated datasets. SBC is closely related to the coverage property discussed
by Prangle et al.: when using M posterior sample draws, SBC can be understood as checking for
all posterior intervals of width α ∈

{
1
M , . . . ,

M−1
M

}
that the probability the interval contains the

original simulated value of the test quantity is α.
A broader framework for calibration of learning procedures has been proposed by Cockayne

et al. (2020). There, Bayesian inference is just one example of procedures where calibration
can be empirically verified with an SBC-like check. They distinguish between strong calibration
which corresponds to passing SBC (specifically continuous SBC as defined in Appendix A) for all
measurable test quantities and weak calibration which corresponds to having a correct data-averaged
posterior (Equation 1). They however only consider test quantities that depend only on parameters.

2.3. Miscellaneous

The problem of diagnosing and understanding computational issues is transformed by Rendsburg
et al. (2022). Their approach tries to find a prior distribution that would make the probabilistic
program and algorithm exactly match the generator.

Domke (2021) propose to use fits to multiple generated datasets to estimate the symmetrized
KL-divergence between a distributional approximation to the correct posterior (e.g., Laplace or
variational inference) and the true posterior.

While almost all of the related works focus on one-dimensional test quantities, it is also possible
to use multivariate test quantities. To make this practical, Saad et al. (2019) discusses a family of
goodness of fit tests for multivariate uniformity. We believe most of the results presented in this
paper generalize relatively straightforwardly to multivariate test quantities.

3. Summary of theoretical results

Due to necessity to build a relatively large theoretical machinery we have moved precise statements
of theorems and proofs to Appendix A and here only summarise the main results in plain English.

3.1. Correctness

We first establish an idealized continuous SBC that arises in the limit of taking infinitely many
posterior samples (M) in each simulation. Theorems 1–2 show that if a probabilistic program
achieves uniform distribution of SBC ranks for a given test quantity as M → ∞, then it will
satisfy this continuous SBC as well. Theorem 3 then shows that if a probabilistic program passes
continuous SBC for a given test quantity, it will pass SBC for all M . We then show that passing
continuous SBC (and thus our SBC variant) is a necessary condition for the correctness of posterior
estimation (Theorem 4). That is, the correct posterior will always produce uniformly distributed
ranks, including for test quantities that may have ties.
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3.2. Characterization of SBC failures

Still, many incorrect posteriors will also pass SBC for any given test quantity, so in Theorem 5 we
characterize those situations. Not only does the correct posterior result in uniform distribution of
ranks when averaging over the whole data space Y , but the ranks are uniformly distributed even
when we only consider simulations that yielded data in some Ȳ ⊂ Y . The reverse implication also
holds: when the ranks are uniformly distributed for all subsets of the data space Ȳ ⊂ Y , then the
implied posterior distribution of the test quantity under investigation has to be exactly correct. In
other words, whenever SBC “fails” and the implied posterior distribution of a given test quantity is
incorrect although the rank distribution is uniform, we can find a subset of the data space, where
the ranks are non-uniform. It just so happens that all the deviations in various subsets cancel each
other out perfectly.

An obvious application of Theorem 5 is that we could partition our simulations based on some
features of the data space and investigate uniformity separately for each part, similarly to the
procedure suggested by Prangle et al. (2014). This however quickly runs into issues of multiple
testing due to the lower number of simulations in each part. It is thus in our experience not practical
except for the special case that interest lies only in some subset of the data space, so that the SBC
checks can focus only on that data space of interest. This is a form of rejection sampling and can
be practically useful if it is easy to formulate a criterion that constrains plausible real data sets
but hard to construct a defensible prior distribution that would enforce this criterion implicitly.
For example, prior information can be available on the plausible variance of an outcome across the
whole population, which may be hard to express as a prior on coefficients associated with predictors
(but see the approaches for linear models discussed in Zhang et al. 2020; Aguilar and Bürkner 2022).

3.3. Data-dependent test quantities

The characterization of SBC failures discussed above provides intuition why test quantities that
depend on data are useful: If SBC passes for a test quantity f , but the posterior is in fact incorrect,
we can always pick a test quantity g that combines f with some aspect of the data and ensures
that the discrepancies in various parts of data space add up instead of canceling out. For example,
we could have over-abundance of low ranks and under-abundance of high ranks in Y1 ⊂ Y and a
matching under-abundance of low ranks and over-abundance of high ranks in Y2 ⊂ Y . Setting

g(θ, y) =

{
−f(θ, y) y ∈ Y1

f(θ, y) otherwise

will ensure over-abundance of high ranks in both Y1 and Y2. Since such a test quantity uses all the
simulations, we do not lose power from reduced number of simulations.

An even stronger reason to use data-dependent test quantities is that they make SBC in
some sense complete: If there is any difference between the correct posterior and the posterior
implemented by the probabilistic program, there will exist a data-dependent test quantity that fails
SBC (Theorem 6). The proof is constructive and provides a specific test quantity that detects failures,
which is the ratio of the correct posterior density to the posterior density actually implemented by
the probabilistic program. This is not a practical test quantity, as it (a) depends on the specific
probabilistic program we implemented and (b) requires that we already have the correct posterior
density. However our empirical results in this paper, and our experience with using SBC in model
development more generally, shows that the model likelihood πobs(y|θ) is frequently useful as a
general-purpose test quantity. This makes sense intuitively, as the likelihood is an important
contributor to the density ratio.
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3.4. Ignoring data

We generalize the result that probabilistic program sampling from the prior distribution will pass
SBC against all test quantities that do not depend on data (Theorem 7). Specifically, a probabilistic
program that ignores some aspect of the data—for example, does not take some specific data points
into account, rounds all data to integers, etc.—but handles the reduced dataset correctly will pass
SBC for all test quantities that do not depend on the ignored aspect of the data.

3.5. Detailed analysis of simple models and test quantities

Appendix B provides full theoretical analysis of SBC for simple models and test quantities where
we can actually characterize all possible posterior distributions that will satisfy SBC. This is aimed
at providing intuition on what SBC actually does and also serve as counterexamples to some claims.
In some literature (e.g., Lee, Nicholls, and Ryder 2019, Lueckmann et al. 2021, Schad et al. 2022,
Grinsztajn et al. 2021, Ramesh et al. 2022), it is assumed that SBC is based on the data-averaged
posterior (1). We show that this is incorrect: Example 2 not only explicitly constructs posterior
distributions that will satisfy (1) for some test quantity while not passing SBC, but also posterior
distributions that pass SBC while not satisfying (1). One possibly more general lesson is that SBC
is most naturally understood as enforcing constraints on the quantile function of the test quantity
while having a correct data-averaged posterior is most naturally seen as constraint on the density of
the test quantity.

This implies that there might be some gains in using both the data-averaged posterior and SBC
when verifying the correctness of Bayesian computation. We however suspect that the additional
practical benefit of using the data-averaged posterior is small in the sense that the incorrect posteriors
that pass SBC but are ruled out by (1) are mostly contrived and unlikely to be a result of an
inadvertent mistake. Lemma 2.19 of Cockayne et al. (2020) proves that if a posterior passes SBC for
all possible test quantities that do not depend on data, it will have correct data averaged posterior
for all test quantities that do not depend on data, so SBC is stronger at least in the limit of using
infinitely many test quantities. We leave a more thorough examination of the relationship between
data-averaged posterior and SBC as future work.

3.6. Monotonic transformations of test quantities

Finally, transforming a test quantity by a strictly monotonic function results in equivalent SBC results;
see Theorem 8. The result cannot be easily strengthened as many non-monotonic transformations
lead to different, non-equivalent SBC checks. Example 3 shows that flipping the ordering of values
only for some subset of the data space yields a different SBC check. Example 4 shows that we can
also obtain a different check if we combine a test quantity with a non-monotonic bijection, and
Example 5 shows the same for the case when a whole range of values is projected onto a single
point. In all those examples, the transformed test quantities rule out some sets of posteriors that
pass SBC for the original quantity, but there are also sets of posteriors not passing SBC for the
original quantity but passing SBC for the transformed quantity.

4. Numerical case studies

The theoretical analysis in previous section primarily deals with behavior of SBC in the limit of
both infinitely many posterior draws per fit and infinitely many simulations. Here, we further
support the results by numerical experiments which let us understand not only whether a certain
problem is detectable at all but also how much computational effort is required for SBC to
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detect the problem. Code for simulations and all the figures in this section can be found at
https://github.com/martinmodrak/sbc_test_quantities_paper.

4.1. Setup

To illustrate some of the properties of various types of test quantities, we will use a simple multivariate
normal model,

µ ∼ MVN(0,Σ)

y1, . . . ,yn ∼ MVN(µ,Σ)

Σ =

(
1 0.8

0.8 1

)
, (6)

where the two-element vector µ is the target of inference, while y1, . . . ,yn are observed. Introducing

ȳ = 1
n

∑n
i=1 yi, the correct analytic posterior is MVN

(
N ȳ
n+1 ,

1
n+1Σ

)
. Unless mentioned otherwise

we will use n = 3. In most previous use-cases of SBC, the only test quantities used would have been
the parameters themselves, that is, the elements of µ in the above example. Below, we also check a
host of derived quantities: the sum, difference, and product of the µ elements, the joint likelihood
of all the data, and pointwise likelihoods for the first two data points.

To quantify the discrepancy between an observed distribution of posterior ranks and the uniform
distribution, we take the likelihood of observing the most extreme point on the empirical CDF if
the rank distribution was indeed uniform:

γ = 2 min
i∈{1,...,M+1}

(min{Bin(Ri|S, zi), 1− Bin(Ri − 1|S, zi)}) . (7)

Here, M is the number of draws in the sample obtained from the posterior, S is the number of
simulations (and thus the number of observed ranks), zi = i

M+1 is the expected proportion of
observed ranks smaller than i, Ri is the observed count of ranks smaller than i, and Bin(R|S, p)
is the CDF of the binomial distribution with S trials and probability of success p evaluated at
R. This metric was introduced in a paper by Säilynoja, Bürkner, and Vehtari (2021), where we
can also find computational methods to evaluate the distribution of γ under uniform distribution
of ranks for given M and S. Our primary metric of interest would then be log γ

γ̄ , where γ̄ is the
5th percentile of the null distribution. That is, if you adopt a hypothesis-testing framework, then
log γ

γ̄ < 0 implies a rejection of the hypothesis of uniform distribution at the 5% level. Having

log γ
γ̄ < 0 also corresponds to situations where visual checks of the ECDF plots would show problems

(for a single test quantity). This diagnostic is typically more sensitive than the Kolmogorov-Smirnoff
or χ2 test.

4.2. Correct posterior - Case study 1

Figure 2 shows how the γ statistic evolves in a fairly typical SBC run as we add more simulations
using a probabilistic program that samples from the correct posterior. There is some variability, but
most of the time all quantities would indicate uniformity and if they indicate some non-uniformity,
the discrepancies tend to be small so we are unlikely to reject this model as incorrect.

