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ABSTRACT
Recent arguments that machine learning (ML) is facing a repro-
ducibility and replication crisis suggest that some published claims
in ML research cannot be taken at face value. These concerns in-
spire analogies to the replication crisis a�ecting the social and
medical sciences. They also inspire calls for the integration of sta-
tistical approaches to causal inference and predictive modeling. A
deeper understanding of what reproducibility concerns in super-
vised ML research have in common with the replication crisis in ex-
perimental science puts the new concerns in perspective, and helps
researchers avoid “the worst of both worlds,” where ML researchers
begin borrowing methodologies from explanatory modeling with-
out understanding their limitations and vice versa. We contribute
a comparative analysis of concerns about inductive learning that
arise in causal attribution as exempli�ed in psychology versus pre-
dictive modeling as exempli�ed in ML. We identify themes that
re-occur in reform discussions, like overreliance on asymptotic
theory and non-credible beliefs about real-world data generating
processes. We argue that in both �elds, claims from learning are
implied to generalize outside the speci�c environment studied (e.g.,
the input dataset or subject sample, modeling implementation, etc.)
but are often di�cult to refute due to underspeci�cation of key
parts of the learning pipeline. In particular, errors being acknowl-
edged in ML expose cracks in long-held beliefs that optimizing
predictive accuracy using huge datasets absolves one from having
to consider a true data generating process or formally represent
uncertainty in performance claims. We conclude by discussing risks
that arise when sources of errors are misdiagnosed and the need
to acknowledge the role of human inductive biases in learning and
reform.
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• Computing methodologies! Learning paradigms; Super-
vised learning.
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1 INTRODUCTION
The replication crisis in psychology and the social and medical
sciences has spread to a general concern about scienti�c claims
that are based on statistical signi�cance. Similar attention has re-
cently been drawn to replication challenges regarding empirical
claims in arti�cial intelligence (AI) and machine learning (ML).
There are direct concerns about reproducibility—published results
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cannot be reproduced using the same software and data due to un-
available tuning parameters, random seeds, and other con�guration
settings or computational infrastructure that are not available to
outsiders—replication—where re-implementing described methods
does not produce the same results due to unacknowledged depen-
dencies, such as speci�c implementations, and—generalizability or
robustness—where methods may work well under certain conditions
but fail when applied to new problems or in the world [167], where
vulnerability to adversarial manipulations may be costly. For exam-
ple, the identi�cation of examples by which computer vision models
could be tricked into misclassi�cation by manipulations not visible
to the human eye [198] has inspired subsequent research proposing
a variety of explanations for the apparent brittleness of perfor-
mance (e.g., [54, 78, 95]). Terms like “alchemy” [122] and “graduate
student descent” are used to describe how researchers combine
optimizations to often opaque parameters to achieve performance
benchmarks. Model performance evaluations are conducted with-
out acknowledging sources of error [3, 98, 137] and can involve data
�ltering decisions that impact achievable accuracy [33, 136, 137].

Some amount of replication failure is inevitable: the nature of
empirical research is to try out ideas that may work in some settings
but not others. When claims are published, uncertainty about gen-
eralizability is inherent. However, once systemic problems are rec-
ognized, corrective actions should be taken, and claims discounted—
especially when they cannot be externally reproduced [42, 84, 124].

One way that authors call attention to concerns in ML research
is analogizing them to the replication crisis in psychology [19, 36,
109, 114]. While psychologists discussed fundamental issues with
conventional approaches to inference as early as the 1960s [50, 146],
in the last decade critics brought concerns to the forefront, demon-
strating how motivated researchers can obtain false positives under
various conditions [74, 75, 188] and that many published conclu-
sions about human behavior in psychology research cannot be
replicated [67, 159]. These revelations spur hard questions about
what are necessary conditions for science, how to resolve uncer-
tainty about published claims, and how to shift incentives.

Despite their focus on predictive modeling, �elds like AI and
ML could learn from psychology’s ongoing attempts to diagnose
sources of non-replicability and reform conventional use and re-
porting of methods in the causally-focused explanatory modeling
paradigm prevalent in psychology.1 Taking a wider perspective
on learning failures is well aligned with the idea of integrative
modeling, referring to approaches that combine aspects of both
paradigms [113, 114, 220]. For example, social scientists might use
prediction along with explanation to reduce over�tting to noisy
experiment results, while researchers in �elds like ML can incor-
porate explanatory methods to ascertain what a model appears to
have learned. Integrative modeling acknowledges how researchers

1Also known as attribution [72], and typically involving estimation of regression
surfaces and assignment of signi�cance to individual predictors.

