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Abstract

The Millennium Villages Project (MVP) is a ten-year integrated rural development project

implemented in ten sub-Saharan African sites. At its conclusion we will conduct an evaluation

of its causal effect on a variety of development outcomes, measured via household surveys

in treatment and comparison areas. Outcomes are measured by six survey modules, with

sample sizes for each demographic group determined by budget, logistics, and the group’s

vulnerability. We design a sampling plan that aims to reduce effort for survey enumerators

and maximize precision for all outcomes. We propose two-stage sampling designs, sampling

households at the first stage, followed by a second stage sample that differs across demographic

groups. Two-stage designs are usually constructed by simple random sampling (SRS) of

households and proportional within-household sampling, or probability proportional to size

sampling (PPS) of households with fixed sampling within each. No measure of household size

is proportional for all demographic groups, putting PPS schemes at a disadvantage. The SRS

schemes have the disadvantage that multiple individuals sampled per household decreases

efficiency due to intra-household correlation. We conduct a simulation study (using both

design- and model-based survey inference) to understand these tradeoffs and recommend a

sampling plan for the Millennium Villages Project. Similar design issues arise in other studies

with surveys that target different demographic groups.

1 Background

The Millennium Villages Project (MVP) is an economic development project that targets rural

populations across ten countries in sub-Saharan Africa, implementing a multi-sector package of

interventions at a village level (Sachs and McArthur, 2005; Sanchez et al., 2007). See Mitchell

et al. (2015a) for background on the project, study site selection, outcomes of interest, and a

comprehensive description of the plan to evaluate its effectiveness. Mitchell et al. (2015b) describe

our plan for causal inference about the MVP’s effect on a variety of development outcomes measured

in different demographic groups. These outcomes will be measured via survey modules administered

in both treatment and comparison villages.

A design analysis described in Mitchell et al. (2015b) was used to recommend the number

of control villages and magnitude of sampling in each. Next, we must determine how to select

households and individuals within households. We propose a two-stage sample: households will

be sampled in stage I, followed by individuals within households in stage II (Lohr, 2010; Särndal

et al., 1992). In the first stage, we must decide between simple random sampling and probability
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proportional to size sampling of households. Because the project operates at the village level, a

sampling plan that efficiently estimates outcome means per village is an efficient sampling plan for

the overall causal evaluation. In this paper we conduct a simulation study to decide on a sampling

plan for estimating finite population village means.

We aim to minimize the design effect, the ratio between the actual and effective sample sizes.

One factor in determining the efficiency of a sampling design is the intraclass correlation, i.e. the

correlation among individuals within a household. If more than one individual is sampled per

household, the intraclass correlation increases the design effect, reducing the effective sample size

relative to the actual sample size.

Another factor in the efficiency of a sampling design is the distribution of individuals’ sampling

probabilities. Sampling probabilities can be optimized for a specific outcome, e.g. by sampling

with probability approximately proportional to the outcome (Särndal et al., 1992, p.88). However,

with many outcomes of interest, such tailored optimization is difficult or impossible. Therefore, a

self-weighted sample design is preferred, such that all individuals are sampled with equal probability

(Kish, 1992; Lohr, 2010, p.287). Such samples are representative without weighting adjustments,

and unbiased point estimates can be obtained from standard statistical procedures.

Given a fixed precision, we aim to minimize time and resources for the survey enumerator teams.

This includes minimizing the numbers of people surveyed (i.e. the actual sample size), but also

considering the number of households visited, and the effort required to prepare a sampling frame.

To conduct the first stage of sampling, a scheme that samples households with equal probability only

requires a list of all households with GPS coordinates identifying their locations. However, a scheme

which samples households with probability proportional to size requires some measure of household

size (e.g. the total number of household members). This additional piece of information requires

more effort for enumerators, especially for larger villages with many households. After either

method of first stage sampling, we will conduct a demographic census in the sampled households

to create the sampling frame for the second stage.