4.3. Ignoring data - Case studies 2–4

For comparison, case study 2 (Figure 3) shows the evolution of the same quantities for a typical run
with an incorrect posterior that is completely equal to the prior. All quantities that do not depend

9
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Figure 2: Case study 1: Evolution of the difference between the gamma statistic and threshold (log γ̄)
for rejecting uniformity at 5% for the correct posterior. mvn log lik[1] and mvn log lik[2] are
the pointwise likelihoods π(y1|µ) and π(y2|µ) respectively, while mvn log lik is the joint likelihood.
As expected for using a 5% level for rejection, false positives (values below the threshold) do happen,
but they tend to correspond to only small discrepancies.
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Figure 3: Case study 2: Evolution of the difference between the gamma statistic and threshold for
rejecting uniformity at 5% for an incorrect posterior that equals the prior. Note how quickly large
discrepancies accumulate for the likelihood-based quantities, despite the horizontal axis being zoomed
to show only first 50 simulations.
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Figure 4: Case study 2: Rank distribution for the elements of µ split by the average value of the
corresponding y elements for the incorrect posterior that is completely equal to the prior. The
distributions for the two cases exactly compensate to make the overall distribution uniform.

on data pass SBC, barring small short-term deviations as seen for the correct posterior. But all the
likelihood-based quantities start showing big discrepancies after just a handful of simulations. While
the overall distribution of ranks for the parameters themselves is uniform, when we look separately
at data with large average y and low average y, the ranks are strongly non-uniform in both regions
(Figure 4).

In case study 3, we observe similar behaviour for the posterior that ignores only the first data
point; see Figure 5. The biggest difference is that that now the pointwise likelihood for the second
data point—which was not ignored—passes SBC while the joint likelihood as well as the pointwise
likelihood for the first ignored data point show problems. Additionally, the pointwise likelihood for
the ignored data point now shows bigger discrepancy than the joint likelihood. For both quantities,
the discrepancy is smaller and requires about S = 20 simulations to reliably uncover, because
ignoring a single data point produces a posterior that is closer to the correct one than when ignoring
all the data. For case study 4 we increase the number of data points to n = 20 (Figure 6), ignoring
just a single data point produces a posterior that is close to correct and even after 1000 simulations,
the discrepancy for the joint likelihood is small. The pointwise likelihood for the first (ignored) data
point still detects the problem relatively quickly.

More generally, if the model (partially) ignores data, then adding a test quantity that involves
both data and parameters can detect this failure. Specifically adding the joint log-likelihood of the
data as a derived quantity seems to be a useful default. If only a small part of the data is missing,
using the joint-likelihood in SBC will turn it into a problem of precision. Missing just a single
datapoint in a large dataset (e.g., an off-by-one error in the probabilistic program) may change the
posterior only slightly and be undetectable with realistic computational effort.

4.4. Incorrect correlations - Case study 5

Suppose we have an incorrect posterior that has the correct marginal distributions for both
parameters, i.e. sampling is done from independent univariate normal distributions, µi | y1, . . . ,yn ∼
N
(
nȳi
n+1 ,

1
n+1Σi,i

)
. The evolution of the discrepancy as simulations are added is shown in Figure 7.

If the test quantities are the univariate parameters, SBC passes without any indication of problems,
while the likelihood-based quantities as well as the difference, product, and sum of the variables
show problems relatively quickly. The joint likelihood is the first to show serious issues.

If the inference does not represent correlations in the posterior correctly, this should as well
manifest in an SBC failure for some function of the parameters. This can be directly targeted by
using products (“interactions”) of model parameters, but the log-likelihood once again seems to be
generally useful as a highly nonlinear function of all model parameters.
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Figure 5: Case study 3: Evolution of the difference between the gamma statistic and threshold for
rejecting uniformity at 5% for an incorrect posterior that ignores the first datapoint among a small
data set (n = 3).
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Figure 6: Case study 4: Evolution of the difference between the gamma statistic and threshold for
rejecting uniformity at 5% for an incorrect posterior that ignores the first datapoint among a larger
dataset (n = 20).
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Figure 7: Case study 5: Evolution of the difference between the gamma statistic and threshold for
rejecting uniformity at 5% for incorrect posterior that has wrong correlation structure.

4.5. Less plausible problems - Case study 6

In this subsection our results get less practical and more theoretical. The (partially) unused data
case may easily arise in practice due to a bug in the probabilistic program such as an indexing
bug or a deficient overall approach. For example, an approximate Bayesian computation algorithm
may not learn from the data at all and just stick to the prior (Prangle et al. 2014). Incorrect
correlations or more general higher-order structure of the posterior may also easily arise due to a
problem with an approximate inference algorithm. For example, mean-field variational inference
will never recover any correlations by design. Beyond those examples, we have found it hard to find
incorrect probabilistic programs that would satisfy the SBC identity and could plausibly arise from
unintentional mistakes in program code or problems with an algorithm. We see this as anecdotal
evidence that SBC augmented with a few well-chosen test quantities that probe usage of data and
higher order posterior structure such as the likelihood can rather robustly detect these kinds of
mistakes. That said, for specific models, wide sets of artificial counterexamples that incorrectly pass
SBC can be constructed.

In case study 6, we show a specific case of a more general class of setups where we can create
an incorrect posterior approximation that produces overabundance of low ranks for datasets with
average of y positive and compensates by producing overabundance of high ranks for other datasets.
If this is done right, the test quantity will pass SBC. The distribution of the ranks conditional on
the average of y for one such setup is shown in Figure 8. As seen in Figure 9, when averaging
over all datasets, SBC indeed passes for the univariate parameter test quantities, but if we instead
look at, say, the absolute value of µ (as well as some other non-monotonic transformations of µ),
we immediately see problems as now some of the previously low ranks flip to high ranks and the
discrepancies accumulate instead of canceling each other. In this particular case, the problem is
also eventually picked up by the product of the µ values and with enough simulations even by
the joint likelihood, but there is no guarantee this will always happen. In general, non-monotonic
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Figure 8: Case study 6: Rank distribution for the elements of µ split by the average value of the
corresponding y elements for the incorrect posterior that satisfies SBC for individual parameters.
The distributions for the two cases exactly compensate to make the overall distribution uniform.

transformations can discover incorrect posteriors that would be otherwise hidden when looking
at the original variables. Still, the practical relevance of non-monotonic transforms in SBC is, in
our view, likely limited, as it required careful work to construct posteriors that manifested this
behaviour. We were unable to find even remotely plausible scenarios where an issue with Bayesian
computation was best discovered by using a non-monotonic transformation of another test quantity.

4.6. Small discrepancies - Case study 7

A final case study considers small discrepancies in the posterior. To be specific, we introduce a
small bias in the posterior drawn from normal(0, 0.3) independently for each simulation and element
of µ. The resulting SBC history is shown in Figure 10. While all of the monitored quantities
will eventually show the problem, the likelihood-based quantities and the difference of µ do that
noticeably sooner than others. This demonstrates that derived quantities can somewhat improve
precision of SBC: small changes in the univariate marginals can result in big (and thus easy to
detect) changes for some test quantities combining the univariate marginals with data and other
parameters.

5. Conclusions

5.1. Choosing test quantities for SBC

We have found that enriching the repertoire of test quantities used in SBC provides both qualitative
and quantitative improvements to the ability of SBC to detect problems in Bayesian computation.
For practical use of SBC in everyday model and algorithm development, we recommend to use by
default the individual model parameters as test quantities as well as the joint likelihood of the data
and potentially a small number of other quantities.

Individual parameters are recommended as they are always immediately available and are able
to diagnose a large number of problems with a posterior approximation. Also, the parameters are
themselves often of primary interest for inference, so it is desirable to check that their uncertainty is
correctly calibrated.

The joint likelihood is a highly useful quantity to detect the types of problems discussed in
Section 4 (especially ignoring data and incorrect correlations). In all of the cases presented in our
simulations, the joint likelihood was able to detect the discrepancies and in many cases it was even
able to detect them with the fewest simulations among all considered quantities. While, for some
specific problems, we could find quantities that are more sensitive than the joint likelihood, none

14
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Figure 9: Case study 6: Evolution of the difference between the gamma statistic and threshold for
rejecting uniformity at 5% for incorrect posterior that satisfies SBC for individual parameters but
not their absolute values. Note the different horizontal axis between top row (showing quantities
that detect the problem slowly or not at all) and bottom row (quantities that detect the problem
quickly). The vertical red dashed line marks 500 simulations in all subplots. For brevity we only
show quantities derived from the first element of µ; the situation is analogous for the second element.
The drop(mu[1]) quantity is defined as µ1 if µ1 < 1 and as µ1 − 5 otherwise.
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Figure 10: Case study 7: Evolution of the difference between the gamma statistic and threshold for
rejecting uniformity at 5% for incorrect posterior that introduces a small bias for each parameter.
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other was useful in all cases. Section 3.3 provides theoretical justification for why we could expect
this to hold frequently and not only in the examples we discussed. We think this generality makes
the joint likelihood a good default quantity to monitor in SBC. If not using all the data correctly is
a potential issue (e.g., because the code handling the data is particularly complex), then adding
selected likelihoods for subsets of the data might also be sensible.

It also makes sense to add test quantities tailored to the specific inferential goals we have
built the model for (e.g., some specific model predictions). These quantities often let us implicitly
check the correctness of parameter correlations or other dependency structures and safeguard the
user against problems that they care about the most. If correlations or other dependencies in the
posterior are directly of interest, then pairwise products or differences of the model parameters can
also be sensible test quantities.

5.2. Limitations

Although we have shown that SBC can in principle diagnose any problem, limitations for practical
use remain. For nontrivial models, adding a finite number of test quantities cannot guard against
all possible ways the SBC identity may be satisfied by an incorrect posterior. However, as we check
more quantities, the potential counterexamples become contrived, hard to construct, and unlikely to
be the result of an inadvertent bug in model or algorithm code. At the same time, adding more test
quantities increases the risk of false SBC failures simply due to the number of tests performed (if
no corrections for multiple comparisons are made for the SBC checks) or it may reduce the overall
power of the check (if corrections for multiple comparisons are made), so choosing test quantities
carefully remains important.

This problem could potentially be alleviated by improving our understanding of the expected
dependency structure of different test quantities’ uniformity checks, as then we could correct for
multiple comparisons without loosing that much power. We leave that as future work. In practice,
we have seen similarity in the degree of uniformity violation between different test quantities using
the same inputs, making the need for multiple comparison correction less urgent.

Moreover, there are practical limitations imposed by the fact that we always have only limited
computational resources for SBC: We can produce only a limited number of simulated datasets to
fit the model on and only a limited number of posterior draws per fitted model. Both contribute to
the stringency and precision of the uniformity test we can perform.

Additional test quantities do not help much with precision problems—if the posterior is close
to correct, the test quantities will also be close to correct. Although in some cases, some test
quantities can slightly increase the sensitivity of the check by combining multiple parameters, so
small imprecisions in each of the parameters can get compounded (once again the nonlinearity of
the likelihood seems to be at least sometimes useful in this regard).

5.3. Implications for non-SBC checks

As a contribution to the broader discussion about validation of Bayesian computation, we show
that SBC and data-averaged posterior provide different checks, despite being repeatedly conflated
in the literature (see Section 3.5). We leave a more detailed comparison of SBC and data-averaged
posterior as future work, although there are some tentative arguments to believe that SBC provides
stricter checks.

SBC is not the only approach to validating Bayesian computation that relies on choosing specific
test quantities—test quantities are fundamental to the methods of Geweke (2004), Cook, Gelman,
and Rubin (2006), Prangle et al. (2014), Gandy and Scott (2020), and Cockayne et al. (2020). We
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suspect that many of the considerations regarding their choice for SBC are applicable more generally
also in these other approaches.
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Appendix A: Formalized theory and proofs

We will denote the integral of f(x) w.r.t. x over domain X as
∫
X dx f(x). I[P ] is the indicator

function for a given predicate P . When a function can be understood as describing a conditional
probability distribution, we will use | to separate the function arguments we condition on. This is
only to assist comprehension and has the same semantic meaning as using a comma.