In this paper we conduct a simulation study to understand the tradeoffs between simple random

sampling and probability proportional to size sampling of households in the context of the MVP

evaluation. Additionally, our simulations explore design-based versus model-based inference, a

dichotomy which has implications for our the analysis of our outcome data.

2 Outcomes and survey modules

The Millennium Villages Project (MVP) defines 51 outcomes of interest, including measures of

poverty alleviation, agriculture, education, gender equality, health, environmental sustainability,

and infrastructure (Mitchell et al., 2015a). These outcomes are measured in six different survey

modules, whose content is discussed in Section ?? of Mitchell et al. (2015a). These modules include:

• a household survey, administered to all household heads (or other knowledgeable household
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members) within the sampled households;

• a sex-specific adult survey, administered to men and women of reproductive age (15 to 49

years) within the sampled households;

• within the adult-female survey, a birth history section, administered to women of reproduc-

tive age (15 to 49 years) both in the sampled households and in additional sampled households

to reach sample size sufficient for estimating child mortality;

• a nutrition survey, administered to men and women age 15 to 49 years in sampled house-

holds;

• blood (malaria and anemia) testing, administered to four age-sex groups in sampled

households: children age 6 to 59 months, school-aged children (5 to 14 years old), men age

15 to 49 years, women age 15 to 49 years; and

• anthropometry measurements, administered among children age 6 to 59 months in sampled

households.

For each module and age-sex group combination, the project has budgeted a target sample size

based on a combination of budget, logistics, and relative importance of different vulnerable popu-

lations and intervention beneficiaries.

3 Sampling plans considered

For the purpose of our simulation study, we consider all survey modules except for birth history and

the nutrition survey. Our sampling will be performed in two phases. First, we will sample house-

holds using either simple random sampling (SRS, without replacement) or probability proportional

to size sampling (PPS, with replacement), with household size defined as Nh,total, the number of

household members under 50 years old in household h. Let sI be the set of (unique) sampled

households. In the PPS scheme, we use rI to denote the set of sampled households with repeats.

Let nI = |sI| be the number of households sampled without replacement in the SRS scheme and

let mI = |rI| be the number of households sampled with replacement in the PPS scheme. We let

nI = mI = 300 based on the project’s previous survey rounds and budget for the final survey

round.

To describe the within-household sampling plans for each survey module, we use the following

notation. Let Nh be the total number of people in household h that are in the target age-sex

group for a particular module. Let nh 6 Nh be the number of people in household h that we

sample and survey. For example, if considering the anthropometry module, then Nh is the number

of children under five years of age in household h and nh is the number of those sampled for the

anthropometry module. Let N =
∑
hNh be the total number of people in the sampling frame (an

MV1 or a control village) that are in the module’s target age-sex group.
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We now outline the within-household sampling plans considered in our simulation study.

Adult, anthropometry, and blood modules

For each module and age-sex group combination, the project has budgeted a target sample size,

ntarget:

• adult survey - ntarget = 400 men and ntarget = 400 women of reproductive age (15 to 49

years);

• blood (malaria and anemia) - ntarget = 300 children age 6 to 59 months, ntarget = 100

school-aged children (5 to 14 years old), ntarget = 100 men age 15 to 49 years, ntarget = 100

women age 15 to 49 years; and

• anthropometry - ntarget = 300 children age 6 to 59 months.

The second stage sampling schemes we consider in this simulation study are, for a given module

and age-sex group:

• For SRS sampling of households - combine all NsI =
∑
h∈sI Nh people in the sampled

households in the target age-sex group. If NsI 6 ntarget, then survey all. Otherwise, we

consider two options:

– stratify by sampling nh individuals from each household, where nh is proportional (up

to rounding) to Nh, and the constant of proportionality is determined by the total in

the sampled households,

nh = round

(
Nh ∗

ntarget

NsI

)
; or

– take an equal-probability systematic sample of ntarget people. We order the house-

holds randomly, and people (in the module’s target age-sex group) within households

randomly, so that the people within a household are listed consecutively. We then take a

sample using the fractional interval method described in Särndal et al. (1992, p.77) and

Appendix A. This procedure enables us to control sample sizes and spread the sample

across households such that the sample size in a household is always either the ceiling or

the floor of the expected sample size in that household under simple random sampling

(see Appendix A). Conceptually, this is similar to stratifying on household, except that

there is dependence of the samples between strata (i.e. households).