In all cases, we assume an underlying statistical model π which decomposes into a prior and
observational model. Given a data space Y and a parameter space Θ, then for y ∈ Y, θ ∈ Θ the
model implies the following joint, marginal and posterior distributions:

πjoint(y, θ) = πobs(y|θ)πprior(θ)

πmarg (y) =

∫
Θ

dθ πobs(y|θ)πprior(θ)

πpost(θ|y) =
πobs(y|θ)πprior(θ)

πmarg (y)
.

Unless noted otherwise, all definitions and proofs implicitly assume a single model π is given.
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Definition 1 (Posterior family). Given a data space Y and a parameter space Θ, a posterior family
φ assigns a normalized posterior density to each possible y ∈ Y . I.e. posterior family is a function
φ : Θ× Y → R+ such that

∀y :

∫
dθ φ(θ|y) = 1.

For each y, we will denote the implied distribution over Θ as φy.

Definition 2 (Test quantity). Given a data space Y and a parameter space Θ a test quantity is
any measurable function f : Θ× Y → R.

Definition 3 (Sample rank CDF, sample Q, sample SBC). Given a data space Y , a parameter
space Θ, a test quantity f , M ∈ N and a posterior family φ. For any y ∈ Y , if θ1, . . . , θM ∼ φy we
can define the following random variables:

Nless :=

M∑
m=1

I
[
f(θm, y) < f(θ̃, y)

]
Nequals :=

M∑
m=1

I
[
f(θm, y) = f(θ̃, y)

]
K ∼ uniform(0, Nequals)

Ntotal := Nless +K.

For a fixed θ̃, we define the M -sample rank CDF as:

Rφ,f (i|θ̃, y) := Pr (Ntotal ≤ i) .

Averaging over the correct posterior, we can define the M -sample Q as:

Qφ,f (i|y) :=

∫
Θ

dθ̃ πpost(θ̃|y)Rφ,f (i|θ̃, y)

We then say that φ passes M -sample SBC w.r.t. f if ∀i ∈ 0, . . . ,M − 1 we have∫
Y

dy Qφ,f (i|y)πmarg(y) =
i+ 1

M + 1
.

This definition does not match immediately with the procedure we actually use to run SBC in
practice but is more convenient for further analysis. We now prove the equivalence with the SBC
procedure:

Theorem 1 (Procedural definition of sample SBC). Given a data space Y , a parameter space Θ,
a test quantity f , M ∈ N and a posterior family φ. Assuming θ̃ ∼ πprior(θ), y ∼ πobs(y|θ̃) and
θ1, . . . , θM ∼ φy, φ passes M -sample SBC w.r.t. f if and only if Ntotal ∼ uniform(0,M).

Proof. We show the equivalence of CDF for Ntotal with the formula in the definition of sample
SBC. For all i ∈ {0, . . . ,M} we obtain

Pr(Ntotal ≤ i) =

∫
Θ

dθ̃

∫
Y

dy πprior(θ̃)πobs(y|θ̃)Rφ,f (i|θ̃, y) =

=

∫
Y

dy

∫
Θ

dθ̃ πpost(θ̃|y)πmarg(y)Rφ,f (i|θ̃, y) =

∫
Y

dy Qφ,f (i|y)πmarg(y)
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However, the sample SBC is not particularly amenable to direct analysis as the choice of M
can matter. We will thus focus on a continuous case, which can be understood as the limit of the
sample SBC as M →∞.

Definition 4 (CDF, tie probability, quantile functions). Given a model π, data space Y , a parameter
space Θ, a posterior family φ, and a test quantity f , we define

• fitted CDF: Cπφ,f : R̄× Y → [0, 1],

Cπφ,f (s|y) :=
∫

Θ dθ I [f (θ, y) ≤ s]φ (θ|y)

• true CDF: Cπf : R̄× Y → [0, 1],

Cπf (s|y) :=
∫

Θ dθ I [f (θ, y) ≤ s]πpost(θ|y)

• fitted quantile function: Cπ,−1
φ,f : [0, 1]× Y → R̄,

Cπ,−1
φ,f (x|y) := inf{s : x ≤ Cφ,f (s|y)}

• true quantile function: Cπ,−1
f : [0, 1]× Y → R̄,

Cπ,−1
f (x|y) := inf{s : x ≤ Cf (s|y)}

• fitted tie probability: Dπ
φ,f : R̄× Y → [0, 1],

Dπ
φ,f (s|y) :=

∫
Θ dθ φ(θ|y)I [f(θ, y) = s]

• true tie probability: Dπ
f : R̄× Y → [0, 1],

Dπ
f (s|y) :=

∫
Θ dθ πpost(θ|y)I [f(θ, y) = s],

where R̄ := R ∪ {−∞,+∞} is the extended real number line. When no confusion arises, the model
superscript will be omitted.

Definition 5 (Continuous rank CDF, continuous q, continuous SBC). Assume a data space Y , a
parameter space Θ, a test quantity f , and a posterior family φ. For fixed θ̃ ∈ Θ and y ∈ Y we define
the continuous rank CDF rφ,f : [0, 1]×Θ× Y → [0, 1] as

rφ,f (x|θ̃, y) := Pr
(
Cφ,f

(
f
(
θ̃, y
)∣∣∣ y)− uDφ,f

(
f
(
θ̃, y
)∣∣∣ y) ≤ x) ,

assuming u is a random variable distributed uniformly over the [0, 1] interval. If the fitted tie
probability is 0, then r is a step function and the implied rank distribution is degenerate.

Averaging over the correct posterior, we can define the continuous q : [0, 1]× Y → [0, 1] as

qφ,f (x|y) :=

∫
Θ

dθ̃ πpost(θ̃|y)rφ,f (x|θ̃, y).

We then say that φ passes continuous SBC w.r.t. f if

∀x ∈ [0, 1] :

∫
Y

dy qφ,f (x|y)πmarg(y) = x. (8)

In both the sample and the continuous case, the presence of ties introduces analytical difficulties.
We thus start by a useful lemma that lets us avoid dealing with ties for many purposes.
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Definition 6 (Ties). Given a test quantity f : Θ× Y → R a model π has ties w.r.t. f when there
exists y ∈ Y, θ̃ ∈ Θ such that

Df (f(θ̃, y)|y) > 0.

A posterior family φ has ties w.r.t. f when there exists y ∈ Y, θ̃ ∈ Θ such that

Dφ,f (f(θ̃, y)|y) > 0.

Lemma 1 (Tie removal). Given a model π, posterior family φ, and test quantity f : Θ× Y → R,
where either π has prior ties w.r.t. f or φ has ties w.r.t. f , we can construct a model π′, with
parameter space Θ′ and data space Y , posterior family φ′ and test quantity f ′ such that (1) π′ has
no ties w.r.t. f ′ and φ′ has no ties w.r.t. f ′, (2) ∀θ ∈ Θ, y ∈ Y : φ(θ|y) = πpost(θ|y) if and only if
∀θ ∈ Θ′, y ∈ Y : φ′(θ, y) = π′post(θ|y) and (3) both sample Q and continuous q are maintained. That
is,

∀y ∈ Y, x ∈ [0, 1] : qπφ,f (x|y) = qπ
′

φ,f ′(x|y)

∀y ∈ Y, i ∈ 0, . . . ,M − 1 : Qπφ,f (i|y) = Qπ
′
φ,f ′(i|y).

Proof. The overall idea is that we can always smooth the implied ties in the distributions of the
test quantity by introducing a gap at each possibly tied point and adding a uniformly random
value. Specifically, for each y ∈ Y, s ∈ R we define D̂φ,f (v|y) ∈ R, the set Vφ,f (y) ⊂ R and number
wφ,f (s, y) ∈ [0, 1] :

D̂φ,f (v|y) := Dπ
φ,f (v|y) +Dπ

f (v|y)

Vφ,f (y) := {v : D̂φ,f (v|y) > 0}

wφ,f (s, y) :=
∑

v∈Vφ,f (y),v<s

D̂φ,f (v|y).

For each y there can be at most a countable number of point masses in the implied distributions
and the total mass is at most 1, so wφ,f (s, y) will always be defined and smaller than 2.

We now construct the new model, posterior, and test quantity by adding a new parameter p
uniformly distributed over the [0, 1] interval, so Θ′ := Θ× [0, 1] and for all y ∈ Y, p ∈ [0, 1] we set:

θ′ := (θ, p)

π′joint(y, θ
′) := πjoint(y, θ)

φ′(θ′|y) := φ(θ|y)

f ′(θ′, y) :=

{
f(θ, y) + wφ,f (f(θ, y), y) + pD̂φ,f (f(θ, y)|y) if f(θ, y) ∈ Vφ,f (y)

f(θ, y) + wφ,f (f(θ, y), y) otherwise.

Here, w provides gaps as it increases by D̂φ,f (f(θ, y)) > 0 for each tied value. Those gaps are then
filled uniformly randomly by adding scaled p. By inspection, there are no ties in f ′. The ordering of
previously non-tied elements for both continuous and sample ranks has not changed and the order
among those previously tied is uniformly random so both sample Q and continuous q do not change.
Since ∀y ∈ Y, θ ∈ Θ, p ∈ [0, 1] : π′post(θ

′|y) = πpost(θ|y), the construction also directly ensures that
φ = πpost if and only if φ′ = π′post.

Lemma 2 (No ties and inverting CDFs). For all models π, posterior families φ, and test quantities
f : Θ× Y :
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1. If model π has no ties w.r.t. f then for all y the quantile function C−1
f (s|y) is the inverse of

Cf (s|y). Additionally, Cf (s|y) is a surjection on the [0, 1] interval.

2. If φ has no ties w.r.t. f then for all y the quantile function C−1
φ,f (s|y) is the inverse of Cφ,f (s|y).

Additionally, Cφ,f (s|y) is a surjection on the [0, 1] interval.

3. If both π and φ have no ties w.r.t. f then qφ,f (x|y) = Cf

(
C−1
φ,f (x|y)

∣∣∣ y) and qφ,f (x|y) is a

bijection from [0, 1] to [0, 1].

Proof. Items 1 and 2 follow directly from the basic properties of CDFs. For item 3, when there are

no ties, the definition of continuous rank simplifies to rφ,f (x|θ̃, y) = I
[
x ≥ Cφ,f

(
f
(
θ̃, y
)∣∣∣ y)] and

thus:

qφ,f (x|y) =

∫
dθ̃ πpost(θ̃|y)I

[
x ≥ Cφ,f

(
f
(
θ̃, y
)∣∣∣ y)] =

=

∫
dθ̃ πpost(θ̃|y)I

[
f
(
θ̃, y
)
≤ C−1

φ,f (x|y)
]

= Cf

(
C−1
φ,f (x|y)

∣∣∣ y) ,
where the second equality holds because C−1

φ,f is the inverse of Cφ,f for all y.

We now move to establishing a close correspondence between the sample SBC and continuous
SBC.

Theorem 2 (Sample SBC implies continuous SBC). Let φ be any posterior family over Y and Θ,
and let f be a test quantity:

1. For any fixed y ∈ Y if as the number of sample draws M → ∞ we have ∀i ∈ {0, . . . ,M} :
Qφ,f (i|y)→ i+1

M+1 then ∀x ∈ [0, 1] : qφ,f (x|y) = x.

2. If as M → ∞ we have ∀i ∈ {0, . . . ,M} :
∫
Y dy Qφ,f (i|y)πmarg(y) → i+1

M+1 then φ passes
continuous SBC for f .

Proof. Using Lemma 1 it once again suffices to prove the case with no ties. We start by showing
that as M →∞ normalized sample ranks converge almost everywhere to the continuous ranks.