• For PPS sampling of households - if ntarget > mI, sample a fixed number of people, nh = 1,

per household (regardless of household size) if available.a If ntarget < mI, take a simple

random sample of ntarget households from rI to obtain a smaller PPS sample of households.

Then sample nh = 1 per household if available.

aIt is possible that a household is sampled without any members of the target age-sex group. Therefore, if
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Household survey

For both the SRS and PPS schemes, the household survey module is administered to the head of

household in each sampled household.

3.1 Simulated data

For each survey module, we simulate one outcome measured by that module. For the household

survey we use the total household consumption; for the adult male survey we use the number of

days after illness began when the man first sought advice or treatment; for the adult female survey

we use the number of times a woman received antenatal care during her most recent pregnancy;

for malaria and anemia testing we use hemoglobin blood concentration; for the anthropometry

module we use the weight for age z-score. In generating simulated data, we make the simplifying

assumption that all individuals in a target age-sex group have non-missing outcomes. For example,

we generate antenatal care outcomes for all women of reproductive age.

To generate data, we use the multilevel model

yi ∼ Normal(αh[i],σy) for individuals i (1)

αh ∼ Normal(µ+ β1Nh,total + β2N
2
h,total, σα) for households h,

For total household consumption we use a model analogous to model 1:b

th ∼ Normal(µ+ β1Nh,total + β2N
2
h,total, Nh,totalσt) for households h. (2)

We also use a model for the log total consumption (which in our data is more Normally distributed

than the total consumption),

log(th) ∼ Normal(µ+ β1Nh,total + β2N
2
h,total, σt) for households h. (3)

We use the demographic information from the census and the multilevel model with estimated

parameter values (from the survey data) to generate simulated populations. If when models 1, 2 or

3 are fit to past survey data, the 50% posterior interval of β1 or β2 contains 0, we set the parameter

to 0 when simulating populations. This prevents us from using very noisy estimates of coefficients.

Within each simulated population, we randomly sample according to the sampling plans described

above, and estimate the finite population mean using either model-based or design-based inference.

nh = 1, then the PPS scheme will result in a smaller sample size than the SRS scheme. Additionally, for the adult
module (where ntarget = 400), if nh = 1 then the PPS scheme will at most sample only 300 adults, one per sampled
household.

bModel 2 can be motivated by assuming that model 1 holds for individual-level consumption (this would assume
that within a household consumption is identically distributed, not taking into account age-sex differences). This
model implies that th =

∑
i|h[i]=h yi ∼ Normal(Nh,totalαh,Nh,totalσy) and that the marginal variance of th is

N2
h,total(σ

2
α + σ2y).
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4 Bayesian model-based inference

To generalize from the data to the population, both design-based and model-based inference must

take into account how the data are collected. Let y = (y1, ...,yN) denote data for the population

of interest, and I = (I1, ..., IN) indicators of the observation of y, where Ii = 1 if yi is sampled,c

and Ii = 0 if yi is missing. Let ‘obs’ = {i : Ii = 1} and ‘mis’ = {i : Ii = 0}. Thus, the information

available is yobs, I, and the likelihood is p(yobs, I|x, θ,φ) =
∫
p(y|x, θ)p(I|x,y,φ)dymis, where x are

observed covariates. Bayesian inference computes the posterior distribution p(θ,φ|x,yobs, I) (su-

perpopulation inference) and p(ymis|x,yobs, I, θ,φ) (finite population inference). Under the ignora-

bility condition, these inferences can be simplified to p(θ|x,yobs) and p(ymis|x,yobs, θ). Ignorability

is satisfied if both the missing at random and distinct parameters conditions are satisfied (Gelman

et al., 2014, p.202, 206-211). Missing at random requires that the missingness be independent of the

missing values conditional on observed variables and a parameter φ: p(I|x,y,φ) = p(I|x,yobs,φ).