Assuming no ties, Rφ,f (bxMc | θ̃, y) = Bin(bxMc |M,Cφ,f (f(θ̃, y))) where Bin(K|M,p) is the
CDF of a binomial distribution with M trials and success probability p evaluated at K. Using the
central limit theorem, we have

lim
M→∞

(
Bin
(
bxMc

∣∣∣,M, p
)
−Nor

(
bxMc

∣∣∣Mp,
√
Mp(1− p)

))
= 0,

where Nor(y|µ, σ) is the CDF of a normal distribution with mean µ and standard deviation σ
evaluated at y. We can now inspect the limiting behaviour of the z-score:

lim
M→∞

bxMc −Mp√
Mp(1− p)

= lim
M→∞

bxMc − xM√
Mp(1− p)

+ lim
M→∞

xM −Mp√
Mp(1− p)

=

= 0 + lim
M→∞

(x− p)
√
M√

p(1− p)
=


+∞ for x > p

0 for x = p

−∞ for x < p.
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Thus,

lim
M→∞

Rφ,f (bxMc | θ̃, y) =


1 for x > Cφ,f (f(θ̃, y))
1
2 for x = Cφ,f (f(θ̃, y))

0 for x < Cφ,f (f(θ̃, y))

=

{
rφ,f (x|θ̃, y) for x 6= Cφ,f (f(θ̃, y))
1
2 for x = Cφ,f (f(θ̃, y)).

We have thus established pointwise convergence of Rφ,f (bxMc | θ̃, y) to rφ,f (x|θ̃, y) almost
everywhere w.r.t. x, because we assume there are no ties. This means that we can satisfy the
conditions of the dominated convergence theorem.

We can now prove both claims in an analogous way. We start with claim 2, which is more
complex. For all x ∈ [0, 1]:

lim
M→∞

∫
Y

dy Qφ,f (bxMc | y)πmarg(y) =

= lim
M→∞

∫
Y

dy

∫
Θ

dθ̃ πpost(θ̃|y)Rφ,f (bxMc | θ̃, y)πmarg(y) =

=

∫
Y

dy

∫
Θ

dθ̃ πpost(θ̃|y)rφ,f (x|θ̃|y)πmarg(y) =

=

∫
Y

dy qφ,f (x|y)πmarg(y). (9)

Equation (9) holds regardless of the actual rank distributions. We now use the assumption that as
M →∞ the data-averaged rank distribution becomes uniform, which implies ∀x ∈ [0, 1]:

lim
M→∞

∫
Y

dy Qφ,f (bxMc | y)πmarg(y) = lim
M→∞

bxMc+ 1

M + 1
= x. (10)

Combining (9) and (10), we get that
∫
Y dy qφ,f (x|y)πmarg(y) = x and therefore φ passes continuous

SBC w.r.t. f . The reasoning for claim 1 is analogous, only omitting the integration over Y .

Theorem 3 (Continuous SBC implies sample SBC). Let φ be any posterior family over Y , Θ then
for all M ∈ N and any test quantity f :

1. For any y ∈ Y , if ∀x ∈ [0, 1] : qφ,f (x|y) = x then ∀i ∈ {0, . . . ,M − 1} : Qφ,f (i|y) = i+1
M+1 .

2. If φ passes continuous SBC w.r.t. f , then φ passes M -sample SBC w.r.t. f .

Proof. If either φ or π has ties w.r.t. f , we can use Lemma 1 to construct a model and posterior
family with no ties but the same continuous q and sample Q; therefore it suffices to prove the
statement when there are no ties.

When there are no ties, then given y, qφ,f (x|y) is a bijection and we can thus also define q−1.
Additionally, θ̃ ∼ πpost(θ̃|y) and θ1, . . . θM ∼ φy are all conditionally independent given y.

This allows us to determine the probability of the first r draws being smaller than the prior
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sample θ̃ ∼ π(θ) and the remaining M − r draws being larger conditional on a specific y:

Pr
((
f(θ1, y) < f(θ̃, y)

)
∧ . . . ∧

(
f(θr, y) < f(θ̃, y)

)
∧
(
f(θr+1, y) ≥ f(θ̃, y)

)
∧ . . . ∧

(
f(θM , y) ≥ f(θ̃, y)

)∣∣∣ y) =∫ 1

0
dx̃

∫
x∈[0,1]M

dx
r∏
i=1

I
[
C−1
φ,f (xi|y) < C−1

f (x̃|y)
] M∏
i=r+1

I
[
C−1
φ,f (xi|y) ≥ C−1

f (x̃|y)
]

=

∫ 1

0
dx̃

∫
x∈[0,1]M

dx
r∏
i=1

I
[
xi < Cφ,f

(
C−1
f (x̃|y)

∣∣∣ y)] M∏
i=r+1

I
[
xi ≥ Cφ,f

(
C−1
f (x̃|y)

∣∣∣ y)] =

=

∫ 1

0
dx̃

∫
0<x1,...,xk<q

−1
φ,f (x̃|y)≤xr+1...xL<1

dx1 1 =

=

∫ 1

0
dx
(
q−1
φ,f (x|y)

)r (
1− q−1

φ,f (x|y)
)M−r

.

Since θ1, . . . , θL are independent given y, we can easily extend to all possible orderings and substitute
z = q−1

φ,f (x|y):

∀r ∈ 0, 1, . . . ,M : Pr

(
M∑
i=1

I
[
f(θi, y) < f

(
θ̃, y
)]

= r

∣∣∣∣∣ y
)

=

=

∫ 1

0
dx

(
M

r

)(
q−1
φ,f (x|y)

)r (
1− q−1

φ,f (x|y)
)M−r

=

=

∫ 1

0
dz

(
M

r

)
zr (1− z)M−r ∂

∂z
qφ,f (z|y)

From the precondition in claim 1, qφ,f (x|y) = x and thus ∂
∂z qφ,f (z|y) = 1. Then

∫ 1
0 dz zr (1− z)M−r =

B(r + 1,M − r + 1) is the beta integral. Thus,

∀r ∈ 0, 1, . . . ,M : Pr

(
M∑
i=1

I
[
f(θi, y) < f(θ̃, y)

]
= r

∣∣∣∣∣ y
)

=(
M

r

)
B(r + 1,M − r + 1) =

1

M + 1
.

Therefore,

Qφ,f (j|y) =

j∑
r=0

Pr

(
M∑
i=1

I
[
f(θi, y) < f(θ̃, y)

]
= r

∣∣∣∣∣ y
)

=
j + 1

M + 1
,
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which proves claim 1. For claim 2 we investigate the unconditional probability,

∀r ∈ 0, 1, . . . ,M : Pr

(
M∑
i=1

I
[
f(θi, y) < f(θ̃, y)

]
= r

)
=

=

∫
Y

dy πmarg (y) Pr

(
M∑
i=1

I
[
f(θi, y) < f(θ̃, y)

]
= r

∣∣∣∣∣ y
)

=

=

∫
Y

dy πmarg (y)

∫ 1

0
dz

(
M

r

)
zr (1− z)M−r ∂

∂z
qφ,f (z|y) =

=

∫ 1

0
dz

(
M

r

)
zr (1− z)M−r ∂

∂z

∫
Y

dy πmarg (y) qφ,f (z|y) .

Since claim 2 assumes φ satisfies SBC w.r.t. f , we have ∂
∂z

∫
Y dy πmarg (y) qφ,f (z|y) = 1 and thus we

can proceed as in claim 1:∫
Y

dy Qφ,f (j|y)πmarg(y) =

j∑
r=0

Pr

(
M∑
i=1

I
[
f(θi, y) < f(θ̃, y)

]
= r

)
=

=

j∑
r=0

1

M + 1
=

j + 1

M + 1
.

With those foundations ready we now focus on proving statements about continuous SBC
with the understanding that thanks to Theorems 1-3 they also shed light on SBC as is actually
implemented in software.

Theorem 4 (Correct posterior and q). For any y ∈ Y , if ∀θ ∈ Θ : φ(θ|y) = πpost(θ|y) then for any
test quantity f we have ∀x ∈ [0, 1] : qφ,f (x|y) = x.

Proof. When π has ties w.r.t. f , we can use Lemma 1 to construct a model with no ties with the
same continuous q, preserving correctness. So we only need to prove the case where there are no
ties.

Without ties, we have ∀s ∈ R̄, y ∈ Y : Cφ,f (s|y) = Cf (s|y) and ∀x ∈ [0, 1], y ∈ Y :

Cf

(
C−1
f (x|y)

)
= x (Lemma 2) and thus

qφ,f (x|y) =

∫
Y

dy Cf

(
C−1
φ,f (x|y)

∣∣∣ y)πmarg(y) =

∫
Y

dy xπmarg(y) =

= x

∫
Y

dy πmarg(y) = x.

Corollary. The correct posterior passes continuous SBC. Combining the result with Theorem 3,
the correct posterior will produce uniform Q and pass M -sample SBC for any M and f .

Passing SBC is a necessary condition to have a correct posterior distribution, but it is not a
sufficient condition. The following theorem characterizes a sufficient condition for having a correct
distribution for a given test quantity.
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Theorem 5 (Characterization of SBC failures). Given a posterior family φ over Y , Θ and test
quantity f , then for all y ∈ Y and s ∈ R : Cφ,f (s|y) = Cf (s|y) if and only if ∀x ∈ [0, 1] : qφ,f (x|y) = x.

Proof. Given a model π and a test quantity f , we build a model π′ over the same data space and a
univariate parameter space Θ′ := R by first setting:

π′marg(y) := πmarg(y).

We can then define the true posterior and the posterior family φ′ via their univariate CDFs, for all
s ∈ R, y ∈ Y : ∫ s

−∞
dθ′ π′post(θ

′|y) := Cπf (s|y)∫ s

−∞
dθ′ φ′(θ′|y) := Cφ,f (s|y).

This always defines a valid joint distribution π′joint(θ
′, y) = π′post(θ

′|y)π′marg(y) and thus a valid
model.

We now consider the projection function p : R× Y → R, p(θ′, y) = θ′. By construction of π′ and
φ′ we have for all s ∈ R, x ∈ [0, 1], y ∈ Y :

Cπ
′

p (s|y) = Cπf (s|y)

Cπ
′

φ′,p(s|y) = Cπφ,f (s|y).

This then implies ∀x ∈ [0, 1], y ∈ Y :

qπ
′

φ′,p(x|y) = qπφ,f (x|y).

It therefore suffices to prove that for π′,

∀θ′ ∈ R : φ′(θ′, y) = π′post(θ
′|y) ⇐⇒ ∀x ∈ [0, 1] : qπ

′
φ′,p(x|y) = x.

The forward implication follows from Theorem 4 because the correct posterior always produces
correct q. According to Lemma 1 it suffices to prove the reverse implication only for posteriors
without ties. In this case using Lemma 2 we have for all x ∈ [0, 1]:

x = qπ
′

φ′,p(x|y) = Cπ
′

p (Cπ
′,−1

φ,p (x|y)|y).

So for all y ∈ Y we see that Cπ
′,−1 is the inverse of Cπ

′
p and thus the CDFs have to be equal:

∀s ∈ R : Cπ
′

p (s|y) = Cπ
′

φ,p(s|y).

Since there is only a single parameter θ′ in π′, the equality of the CDFs for the projection function
implies the equality of the densities, and

∀θ′ ∈ R : φ′(θ′|y) = π′post(θ
′|y).

This completes the proof.
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This characterizes SBC failures in the sense that SBC investigates the average over Y of the qφ,f
functions, which can appear correct even if for some subset of Y with non-zero marginal mass the
qφ,f functions do not yield expected results. The consequence is that whenever we have an incorrect
distribution of a given test quantity, the failure can be isolated to some Ȳ ⊂ Y and detected by
separately considering

∫
Ȳ dy qφ,f (x|y). While in practical uses of SBC inspecting rank distributions

for subset of the simulations based on the realized y ∈ Y leads to loss of power, we can often get
similar results by using a suitable test quantity g that depends on f and y in a way that causes
the problems in individual y to accumulate instead of canceling. This is one of the reasons why
allowing test quantities to depend on data is useful in general.

We will now show that our SBC variant is in some sense complete. Previous work was correct
in noting that with test quantities that are only a function of the parameters some problematic
posteriors (e.g., the unaltered prior distribution) can never fail SBC. However, when test quantities
are allowed to depend on observed data we can in principle discover any problematic φ. For this we
will need a technical lemma.

Lemma 3 (Value of q). Let φ be any posterior family over Y , Θ and f a test quantity and let
s = C−1

φ,f (x|y). Then for all y ∈ Y, x ∈ [0, 1],

qφ,f (x | y) =

{
Cf (s | y) +

Df (s|y)
Dφ,f (s|y) (x− Cφ,f (s | y)) for Dφ,f (s | y) > 0

Cf (s | y) otherwise.

Proof. For a given x, we split Θ into three disjoint sets:

Θx
1 := {θ ∈ Θ : x > Cφ,f (f (θ, y) | y)}

Θx
2 := {θ ∈ Θ : Cφ,f (f (θ, y) | y)−Dφ,f (f (θ, y) | y) < x ≤ Cφ,f (f (θ, y) | y)}

Θx
3 := {θ ∈ Θ : x ≤ Cφ,f (f (θ, y) | y)−Dφ,f (f (θ, y) | y)} .

Now using the definition of q

qφ,f (x|y) =
3∑
i=1

∫
Θxi

dθ πpost(θ|y)rφ,f (x|θ, y).

The definition of rφ,f implies that θ ∈ Θx
1 =⇒ rφ,f (x|θ, y) = 1 and thus:∫

Θx1

dθ̃ πpost(θ̃|y)rφ,f (x|θ̃, y) =

∫
Θx1

dθ̃ πpost(θ̃|y) =

=

∫
Θ

dθ̃ πpost(θ̃|y)I [x > Cφ,f (f (θ, y) | y)] =

= 1−
∫

Θ
dθ̃ πpost(θ̃|y)I [x ≤ Cφ,f (f (θ, y) | y)] =

= 1−
∫

Θ
dθ̃ πpost(θ̃|y)I

[
C−1
φ,f (x|y) ≤ f (θ, y)

]
=

=

∫
Θ

dθ̃ πpost(θ̃|y)I [f (θ, y) < s] = Cf (s|y)−Df (s|y),

using the Galois connection between quantile and CDF functions, so that x ≤ Cφ,f (s|y) ⇐⇒
C−1
φ,f (x|y) ≤ s even when Cφ,f is not invertible.

27



The definition also directly implies θ ∈ Θx
3 =⇒ rφ,f (x|θ, y) = 0, and thus∫

Θx3

dθ πpost(θ|y)rφ,f (x|θ, y) = 0.

If Dφ,f (s | y) = 0 then Θx
2 is empty, and we have qφ,f (x|y) = Cf (s|y).

If Dφ,f (s | y) > 0, then we first note that θ ∈ Θx
2 ⇐⇒ f(θ, y) = s. Then, straight from the

definition of continuous rank, the rank distribution is uniform between Cφ,f (s|y)−Dφ,f (s|y) and
Cφ,f (s|y), and the corresponding CDF thus has a linear segment, specifically:

θ ∈ Θx
2 =⇒ rφ,f (x|θ, y) =

x− (Cφ,f (s|y)−Dφ,f (s|y))

Dφ,f (s|y)
=
x− Cφ,f (s|y)

Dφ,f (s|y)
+ 1.

This let’s us evaluate the integral over Θx
2 as∫

Θx2

dθ πpost(θ|y)rφ,f (x|θ, y) =

∫
Θx2

dθ πpost(θ|y)

(
x− Cφ,f (s|y)

Dφ,f (s|y)
+ 1

)
=

=

(
x− Cφ,f (s|y)

Dφ,f (s|y)
+ 1

)∫
Θ

dθ πpost(θ|y)I [f(θ, y) = s] =

=

(
x− Cφ,f (s|y)

Dφ,f (s|y)
+ 1

)
Df (s|y).

Combining with the previous results yields,

qφ,f (x | y) = Cf (s | y) +
Df (s | y)

Dφ,f (s | y)
(x− Cφ,f (s | y)) for Dφ,f (s | y) > 0.

Theorem 6 (Density ratio). For any posterior family φ, take g (θ, y) =
πpost(θ|y)
φ(θ|y) . Then φ passes

continuous SBC w.r.t. g if and only if πpost and φ are equal except for a set of measure 0:∫
Y

dy

∫
Θ

dθ πjoint(y, θ)I [πpost(θ|y) 6= φ(θ|y)] = 0. (11)

Proof. First we establish that ∀y ∈ Y, s ∈ R : Cφ,g(s|y) ≥ Cg(s|y):

Cφ,g (s | y) =

∫
Θ

dθ φ (θ|y) I [g (θ, y) ≤ s]

Cg (s | y) =

∫
Θ

dθ πpost (θ | y) I [g (θ, y) ≤ s] =

∫
dθ φ (θ|y) g (θ, y) I [g (θ, y) ≤ s] .

First consider s ≤ 1. We can rearrange:

Cφ,g(s|y)− Cg(s|y) =

∫
θ∈Θ:g(θ,y)≤s

dθ φ(θ|y) (1− g (θ, y)) .

Since ∀θ ∈ Θ, y ∈ Y : φ(θ|y) ≥ 0, the integral only covers non-negative values, and so the overall
difference has to be non-negative.
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Now consider s > 1. Because
∫

Θ dθ φ (θ|y) g (θ, y) =
∫

Θ dθ πpost(θ|y) = 1, we can again rearrange:

Cφ,g(s|y)− Cg(s|y) =

∫
θ∈Θ:g(θ,y)≤s

dθ φ(θ|y)−
∫
θ∈Θ:g(θ,y)≤s

dθ φ(θ|y)g (θ, y) =

= 1−
∫
θ∈Θ:g(θ,y)>s

dθ φ(θ|y)− 1 +

∫
θ∈Θ:g(θ,y)>s

dθ φ(θ|y)g (θ, y) =

=

∫
θ∈Θ:g(θ,y)>s

dθ φ(θ|y) (g (θ, y)− 1) .

where we once again integrate over non-negative values.
So the difference is non-negative for any s. Also the difference cannot be zero for all s once there

is region of nonzero mass where g(θ, y) 6= 1. In other words ∀s : Cφ,g(s|y) = Cg(s|y) if and only if
the condition in (11) holds.

Since Cφ,g(s|y) ≥ Cg(s|y) we have C−1
φ,g(s|y) ≤ C−1

g (s|y). And so due to the monotonicity of

CDF and quantile functions, Cg(C
−1
φ,g(x|y)|y) ≤ Cg(C−1

g (x|y)|y). If there are no ties, we can apply
Lemma 2 and have for all y ∈ Y, x ∈ [0, 1]:

qφ,g(x|y) = Cg(C
−1
φ,g(x|y)|y) ≤ Cg(C−1

g (x|y)|y) = x. (12)

Thus
∫
Y dy qφ,g(x|y)πmarg(y) ≤ x, where equality holds only if Equation (11) is satisfied. When ties

are present, we recall Lemma 3 and make several observations:

1. Whenever Cφg(C
−1
φ,g(x|y)|y) = x or Dφ,g(C

−1
φ,g(x|y)) = 0 we have qφ,g(x|y) = Cg(C

−1
φ,g(x|y)|y).

2. Across any open interval (a, b) : 0 < a < b < 1 such that for all x ∈ (a, b) we have
Cφg(C

−1
φ,g(x|y)|y) 6= x and Dφ,g(C

−1
φ,g(x|y)) > 0 the q function is a line segment, i.e. x ∈

(a, b) =⇒ qφ,g(x|y) = cx+ d for some c, d ∈ R.

3. At any point 0 < x < 1 such that Cφg(C
−1
φ,g(x|y)|y) = x and Dφ,g(C

−1
φ,g(x|y)) > 0 the q function

is right-continuous.

4. Straight from its definition rφ,g is a non-decreasing function of x and thus qφ,g is also a
non-decreasing function of x.

Putting those together we obtain that even if ties are present, (12) holds for some x directly
(via point 1 above). At any other point, the q function is linear and due to points 3 and 4 we also
have qφ,g(x|y) ≤ x and equality cannot hold at those intermediate points unless it also holds at the
edges of the linear segment. Therefore even when ties are present,

∫
Y dy qφ,g(x|y)πmarg(y) ≤ x and

equality holds only if (11) is satisfied.

Corollary. For any posterior family φ that would provide different posterior inferences than the
true posterior πpost, there is a test quantity f such that φ does not pass SBC w.r.t. f .

The density ratio is typically not available in practice—and if it were, it would likely make more
sense to directly check whether g(θ, y) = 1. The above theorem however provides some intuition
why using the likelihood flik : flik(θ, y) = πobs(y|θ) is useful as it is related to the density ratio, but
not dependent on particular φ and usually easily available in practice.

We now generalize the result that ignoring data in test quantities implies that some problems
in the posterior family can never be detected. We use a technical lemma, a continuous analog of
Theorem 1.
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Lemma 4 (Integral representation of SBC). Given a test quantity f and a posterior family φ such
that both π and φ have no ties w.r.t. f , φ satisfies continuous SBC w.r.t. f if and only if for all
x ∈ [0, 1]: ∫

Y
dy

∫
Θ

dθ̃ I
[∫

Θ
dθ
(
I
[
f(θ, y) < f(θ̃, y)

]
φ(θ|y)

)
≤ x

]
πobs(y|θ̃)πprior(θ̃) = x. (13)

Proof. We directly apply the definition of Cφ,f and use the absence of ties to get the invertibility of
Cφ,f results from Lemma 2.

∫
Y

dy

∫
Θ

dθ̃ I
[∫

Θ
dθ
(
I
[
f(θ, y) < f(θ̃, y)

]
φ(θ|y)

)
≤ x

]
πobs(y|θ̃)πprior(θ̃) =

=

∫
Y

dy

∫
Θ

dθ̃ I
[
Cφ,f (f(θ̃, y)|y) ≤ x

]
πobs(y|θ̃)πprior(θ̃) =

=

∫
Y

dy

∫
Θ

dθ̃ I
[
f(θ̃, y) ≤ C−1

φ,f (x|y)
]
πobs(y|θ̃)πprior(θ̃) =

=

∫
Y

dy Cf

(
C−1
φ,f (x|y)|y

)
πmarg(y) =

∫
Y

dy qφ,f (x|y)πmarg(y).

Theorem 7 (Incomplete use of data). Assume a model π with observation space Y and parameter
space Θ, a space Y ′, and a measurable function t : Y → Y ′. Denote the set t−1(y′) = {y ∈ Y :
t(y) = y′}. Consider the model π′ with parameter space Θ and observation space Y ′ such that for
all θ ∈ Θ, y′ ∈ Y ′:

π′prior(θ) = πprior(θ)

π′obs(y
′|θ) =

∫
t−1(y′)

dy πobs(y|θ).