The distinct parameters condition requires that the parameters of the missingness mechanism (φ)

be independent of the parameters of the data generating process (θ), conditional on covariates:

p(φ|x, θ) = p(φ|x).

We include design variables such that the data collection mechanism is ignorable with respect

to this model. For example, in our SRS-stratified sampling plan, the data collection mechanism is:

p(I|x,y,φ) = 1/

 ∑
sI⊆{1,...,NI}

|sI|=nI

∏
h∈sI

(
Nh

nh

) where nh = round

(
Nh

n

NsI

)

if ∃sI ⊆ {1, ...,NI} s.t. |sI| = nI and
∑
i:h[i]=h Ii = round

(
Nh

n
NsI

)
for all h ∈ sI. Otherwise, the

probability of missingness pattern I is zero.

Thus, we include as design variables the household identifiers and the Nh (e.g. the number

of women per household, if the survey module targets women). Similar computations show that

under the SRS-systematic sampling scheme these variables are also sufficient to satisfy missing

at random. For the PPS scheme, we also will need the measure of household size used to select

the households (e.g. the total number of household members under 50) (Gelman et al., 2014,

p.211). For simplicity, we fit the same ignorable model for both the SRS and PPS schemes. For

the anthropometry, blood, and adult survey modules we fit

yi ∼ Normal(αh[i],σy) for individuals i (4)

αh ∼ Normal(µ+ β1Nh,total + β2N
2
h,total + β3Nh + β4N

2
h, σα) for households h,

For the household survey, we fit models 2 and 3.

Our parameter of interest is the finite population mean Y = 1
N

∑NI
h=1Nhyh, where yh =

cWe assume that all units that are sampled are observed.
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nh
Nh
yh,obs +

Nh−nh
Nh

yh,mis (Gelman et al., 2014, p.205). We obtain posterior simulations of Y as

follows: if household h is sampled, we use a simulation of αh to generate Nh − nh simulated yi’s.

If household h is not sampled, we use simulations of µ and σα to simulate a new αh, then generate

Nh simulated yi’s.

5 Frequentist design-based inference

We use the survey package to compute design-based estimates and variances (Lumley, 2004).

Though we perform our SRS schemes without replacement, we compute all variances without

finite population corrections, using the Horvitz Thompson (Hajek) ratio estimator and its with-

replacement variance (Lohr, 2010, p.247).

Our SRS schemes are two-phase rather than two-stage designs, since the sampling within a

household depends on which households were sampled in the first stage (Särndal et al., 1992,

p.134-135). This dependence is reflected in the design weights we compute, see below. For the SRS-

systematic sampling scheme, the independence assumption of two-stage sampling is also violated,

with the sampling in each household dependent on the sampling in other households. Our design-

based analysis approximates these two-phase designs with a two-stage analysis. In contrast, in

model-based inference the details of the design do not matter in the analysis once we include

design variables in our model (Gelman et al., 2014, p.202, 206-211).