Assume a test quantity f ′ : Y ′ ×Θ → R. If we have a posterior family φ′ on Y ′,Θ such that
φ′ passes continuous SBC w.r.t. f ′ and set test quantity f : Y ×Θ→ R, f(θ, y) = f ′(θ, t(y)) and
posterior family φ on Θ, Y such that φ(θ|y) = φ′(θ|t(y)) then φ passes continuous SBC w.r.t. f .

Here, the choice of t lets us choose which aspects of the data are ignored, if ∀y ∈ Y : t(y) = 1,
we recover the case where all data are ignored: π′post(θ|y) = πprior(θ) and thus φ(θ|y) = πprior(θ)
will pass SBC w.r.t. f . If t is a bijection, no information is lost. Other choices of t then let us
interpolate between those two extremes, for example ignoring just a subset of the data points or
treating some data points as censored.
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Proof. We start with the integral representation of SBC for φ w.r.t. f from Lemma 4.∫
Y

dy

∫
Θ

dθ̃ I
[∫

Θ
dθ I

[
f(θ, y) < f(θ̃, y)

]
φ(θ|y) ≤ x

]
πobs(y|θ̃)πprior(θ̃) =∫

Y
dy

∫
Θ

dθ̃ I
[∫

Θ
dθ I

[
f ′(θ, t(y)) < f ′(θ̃, t(y))

]
φ′(θ, t(y)) ≤ x

]
πobs(y|θ̃)πprior(θ̃) =∫

Y ′
dy′
∫
t−1(ȳ)

dy

∫
Θ

dθ̃ I
[∫

Θ
dθ I

[
f ′(θ, y′) < f ′(θ̃, y′)

]
φ′(θ, y′) ≤ x

]
πobs(y|θ̃)πprior(θ̃) =∫

Y ′
dy′
∫

Θ
dθ̃ I

[∫
Θ

dθ I
[
f ′(θ, y′) < f ′(θ̃, y′)

]
φ′(θ, y′) ≤ x

] ∫
t−1(y′)

dy πobs(y|θ̃)πprior(θ̃) =∫
Y ′

dy′
∫

Θ
dθ̃ I

[∫
Θ

dθ I
[
f ′(θ, y′) < f ′(θ̃, y′)

]
φ′(θ, y′) ≤ x

]
π′obs(y|θ̃)π′prior(θ̃).

The last step is an integral representation of SBC for φ′ with respect to f ′ from Lemma 4.

Corollary. If we perform SBC with f1, . . . , fn such that there exist P1, P2 ⊂ Y ,
∫
Pk

dy πmarg(y) > 0

where ∀i,∀y1 ∈ P1, y2 ∈ P2, ∀θ ∈ Θ : fi(y1, θ) = fi(y2, θ) and
∫
P1

dy1

∫
P2

dy2

∫
Θ dθI [πobs(y1|θ) 6= πobs(y2|θ)],

then there will exist φ passing SBC w.r.t. f1, . . . , fn that is distinct from the correct posterior
πpost(θ|y).

Proof. If the conditions hold, then one can construct t that merges P1 and P2 while preserving the
values of fi. The correct posterior for the implied model π′ will imply an incorrect posterior for π
that passes SBC.

Lemma 5 (Order-preserving transformations). Given test quantities f, g : Y ×Θ→ R such that
∀y ∈ Y, θ1, θ2 ∈ Θ : g(θ1, y) < g(θ2, y) ⇐⇒ f(θ1, y) < f(θ2, y) and g(θ1, y) = g(θ2, y) ⇐⇒
f(θ1, y) = f(θ2, y) and a posterior family φ then for all y ∈ Y, θ̃ ∈ Θ, x ∈ [0, 1],M ∈ N, i ∈
{0, . . . ,M}:

rφ,f (x|θ̃, y) = rφ,g(x|θ̃, y)

Rφ,f (i|θ̃, y) = Rφ,g(i|θ̃, y).

Proof. The result follows directly from definitions of r and R as they depend only on ordering of
the values.

Lemma 6 (Reverse transformation). Given test quantities f, g : Y ×Θ→ R such that ∀y ∈ Y, θ ∈
Θ : g(θ, y) = −f(θ, y), then for all y ∈ Y, θ̃ ∈ Θ, x ∈ [0, 1],M ∈ N, i ∈ {0, . . . ,M}:

rφ,g(x|θ̃, y) = 1− rφ,f (1− x|θ̃, y)

Rφ,g(i|θ̃, y) = 1−Rφ,f (M − i− 1|θ̃, y).

Proof. First consider the continuous rank CDF r. We first establish relations between the CDFs
and tie probabilities:

Cφ,g (s|y) =

∫
Θ

dθ I [g (θ, y) ≤ s]φ(θ|y) =

∫
Θ

dθ I [−f (θ, y) ≤ s]φ(θ|y) =

=

∫
Θ

dθ I [f (θ, y) ≥ −s]φ(θ|y) = 1− Cφ,f (−s|y) +Dφ,f (−s|y)

Dφ,g(s|y) = Dφ,f (−s|y).
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We can then proceed to directly evaluate rφ,g:

rφ,g(x|θ̃, y) = Pr
(
Cφ,g

(
g
(
θ̃, y
)∣∣∣ y)− uDφ,g

(
g
(
θ̃, y
)∣∣∣ y) ≤ x) =

Pr
(
Cφ,g

(
−f
(
θ̃, y
)∣∣∣ y)− uDφ,g

(
−f
(
θ̃, y
)∣∣∣ y) ≤ x) =

Pr
(

1− Cφ,f
(
f
(
θ̃, y
)∣∣∣ y)+ (1− u)Dφ,f

(
f
(
θ̃, y
)∣∣∣ y) ≤ x) =

Pr
(
Cφ,f

(
f
(
θ̃, y
)∣∣∣ y)− (1− u)Dφ,f

(
f
(
θ̃, y
)∣∣∣ y) ≥ 1− x

)
=

1− Pr
(
Cφ,f

(
f
(
θ̃, y
)∣∣∣ y)− uDφ,f

(
f
(
θ̃, y
)∣∣∣ y) ≤ 1− x

)
=

1− rφ,f (1− x|θ̃, y),

where u is uniformly distributed on [0, 1] and the second-to-last identity holds, because the probability
of exact equality is 0 and 1− u has the same distribution as u.

Now we can focus on the sample rank CDF. We first distinguish how the behaviour of the Nequals

and Nless random variables (from Definition 4) relates between f and g:

Ng
equals = Nf

equals

Ng
less = M −Nf

less −N
f
equals.

We can then directly evaluate Rφ,g:

Rφ,g(i|θ̃, y) = Pr (Ng
less +K ≤ i) = Pr

(
M −Nf

less −N
f
equals +K ≤ i

)
=

Pr
(
Nf

less +Nf
equals −K ≥M − i

)
=

1− Pr
(
Nf

less +K < M − i
)

=

1− Pr
(
Nf

less +K ≤M − i− 1
)

= 1−Rφ,f (M − i− 1|θ̃, y).

Theorem 8 (Monotonic transformations). Assume test quantities f, g and a set of measurable
functions hy : R→ R such that ∀y ∈ Y, θ ∈ Θ : f(θ, y) = hy(g(θ1, y)) and a posterior family φ. If
either for all y ∈ Y : hy is strictly increasing or for all y ∈ Y : hy is strictly decreasing then 1) φ
passes continuous SBC w.r.t. f if and only if φ passes continuous SBC w.r.t. g and 2) φ passes
M -sample SBC w.r.t. f if and only if φ passes M -sample SBC w.r.t. g.

Proof. This is a direct consequence of Lemmas 5 and 6. The test quantity g has to be either an
order-preserving transform or a sequence of an order-preserving transform and a reverse transform.
Since order-preserving transforms do not change the rank CDFs at all, SBC results will be exactly
identical. The only remaining thing to prove is that a reverse transform maintains uniform rank
distribution in both the sample and continuous case.

Assuming ∀y ∈ Y : hy is strictly decreasing, we get for the sample case:

Qφ,g(i|y) =

∫
Θ

dθ̃ πpost(θ̃|y)Rφ,g(i|θ̃, y) =∫
Θ

dθ̃ πpost(θ̃|y)−
∫

Θ
dθ̃ πpost(θ̃|y)Rφ,f (M − i− 1|θ̃, y) =

1−Qφ,f (M − i− 1|y),
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which then implies,∫
Y

dy Qφ,g(i|y)πmarg(y) =

∫
Y

dy πmarg(y)−
∫
Y

dy Qφ,f (M − i− 1|y)πmarg(y) =

1−
∫
Y

dy Qφ,f (M − i− 1|y).

So if φ passes SBC w.r.t. f , then,∫
Y

dy Qφ,g(i|y)πmarg(y) = 1− M − i
M + 1

=
i+ 1

M + 1
,

and thus φ passes SBC w.r.t. g. If instead we first assume φ passes SBC w.r.t. g, then,∫
Y

dy Qφ,f (M − i− 1|y) = 1−
∫
Y

dy Qφ,g(i|y)πmarg(y) =

= 1− i+ 1

M + 1
=

(M − i− 1) + 1

M + 1
.

After substituting j = M − i− 1 this shows φ passes SBC w.r.t. f .
For the continuous case,

qφ,g(x|y) =

∫
Θ

dθ̃ πpost(θ̃|y)rφ,g(x|θ̃, y) =

=

∫
Θ

dθ̃ πpost(θ̃|y)−
∫

Θ
dθ̃ πpost(θ̃|y)rφ,f (1− x|θ̃, y) = 1− qφ,f (1− x|y),

which then implies,∫
Y

dy qφ,g(x|y)πmarg(y) =

∫
Y

dy πmarg(y)−
∫
Y

dy qφ,f (1− x|y)πmarg(y) =

1−
∫
Y

dy qφ,f (1− x|y)πmarg(y),

where both directions of implication for passing SBC w.r.t. f and g follow immediately.

Theorem 8 shows that certain simple transformations of test quantities lead to equivalent
behaviour for SBC. The result cannot be easily strengthened as many transformations in fact can
lead to different behaviours for SBC. Appendix B provides several counterexamples: Example 3
shows that if we allow hy to be strictly increasing for some y ⊂ Y while other y will have hy strictly
decreasing, we obtain a different check. Example 4 shows that we can obtain different behaviour if
we combine a test quantity with a discontinuous non-monotonic bijection, and Example 5 shows
the same when a whole range of values is projected onto a single point. In all those examples, the
transformed test quantities rule out some posterior families that pass SBC for the original, but
there also are posterior families not passing SBC for the original that pass SBC for the transformed
quantity.

In some discussions, SBC is linked to the concept of data-averaged posterior, which equals the
prior:

∀θ ∈ Θ : πprior(θ) =

∫
Y

dy

∫
Θ

dθ̃ πpost(θ|y)πobs(y|θ̃)πprior(θ̃). (14)

As with SBC, one can use this condition to compare the prior and the data-averaged posterior for
some test quantity derived from the parameters and (optionally) data.
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Definition 7 (Data-averaged posterior). A posterior family φ has the correct data-averaged posterior
for a test quantity f if for all s ∈ R∫

Y
dy

∫
Θ

dθ I [f(θ, y) < s]πobs(y|θ)πprior(θ) =

=

∫
Θ

dθ

∫
Y

dy

∫
Θ

dθ̃ I [f(θ, y) < s]φ(θ|y)πobs(y|θ̃)πprior(θ̃).

Even restricting to test quantities that do not depend on data, there will be posterior families
with correct data-averaged posterior for a test quantity but not passing SBC as well as posterior
families with incorrect data-averaged posterior that pass SBC. Example 2 in Appendix B shows
both cases.

The space of posterior families with correct data-averaged posteriors is closed under convex
combinations: if φ1 and φ2 have the correct data-averaged posterior for f , then for any 0 ≤ a ≤ 1, φ̄ :
φ̄(θ|y) = aφ1(θ|y) + (1− a)φ2(θ|y) will also have correct data averaged posterior for f . However a
convex combination of two posterior families passing SBC w.r.t. f will not in general pass SBC;
again, see Example 2 for a counterexample.

One intuitive way to understand the difference between SBC and data-averaged posterior is that
following Lemma 3 and examples in Appendix B we see that passing SBC is naturally understood
as a constraint on the quantile function of the test quantity while a correct data-averaged posterior
is naturally expressed as a constraint on the density of the test quantity.

This difference is relevant to broader discussions of SBC and related diagnostics, as other works
sometimes characterize SBC as comparing prior to data-averaged posterior (e.g., Lee, Nicholls, and
Ryder 2019, Appendix M.2 of Lueckmann et al. 2021, Equation 17 of Schad et al. 2022, Grinsztajn
et al. 2021, Ramesh et al. 2022).

There is however a sense in which SBC is a stronger condition than data-averaged posterior—as
proved in Lemma 2.19 of Cockayne et al. (2020), a posterior family that passes SBC for all test
quantities not depending on data will have a correct data-averaged posterior for all test quantities
not depending on data.

Appendix B: Formal analysis of SBC for a simple model

Here we take a simple model and characterize the posterior families that pass SBC against several test
quantities. This is intended to help build intuition about what SBC is actually doing. Additionally
some of the solutions serve as counterexamples for some discussions in Appendix A. We will work
with the model,

Θ := R
Y := {0, 1}
θ ∼ uniform(0, 1)

y ∼ Bernoulli(θ). (15)

We know the correct posterior and marginal distributions are

πmarg(0) = πmarg(1) =
1

2
πpost(θ|0) = beta(θ|1, 2) = 2(1− θ)
πpost(θ|1) = beta(θ|2, 1) = 2θ. (16)
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We denote Φ(p|y) :=
∫ p

0 dθφ(θ|y), the CDF of the posterior given by φ, and Φ−1(x|y) is the associated
inverse CDF.

Since Y has just two elements, passing SBC for this model translates to:

∀x ∈ [0, 1] :
1

2
(qφ,f (x|0) + qφ,f (x|1)) = x. (17)

Further, since for continuous models there are typically no ties we have qφ,f (x|y) = Cf (C−1
φ,f (x|y)|y)

(Lemma 2). All the following examples thus have the same structure:

1. Determine Cf ;

2. Express C−1
φ,f in terms of Φ−1;

3. Express qφ,f in terms of Φ−1;

4. Solve (17) for Φ−1.

We focus on Φ−1 instead of φ to make the computation easier as Φ−1 occurs naturally in expressions
for C−1

φ,f . It however has the side effect that the inverse CDF can be immediately used to sample
from the posterior family and thus compare the theoretical results to simulations of SBC.

All the examples are accompanied by simulations that show how specific incorrect posteriors
manifest with regards to a set of test quantities the simulation results can be found at https:

//martinmodrak.github.io/sbc_test_quantities_paper, and the underlying code at https:

//github.com/martinmodrak/sbc_test_quantities_paper.

Example 1 (Projection). First consider the projection f1(θ, y) := θ, so that,

Cf1(s|0) =

∫ s

0
dθ 2(1− θ) = 2s− s2

Cf1(s|1) =

∫ s

0
dθ 2θ = s2

C−1
φ,f1

(x|y) = Φ−1(x|y). (18)

Plugging this into (17) yields, for all x ∈ [0, 1],

Φ−1(x|0)− (Φ−1(x|0))2

2
+

(Φ−1(x|1))2

2
= x. (19)

This means we are relatively free to choose one of the inverse CDFs and solve for the other, for all
x ∈ [0, 1]:

Φ−1(x|1) =
√

2x+ (Φ−1(x|0)− 1)2 − 1. (20)

Given a valid inverse CDF Φ−1(x|1) on [0, 1], Equation (20) defines a valid φ as long as:

∀x, 0 ≤ x ≤ 1

2
: Φ−1(x|0) ≤ 1−

√
1− 2x (21)

∀x, 1

2
≤ x ≤ 1 : Φ−1(x|0) ≥ 1−

√
2− 2x (22)

∂Φ−1(x|0)

∂x
(Φ−1(x|0)− 1) ≥ −1, (23)
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where (21) and (22) ensure a non-negative value inside the square root in (20), and (23) ensures
Φ−1(x|1) is nondecreasing.

While this allows for a wide array of incorrect solutions, passing SBC for this condition already
avoids some pathological behavior, e.g. the low quantiles of the posterior when 0 is observed cannot
be too high. If we instead solve (19) for Φ−1(x|1) we obtain that when 1 is observed, high quantiles
cannot be to low; specifically, ∀1

2 < x < 1 : Φ−1(x|1) >
√

2x− 1).

Example 2 (Projection and data-averaged posterior). We can further build upon Example 1
to illustrate the differences between passing SBC and having correct data-averaged posterior.
Correctness of the data-averaged posterior for the projection f1(θ, y) = θ simply entails for all
θ ∈ [0, 1]:

φ(θ|0) + φ(θ|1) = 2. (24)

For example, flipping the correct posterior to

φA(θ, 0) := πpost(θ|1) = 2θ

φA(θ, 1) := πpost(θ|0) = 2− 2θ

satisfies the data-averaged posterior criterion. This however does not pass SBC w.r.t. f1 as the
implied inverse CDF Φ−1

A (x|0) =
√
x violates all the conditions in (21)–(23).

On the other hand, we can take a simple posterior family satisfying SBC for f1 (via Equation 20):

Φ−1
B (x|0) :=

{
2
3x x < 3

4
1
2 + 2(x− 3

4) x ≥ 3
4

Φ−1
B (x|1) :=

{
1
3

√
6x+ 4x2 x < 3

4√
3− 6x+ 4x2 x ≥ 3

4 .

The implied density has an incorrect data-averaged posterior:

φB(θ|0) =

{
3
2 θ ≤ 1

2
1
2 θ > 1

2

φB(θ|1) =

{
3s√

1+4s2
θ ≤

√
3

2
s√

4s2−3
θ >

√
3

2 .

Finally, Lee, Nicholls, and Ryder (2019) in Equation 1.3 claim that several methods including SBC
cannot notice when φ is a convex combination of the prior and the correct posterior. This is not true;
the authors derive it from the incorrect assumption that SBC checks for the correct data-averaged
posterior. We can readily build a counterexample: consider φC(θ|y) := 1

2 (πpost(θ|y) + πprior(θ)).
We then have:

φC(θ, 0) =
3

2
− θ

φC(θ, 1) =
1

2
+ θ

ΦC(s|0) =
1

2
(3s− s2)

ΦC(s|1) =
1

2
(s+ s2)

Φ−1
C (x|0) =

3

2
− 1

2

√
9− 8x

Φ−1
C (x|1) = −1

2
+

1

2

√
1 + 8x. (25)
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However, plugging Φ−1
C (x|0) into (20) which is a necessary condition for passing SBC w.r.t f1 yields,

Φ−1
C′ (x|1) =

√
3−
√

9− 8x√
2

,

which is in conflict with what we derived in (25) and φC thus cannot pass SBC w.r.t. f1 (although
it has correct data-averaged posterior).

Example 3 (Likelihood). Here we evaluate SBC for the likelihood,

f2(θ, y) := Bernoulli(y|θ) =

{
1− θ y = 0

θ y = 1.

In this case,

Cf1(s|0) =

∫ 1

0
dθ I[1− θ < s]2(1− θ) = 2

∫ 1

1−s
dθ (1− θ) = 1− 2s+ s2

Cf2(s|1) = Cf1(s|1) =

∫ s

0
dθ 2θ = s2

Cφ,f2(s|0) =

∫ 1

0
dθ I[1− θ < s]φ(θ|0) =

∫ 1

1−s
dθ φ(θ|0) = 1− Φ(θ|0)

C−1
φ,f2

(x|0) = Φ−1(1− x|0)

C−1
φ,f2

(x|1) = C−1
φ,f1

(x|1) = Φ−1(x|1).

Plugging this into (17) gives, ∀x ∈ [0, 1],

1

2
− Φ−1(1− x|0) +

(Φ−1(1− x|0))2

2
+

(Φ−1(x|1))2

2
= x, (26)

which we can solve for Φ−1(1− x|0):

Φ−1(1− x|0) = 1−
√

2x− (Φ−1(x|1)2). (27)

This defines a valid φ under the same conditions as SBC for the projection f1; see (21)–(23).
To combine this with the solution in 20, we additionally need to ensure continuity of Φ−1(1

2 |0),
so that computing the number via 20 followed by 27 matches the original value. This translates to:

Φ−1

(
1

2

∣∣∣∣ 0) = 1−
√

2

2
. (28)

Combining the projection and likelihood therefore fixes the midpoint of the quantile function to its
true value for both observations. However, we are still able to choose Φ−1(0, x) for x ∈ [0, 1

2 ] freely
as long as the conditions 21 - 23 and 28 are met, and this then defines a φ that passes SBC w.r.t.
both f1 and f2.

Example 4 (Non-monotonous bijection). Consider the test quantity

f3(y, θ) :=

{
θ for θ < 1

2

θ − 1, otherwise.
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It might seem intuitively plausible that since f3 captures the same information as f1 that passing
SBC w.r.t. f1 will entail passing SBC w.r.t. f3. This intuition proves to be incorrect.

Assuming −1
2 ≤ s ≤

1
2 , then the true CDF is,

Cf3(s|0) =

=

∫ 1

0
dθ I [f3(θ) ≤ s] (2− 2θ) =


∫ s+1

1
2

dθ (2− 2θ) −1
2 < s < 0∫ 1

1
2

dθ(2− 2θ) +
∫ s

0 dθ(2− 2θ) 0 ≤ s < 1
2

=

=

{
1
4 − s

2 −1
2 < s < 0

1
4 + 2s− s2 0 ≤ s < 1

2

Cf3(s|1) =


∫ s+1

1
2

dθ 2θ −1
2 < s < 0∫ 1

1
2

dθ 2θ +
∫ s

0 dθ 2θ 0 ≤ s < 1
2

=

{
3
4 + 2s+ s2 −1

2 < s < 0
3
4 + s2 0 ≤ s < 1

2 .

Let us further set hy := Φ
(

1
2 |y
)
; then we can then express the fitted CDF as:

Cφ,f3(s|y) =


∫ s+1

1
2

dθ φ(θ, y) −1
2 < s < 0∫ 1

1
2

dθ φ(θ, y) +
∫ s

0 dθ φ(θ, y) 0 ≤ s < 1
2

=

=

{
Φ(s+ 1|y)− hy for − 1

2 < s < 0

1− hy + Φ(s|y) 0 ≤ s < 1
2

and invert it to obtain:

C−1
φ,f3

(x|y) =

{
Φ−1(x+ hy|y)− 1 for x < 1− hy
Φ−1(x− 1 + hy|y) otherwise.