5.1 Design weights

For the SRS-systematic design, the inclusion probabilities are:

πhi ≡ P[person i in household h is sampled]

= P(h ∈ sI)P(i ∈ sh|h ∈ sI)

=
nI

NI

∑
sI|h∈sI

P(i ∈ sh|h ∈ sI, sI) ∗ P(sI|h ∈ sI)

=
nI

NI

∑
sI|h∈sI

min

(
n

NsI
, 1

)
︸ ︷︷ ︸

(∗)

∗ 1(
NI−1
nI−1

)

For SRS-stratified, we replace (∗) with min

(
round

(
n
NsI

Nh

)
Nh

, 1

)
. In the simulations, instead of com-

puting this precisely, we estimate it by randomly sampling sI such that h ∈ sI. This avoids the

computationally intensive loop over all
(
NI−1
nI−1

)
such sets. Although these weights are not equal

for all individuals, because the distributions of household sizes (from the MVP demographic data)

have no extreme outliers, in our simulations the weights are nearly equal.
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For the PPS scheme, the inclusion probabilities are:

πhi = Ek [P (person i in household h is sampled | household i is chosen k times)]

= Ek[1 − (1 − nh/Nh)
k] since we independently subsample a household as many times as it is drawn.

Since k ∼ Bin(mI,ph), by its probability generating function, we obtain

= 1 − (ph(1 − nh/Nh) + (1 − ph))
mI

= 1 −

(
1 − ph

nh

Nh

)mI

if ph
nh

Nh
is small, we can approximate this as:

= mIph
nh

Nh

In PPS sampling, ph ∝ xh, where xh is a measure of household size (Särndal et al., 1992, p.97).

So the PPS weights are:

whi =

∑
h∈UI xh

mIxh

Nh

nh
.

If xh ∝ Nh, and nh ∝ 1, then the design is self-weighted. We take nh = c, a constant, but we

cannot choose xh such that xh ∝ Nh for all modules, since the target age-sex groups differ from

module to module. We chose xh = Nh,total, the number of household members under 50 years of

age, because it represented a compromise between the different target age-sex groups. Thus, our

weights are whi ∝ Nh
Nh,total

.

6 Comparisons between sampling schemes: variances and

design effects

We want to compare the PPS and SRS designs (in either the Bayesian model-based or the design-

based paradigms). In general, the two schemes will have slightly different sample sizes, making

direct comparisons of variances less relevant. For the household survey module, we fix the sample

sizes to be equal, and for the adult, anthropometry, and blood modules, we adjust for the differing

sample sizes by computing a design effect, defined below.

The household survey module is administered to the heads of households only, not individual

members. Therefore, the time cost of the household module is mostly determined by the number

of households surveyed. We set up our simulations such that the number of household heads to be

interviewed (i.e. sample size) is the same for the SRS and PPS sampling schemes. We first perform

a PPS sampling of households. Then, we use the number of unique sampled households to obtain

the number of households to sample for the SRS scheme. We then directly compare the variances

in estimating Y, the finite population mean consumption per person.
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For the remaining modules, we compute design effects. To define the design effect (often

abbreviated as “deff”), we first introduce the following notation. Let θ̂π = θ̂π(I,yobs) be the

estimator of θ (in our case, θ = Y) where π is the sampling distribution assumed to have been used

in drawing sample S. Let Vπ1
(θ̂π2

;y) be the sampling variance of an estimator of θ that assumes

sampling distribution π2, and π1 is the distribution with respect to which we want the variance.

Let V̂π1
(θ̂π2

;π3; I,yobs) be an estimator where π3 is the sampling distribution assumed to have been

used in drawing sample S. The population design effect is defined as = Vp(θ̂p;y)/VSRS(θ̂SRS;y).

The estimated design effect is defined as = V̂p(θ̂p;p;yobs)/V̂SRS(θ̂SRS;p;yobs).

In the design-based setting, we compute design effects assuming sampling with-replacement in

both numerator and denominator variances. This is done in the survey package by specifying deff

= ‘replace’.

For the model-based simulations, we estimate the numerator of the deff with the posterior

variance for Y from fitting a model that includes enough design variables such that the data

collection mechanism is ignorable with respect to this model. This posterior variance includes an

implicit finite population correction, so we compute a denominator variance that also includes such

a correction:

VSRS(θ̂SRS;y) = VSRS(y;y) (5)

=
(

1 −
n

N

) S2
n

where S2 = 1
N−1

∑N
i=1(yi − Y)

2.

To assess our estimated deff in the model-based setting, we compare the posterior variance

Vp-ignorable(θ|yobs) from fitting an ignorable model with respect to a sampling distribution p to

the design-based sampling variance of the posterior means, Ep-ignorable(θ|yobs). The latter can be

computed by simulation: we sample repeatedly from the full population using distribution p, fit

the p-ignorable model, obtain a posterior mean of θ, and compute the variance of these across

the samples from p. Fixing one finite population, in Figure 1a we create a histogram of posterior

variances from fitting the p-ignorable model to each sample, and indicate with a vertical line the

design-based variance of the posterior means, which is computed by simulation. We make the same

comparison for p = a simple random sample (and its ignorable model with flat priors and no design

variables), and include the closed-form design-based estimate (5) as a vertical line, in addition to

the simulation-computed design-based estimate. See Figure 1b. We see that the posterior variances

appear unbiased for the design-based variances.

7 Simulation results

Our results are displayed in Appendix B, where we see that neither the SRS nor PPS sampling of

households is more efficient (i.e. has a lower design effect) in general.
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posterior variances of  Y
 under repeated sampling from I |  YU

posterior variances

design−based variance 
 of the posterior means

(a) Sampling distribution p is SRS sampling of
households followed by an equal-probability system-
atic sample within households.

posterior variances of  Y
 under repeated sampling from I |  YU

posterior variances

design−based variance 
 of the posterior means
design−based variance formula

(b) Sampling distribution p is SRS sampling of peo-
ple.

Figure 1: Fixing one finite population, we show a histogram of posterior variances from fitting a p-ignorable
model to each sample using sampling distribution p, and indicate in a vertical line the design-based variance
of the posterior means, which is computed by simulation. When p is simple random sample of people, we
also include the closed-form design-based estimate (5).

We see that for modules with higher target sample sizes, SRS tends to be less efficient. For

example, in the under-5 blood (ntarget = 300) and adult (ntarget = 400) modules the SRS scheme is

less efficient. One explanation for this observation is the different numbers of people sampled per

household in the SRS versus PPS schemes, which has efficiency implications due to the intra-house

correlation. In the PPS scheme, the households sampled in the first stage are larger and therefore

more likely to include people in the target demographics. In contrast, in the SRS scheme, the

sample is often drawn from fewer households, with more people sampled per household. Moreover,

the PPS scheme only samples one person per household draw (though this can result in more than

one person being sampled per household due to the with-replacement sampling at the first stage).

For modules where the target sample size is low, there are fewer people sampled per household in

the SRS sampling scheme, and the intra-house correlation does not substantially impact the design

efficiency. Therefore, because SRS has near-equal individual-level probability of sampling (see the

design-weights computed above), its design effect in the absence of household clustering should

be close to one. In contrast, the PPS scheme does not have near-equal individual-level sampling

probabilities because the measure of household size is not proportional to the target demographic

(see the design-weights computed above).

The relative efficiency of SRS versus PPS is similar between design-based and model-based

simulations. In the few cases where they differ, design-based results show that SRS has higher

design effects than PPS, relative to model-based results. In general, our model-based simulations

show more variability across simulations than the design-based simulations. Comparing systematic

to stratified sampling at the second stage of the SRS schemes, we see few differences except that

stratified sampling tends to have higher variance across simulations.
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8 Final sampling plan

As described above, the PPS scheme requires a sampling frame that includes household sizes,

whereas the SRS scheme only requires a list of households. Given our results, we cannot justify

the additional resources required to collect the more detailed household list for the PPS scheme.

Therefore, our sampling scheme will begin with an SRS sample of households. For the second stage

of sampling for the adult, anthropometry, and blood modules, we prefer the control over sample

size achieved by systematic sampling (as opposed to stratified sampling).