We can now evaluate qφ,f3 :

qφ,f3(x|0) =

{
1
4 −

(
Φ−1(x+ h0|0)− 1

)2
for x < 1− h0

1
4 + 2Φ−1(x− 1 + h0|0)−

(
Φ−1(x− 1 + h0|0)

)2
otherwise

qφ,f3(x|1) =

{
−1

4 +
(
Φ−1(x+ h1|1)

)2
for x < 1− h1

3
4 +

(
Φ−1(x− 1 + h1|1)

)2
otherwise.

So the SBC condition x = 1
2(qφ,f3(x|0) + qφ,f3(x|1)) resolves to four cases. First, when x ≤

min{1− h0, 1− h1},

2x = −
(
Φ−1(x+ h0|0)− 1

)2
+
(
Φ−1(x+ h1|1)

)2
Φ−1(x+ h1|1) =

√
(Φ−1(x+ h0|0)− 1)2 + 2x.

Second, when 1− h0 ≤ x ≤ 1− h1,

2x = −
(
Φ−1(x− 1 + h0|0)− 1

)2
+ 1 +

(
Φ−1(x+ h1|1)

)2
Φ−1(x+ h1|1) =

√
(Φ−1(x− 1 + h0|0)− 1)2 + 2x− 1.
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Third, when 1− h1 ≤ x ≤ 1− h0.

2x = −
(
Φ−1(x+ h0|0)− 1

)2
+ 1 +

(
Φ−1(x− 1 + h1|1)

)2
Φ−1(x− 1 + h1|1) =

√
(Φ−1(x+ h0|0)− 1)2 + 2x− 1.

Fourth, when x ≥ max{1− h0, 1− h1},

2x = 1−
(
Φ−1(x− 1 + h0|0)− 1

)2
+ 1 +

(
Φ−1(x− 1 + h1|1)

)2
Φ−1(x− 1 + h1|1) =

√
(Φ−1(x− 1 + h0|0)− 1)2 + 2x− 2.

Substituting h̄ := h1 − h0 and y := x+ h̄+ h0 in the first two cases and y := x− 1 + h̄+ h0 into the
latter two cases, we obtain:

Φ−1(y|1) =


√(

Φ−1(y − h̄|0)− 1
)2

+ 2(y − h̄− h0) for h̄ < y ≤ 1 + h̄√(
Φ−1(y − 1− h̄|0)− 1

)2
+ 2(y − h̄− h0)− 1 for 1 + h̄ ≤ y√(

Φ−1(y + 1− h̄|0)− 1
)2

+ 2(y − h̄− h0) + 1 for y ≤ h̄.

(29)

We have one less case, after the substitution the first and fourth cases are identical.
There are a few conditions to make Equation 29 define a valid posterior family. For brevity we

do not evaluate all, but we show the relation between h0 and h1. We need to ensure Φ−1(0|1) = 0,
and so: {

0 =
(
Φ−1(1− h1 + h0|0)− 1

)2 − h1 + 1 for 0 ≤ h̄
0 =

(
Φ−1(h0 − h1|0)− 1

)2 − 2h1 for h̄ < 0.

This can be further rearranged to:{
Φ−1(1− h1 + h0|0) = 1−

√
2h1 − 1 for h0 ≤ h1

Φ−1(h0 − h1|0) = 1−
√

2h1 for h0 > h1.
(30)

So to construct a posterior family satisfying SBC w.r.t. f3, we can choose almost any Φ−1(x|0),
calculate h0, then use Equation 30 to solve for h1 and finally compute Φ−1(x|1) via (29).

Now we can show that this is indeed a different condition than the one derived in Example 1.
Let us take φB from Example 2—as discussed there, it passes SBC w.r.t. f1:

Φ−1
B (x|0) =

{
2
3x x < 3

4
1
2 + 2(x− 3

4) x ≥ 3
4

Φ−1
B (x|1) =

{
1
3

√
6x+ 4x2 x < 3

4√
3− 6x+ 4x2 x ≥ 3

4 .

From ΦB,we obtain h0 = 3
4 >

3
4(
√

2− 1) = h1, while

Φ−1
B (h0 − h1|0) = Φ−1

B

(
3

4
(2−

√
2)|0

)
=

1

2
(2−

√
2) = 1− 1√

2

1−
√

2h1 = 1−
√

3

2
(
√

2− 1) = 1−

√
3(
√

2− 1)
√

2
,

so the condition in (30) does not hold and φB cannot pass SBC w.r.t. f3.
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Example 5 (Ties - continuous). We obtain a yet different check when we deliberately choose to
ignore some information. Take:

f4(θ, y) :=

{
θ θ < 1

2
1
2 θ ≥ 1

2 .

We now have ties, and so we must evaluate the tie probabilities:

Cf4(s|0) =

{∫ s
0 dθ 2(1− θ) = 2s− s2 s < 1

2

1 s ≥ 1
2

Df4(s|0) =

{
0 s 6= 1

2∫ 1
1
2

dθ 2(1− θ) = 1
4 s = 1

2

Cf4(s|1) =

{∫ s
0 dθ 2θ = s2 s < 1

2

1 s ≥ 1
2

Df4(s|1) =

{
0 s 6= 1

2∫ 1
1
2

dθ 2θ = 3
4 s = 1

2 .

Reusing the notation hy := Φ
(

1
2 |y
)

from previous example, we get:

Cφ,f4(s|y) =

{
Φ(s|y) s < 1

2

1 s ≥ 1
2

C−1
φ,f4

(x|y) =

{
Φ−1(x|y) x < hy
1
2 x ≥ hy

Dφ,f4(s|y) =

{∫ 1
1
2

dθ φ(θ|y) = 1− hy s = 1
2

0 s 6= 1
2 .

We can now use Lemma 3:

qφ,f4(x|y) =

Cf4(Φ−1(x|y)|y) x < hy

Cf4
(

1
2 |y
)

+
Df4( 1

2
|y)

Dφ,f4( 1
2
|y)

(
x− Cφ,f4

(
1
2 |y
))

x ≥ hy
=

=

Cf4(Φ−1(x|y)|y) x < hy

1 +
Df4( 1

2
|y)

1−hy (x− 1) x ≥ hy

qφ,f4(x|0) =

{
1−

(
Φ−1(x|0)− 1

)2
x < h0

1 + x−1
4(1−h0) x ≥ h0

qφ,f4(x|1) =

{(
Φ−1(x|1)

)2
x < h1

1 + 3(x−1)
4(1−h1) x ≥ h1.

And the SBC condition becomes:

2x =


−
(
Φ−1(x|0)− 1

)2
+
(
Φ−1(x|1)

)2
+ 1 x < min{h0, h1}

−
(
Φ−1(x|0)− 1

)2
+ 2 + 3(x−1)

4(1−h1) h1 ≤ x < h0

1 + x−1
4(1−h0) +

(
Φ−1(x|1)

)2
h0 ≤ x < h1

2 + x−1
4(1−h0) + 3(x−1)

4(1−h1) max{h0, h1} ≤ x.

(31)

40



If max{h0, h1} = 1, then SBC fails as values of f4(θ, y) = 1
2 are never generated in the posterior

while appearing in the prior. If not, then the last branch implies,

h1 =
5h0 − 4

8h0 − 7
, h0 <

4

5
. (32)

Substituting this into the second branch in 31, we obtain a set of constraints on Φ−1:

x < min{h0, h1} =⇒ Φ−1(x|1) =
√

2x+ (Φ−1(x|0)− 1)2 − 1 (33)

h1 ≤ x < h0 =⇒ Φ−1(x|0) = 1− 1

2

√
x− 1

h0 − 1
(34)

h0 ≤ x < h1 =⇒ Φ−1(x|1) =
1

2

√
3− 4h0 + x(8h0 − 7)

h0 − 1
(35)

Take Φ−1
D (x|0) := x2,Φ−1

D (x|1) :=
√

2x− 2x2 + x4. This will pass SBC w.r.t. f1, as it is derived
directly via (20). However, it will not pass SBC w.r.t. f4 for multiple reasons. Probably the

easiest to see is that in this case we have h0 =
√

1
2 and h1 ≈ 0.15, so over a large range we would

need Φ−1
D (x|0) proportional to square root of x due to (34). Additionally, condition (32) entails

h0 = 1
2 =⇒ h1 = 1

2 and is therefore also violated.
Passing SBC for f4 restricts the functional form of a potentially big segment of the inverse CDFs

via (34) or (35), which makes it strict in this area while providing no constraints on the distribution
of values above 1

2 .
Constructing a posterior family satisfying SBC for f4 can then proceed as follows: Pick 0 < h0 <

4
5 , calculate h1 via (32). For x > hy the values of Φ(x|y) can be arbitrary (as long as they define
valid quantile functions). We can also freely choose Φ−1(x|0) for x < min{h0, h1}, but we need to
ensure that (a) Φ−1(x|1) is a valid quantile function—the conditions derived for f1 in (21)–(23)
restricted to x < min{h0, h1} are sufficient—and (b) Φ−1(hy|y) = 1

2 . The latter condition implies
that if h0 < h1 then Φ(h0|1) < 1

2 which we can combine with (33) to get√
2h0 + (Φ−1(h0|0)− 1)2 − 1 <

1

2
,

which reduces to 3
8 ≤ h0 <

1
2 . The condition Φ(h1|1) = 1

2 is then already ensured by (35). If on the
other hand h0 ≥ h1 then substituting x = h1 into (33) implies√

2h1 + (Φ−1(h1|0)− 1)2 − 1 =
1

2
,

which reduces to Φ−1(h1|0) = 1− 1
2

√
9

7−8h0
and 1

2 ≤ h0 <
25
32 . The condition Φ(h0|0) = 1

2 is then

already ensured by (34).

Example 6 (Ties—discrete). To get some intuition on the behaviour of SBC for discrete parameters,
we further simplify the model into,

Θ :=

{
1

3
,
2

3

}
Y := {0, 1}

∀θ ∈ Θ : πprior(θ) :=
1

2
y ∼ Bernoulli(θ). (36)

41



We know the correct posterior and marginal distributions are

πmarg(0) = πmarg(1) =
1

2

πpost

(
1

3

∣∣∣∣ 0) = πpost

(
2

3

∣∣∣∣ 1) =
2

3

πpost

(
1

3

∣∣∣∣ 1) = πpost

(
2

3

∣∣∣∣ 0) =
1

3
. (37)

The posterior family is fully defined by just two numbers: a = φ
(

1
3 |0
)

and b = φ
(

1
3 |1
)
. We can

directly use the definitions to obtain for f1 (i.e., just θ):

qφ,f1(x|0) =

{
2x
3a x ≤ a
2
3 + x−a

3(1−a) otherwise

qφ,f1(x|1) =

{
x
3b x ≤ b
1
3 + 2(x−b)

3(1−b) otherwise.

For the case x ≤ min {a, b} the SBC condition becomes:

2x =
2x

3a
+
x

3b
.

this can hold for all x in the range only if

2 =
2

3a
+

1

3b

ab− 1

3
b− 1

6
a = 0. (38)

Now we can inspect the case x > max {a, b} where the SBC condition becomes.

2x = 1 +
x− a
1− a

+
2 (x− b)
3 (1− b)

.

Focusing on the coefficient for x in the above equation yields

1− 1

6(1− a)
− 1

3(1− b)
= 0

6ab− 4a− 5b+ 3. (39)

Combining (38) and (39) already leaves only two solution: either the posterior equals the prior
(φ
(

1
3 |0
)

= φ
(

1
3 |1
)

= 1
2) or φ = πpost. Those solutions also satisfy all the other cases.

This example shows that when the underlying parameter space is discrete, there is less flexibility
to craft φ to pass SBC and the space of posterior families passing SBC can have more structure
than when no ties are present.
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