The household and nutrition modules follow a different sampling scheme. As mentioned above,

the household module is administered to all household heads (or other knowledgeable household

members) within the sampled households. The nutrition module consists of a food frequency

questionnaire, which takes longer to administer than other modules. We suspect that the within-

household correlation is very high for data on food frequency, because household members are likely

to eat similar foods. (This intra-house correlation cannot be measured from project data, because

the project has always limited this module to one member per household.) For these reasons, we

limit the nutrition module to one adult (age 15 to 49 years) per household.

9 Software

For fitting multilevel models we use Stan in R, (Stan Development Team, 2013; R Development

Core Team, 2014).
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A Properties of systematic sampling

Definition 1 (The fractional interval method of systematic sampling). Consider a population

of size N∗ consisting of people grouped into nI households indexed by h, with Nh people within-

household h. Let ntarget < N
∗ be the desired sample size. Set a = N∗

ntarget
. Order the households

randomly, and randomly order the people in the target group within the households. Let k = 1, ...,N∗

label the people in this order:

1......N1︸ ︷︷ ︸
household 1

(N1 + 1)......(N1 +N2)︸ ︷︷ ︸
household 2

............ ......N∗︸ ︷︷ ︸
household nI

Draw a random real number ξ uniformly between 0 and a, ξ ∼ U(0,a), and sample all people with

k such that

k− 1 < ξ+ (j− 1)a 6 k for j = 1, ...,ntarget.

(Särndal et al., 1992, p.77)

Claim 1. When performing the sampling scheme in Definition 1, the sample size will be ntarget.

Proof of Claim 1. Since a ≡ N∗

ntarget
and N∗ > ntarget, a > 1. Since k− 1 < x 6 k⇔ dxe = k, we

can write dξ+ (j− 1)ae = k. The ceiling function is monotone increasing and dx+ 1e = dxe+1, so

each time j increases by 1, we get a different value of k. Now we must show that the k’s stay in the

set {1, ...,N∗}, i.e. those from which we are sampling. The first k is such that k− 1 < ξ 6 k, where

ξ ∈ (0,a). Since ξ > 0, we must have k > 1. The last k is such that k−1 < ξ+(ntarget−1)a 6 k,

and we know ξ + (ntarget − 1)a 6 ξ +N∗ − a < N∗ because ξ < a. Then k 6 N∗. Thus, since

each j maps to a unique k, we’ve proven we get a sample size of exactly ntarget.

Claim 2. When performing the sampling scheme in Definition 1, the sample size within each

household h is always the ceiling or the floor of the expected sample size in household h under

simple random sampling: Nh
a

.

We first prove the following lemma which is used to prove the above claim:

Lemma 1. Consider the set A(x) ≡ {j ∈ Z+|ξ + (j − 1)a 6 x}. The maximum of A(x) is x
a

if
x
a
∈ Z,

⌊
x
a

⌋
if ξ > da, or

⌈
x
a

⌉
if ξ 6 da, where d ≡ x

a
−
⌊
x
a

⌋
, the “decimal part.”

Proof of Lemma 1. If x
a
∈ Z, let j = x

a
, and we see that ξ +

(
x
a
− 1
)
a = ξ + x − a 6 x because

ξ < a, so x
a
∈ A(x). Increasing j by 1 increases the lefthand side of the inequality by a, and since

ξ > 0, we see this x
a
+ 1 6∈ A(x). Therefore, x

a
is the maximum.

If x
a
6∈ Z, let d ≡ x

a
−
⌊
x
a

⌋
, the “decimal part.” We see that ξ+

(⌊
x
a

⌋
− 1
)
a <

+da
ξ+
(
x
a
− 1
)
a =

ξ + x − a 6
+a−ξ

x, so
⌊
x
a

⌋
∈ A(x). Increasing j by 1 (to

⌈
x
a

⌉
) increases the leftmost side of the

inequality by a. If a 6 da+ (a− ξ), i.e. if ξ 6 da, then
⌈
x
a

⌉
∈ A(x).
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Proof of Claim 2. Consider household h, of size Nh. Let k∗ be the last person before household

h in the ordering used by the systematic sampling. Then k∗ + 1, ...,k∗ + Nh are the indices for

all members of household h. In order to get the number sampled in household h, we consider the

maximum of set A(k∗+Nh) (the number of people sampled up through household h) and subtract

from it the maximum of set A(k∗) (the number of people sampled before household h). This gives,

by Lemma 1, k
∗+Nh
a

− k∗

a
= Nh

a
.

Claim 3. The sampling scheme in definition 1 is self-weighted.

Proof.

P(person k is sampled) = P (∃j ∈ {1, ...,ntarget} s.t. k− 1 < ξ+ (j− 1)a 6 k)

= P
(
∪ntargetj=1

{
k− 1 − (j− 1)a < ξ 6 k− (j− 1)a

})
each interval is length 1 = [k− (j− 1)a] − [k− 1 − (j− 1)a]

space between intervals j and j+1 is a− 1 = [k− 1 − j ∗ a] − [k− (j− 1)a]

so by the picture below, we see that (0,a) has overlaps with the intervals

of length totaling 1. So since ξ ∼ U(0,a),

=
1

a

See below for a visual, in orange is the interval (0,a), which can overlap at most 2 intervals of

length 1 (shown as over-braces, with overlaps totaling a length 1:

j=1, length=1︷ ︸︸ ︷
−−−−−−−︸ ︷︷ ︸

a

j=2, length=1︷ ︸︸ ︷
−−−−−−−︸ ︷︷ ︸

a

j=3, length=1︷ ︸︸ ︷
−−−−−−−︸ ︷︷ ︸

a

j=4, length=1︷ ︸︸ ︷
−−−−−−−︸ ︷︷ ︸

a

...
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B Survey Sampling Simulation Results

B.1 Design-based results
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Figure 2: Design-based adult module results
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Figure 3: Design-based blood (malaria and anemia) module results: under 5 and school-age children
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Figure 4: Design-based blood (malaria and anemia) module results: men and women
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Figure 5: Design-based anthro module results
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Figure 6: Design-based adult module results
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Figure 7: Design-based blood (malaria and anemia) module results: under 5 and school-age children
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Figure 8: Design-based blood (malaria and anemia) module results: men and women

21



Design effects 
 across simulated populations and samples 

 for anthro, under_5, 1 per PPS draw,
stratified

deff

●

●

●

●

●

●

●

●

●

●

SRS
PPSRwanda

Mali

Malawi

Kenya

Tanzania

Ghana

Senegal

Nigeria

Uganda

0.5 1 2 3

(a)

Sample sizes 
 across simulated populations and samples 

 for anthro, under_5, 1 per PPS draw,
stratified

n

●

●

●

●

●

●

●

●

●

●

SRS
PPSRwanda

Mali

Malawi

Kenya

Tanzania

Ghana

Senegal

Nigeria

Uganda

0 200 400

(b)

Effective sample sizes 
 across simulated populations and samples 

 for anthro, under_5, 1 per PPS draw,
stratified

n_eff

●

●

●

●

●

●

●

●

●

●

SRS
PPSRwanda

Mali

Malawi

Kenya

Tanzania

Ghana

Senegal

Nigeria

Uganda

0 200 400

(c)

Figure 9: Design-based anthro module results
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Figure 10: Design-based consumption module results
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B.2 Model-based Results
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Figure 11: Model-based adult module results
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Figure 12: Model-based blood (malaria and anemia) module results: under 5 and school-age children
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Figure 13: Model-based blood (malaria and anemia) module results: men and women
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Figure 14: Model-based anthropometry module results
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Figure 15: Model-based adult module results
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Figure 16: Model-based blood (malaria and anemia) module results: under 5 and school-age children
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Figure 17: Model-based blood (malaria and anemia) module results: men and women
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Figure 18: Model-based anthropometry module results
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Figure 19: Model-based consumption module results
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