1



J. Hullman, S. Kapoor, P. Nanayakkara, A. Gelman, and A. Narayanan

frequently misunderstand the relationship between explanation
and prediction, assuming, e.g., that models that succeed in explain-
ing have greater predictive validity [220] than those that appear
less psychologically plausible ([105, 187] as cited in [220]) or that a
model that achieves high predictive accuracy won’t deviate much
from what a human considers to be a plausible decision rule [78].
But to avoid integrative modeling leading to “the worst of both
worlds,” researchers will need to understand subtle di�erences in
ways in which inferences can be limited in each paradigm. To date,
connections that authors have drawn between these two reform
discussions have been piecemeal, leaving it unclear what lessons, if
any, might be gained from putting these domains in conversation.

To address this gap, we contribute a detailed comparison of limi-
tations of inference in causally-driven explanatory versus predictive
modeling. Our analysis is synthesized from formal and informal
arguments made in hundreds of papers we collected through on-
line search, citation tracing, and our involvement in events and
scholarly discussions on replication and reproducibility over mul-
tiple years. While we surface issues that a�ect various areas in
psychology and ML, we ground our discussion around examples
from experimental social psychology, which like ML relies on data
re�ecting human behavior and uses controlled comparisons to pro-
duce claims, and empirical research in supervised discriminative
learning (i.e., classi�cation) methods, including deep neural nets
(DNNs) that encapsulate many recent concerns.

Our results highlight where concerns across the two domains
can stem from similar types of oversights, including overreliance
on theory, underspeci�cation of learning goals, non-credible beliefs
about real-world data generating processes, overcon�dence based
in conventional faith in certain procedures (e.g., randomization,
test-train splits), and tendencies to reason dichotomously about
empirical results. In both �elds, claims from learning are implied to
generalize outside the speci�c environment studied (e.g., the input
dataset or subject sample, modeling implementation, etc.) but are
often impossible to refute due to undisclosed sources of variance in
the learning pipeline. We argue in particular that many of the errors
recently discussed in ML expose the cracks in long-held beliefs that
optimizing predictive accuracy using huge datasets absolves one
from having to consider a true data generating process or formally
represent uncertainty in performance claims. At the same time, the
goals of ML are inherently oriented toward addressing learning
failures, suggesting that lessons about irreproducibility could be
resolved through further methodological innovation in a way that
seems unlikely in social psychology. This assumes, however, that
ML researchers take concerns seriously and avoid overcon�dence in
attempts to reform.We conclude by discussing risks that arise when
sources of errors are misdiagnosed and the need to acknowledge
the role that human inductive biases play in learning and reform.

2 BACKGROUND
2.1 Anatomy of a learning process
An idealized learning process begins with the formulation of goals
(including scienti�c goals such as understanding what factors in-
�uence a particular human behavior, engineering goals such as
constructing a better model for machine translation, or policy goals
such as estimating e�ectiveness among di�erent types of patients)

and hypotheses. These are not necessarily statistical “hypothe-
ses”; rather, a hypothesis could be that a certain thinking pattern
increases the chances of a behavior, or that a certain technical
innovation will lead to a better translation system, or that a treat-
ment will be more e�ective among men than women. Goals and
hypotheses lead to steps of data collection and preparation. Re-
searchers specify an observational process to collect information
about the latent phenomena of interest from the environment. An
observational probe is used to induce explicit observations thought
to be sensitive to the target phenomena. For example, psychologists
design human subjects experiments using interventions thought
to interact with the target phenomena. ML researchers often make
use of datasets generated from human produced media and signals
of behavior, in the form of digital traces.

An observational process becomes a model by making assump-
tions about what the observed data represent, namely realizations of
random variables with regular variation. The observational model
is de�ned by a model representation, i.e., the model class or
functional form that speci�es a space of data generating processes
(DGPs, i.e., �tted functions) that might have produced the data.
This might be a multiple linear regression functional form in social
psychology, or a more DNN architecture in ML (with a speci�c con-
�guration of network parameters like arrangement into convolu-
tions, activation functions, etc.). Because quantifying and searching
all DGPs implied by probability distributions over the observation
space tends to be prohibitively complex, learning pipelines often
consider a subset or “small world” of model con�gurations [27],
called the hypothesis space of the learner in ML. Model selection
or model-based inference describes how a best �t model that is
most consistent with the data is determined. This involves de�ning
an objective or loss function measuring the di�erence between
the ground-truth observed outcome for an input and the predicted
outcome of a parameterized model con�guration (e.g., squared er-
ror), as well as an optimization method for searching the space of
model con�gurations to �nd the �tted function that minimizes loss
(e.g., gradient descent, adaptive optimization algorithms, analytical
solutions like maximum likelihood estimation (MLE), etc.).

An evaluation may follow to validate the usefulness of what is
learned relative to alternative model �ts or learning pipelines. Eval-
uation metrics such as explained variance or log loss can be used
to summarize overall usefulness of a �tted function. Evaluation
metrics may sometimes be implicit, such as when the usefulness
of a �tted model is evaluated relative to one’s hypotheses about
the data generating process. The learning process culminates in
communication of claims in research papers. By “errors in learn-
ing,” we refer to issues that arise in this larger process in which a
researcher speci�es and “solves” a learning problem.

2.2 Goals of learning in social psychology
versus machine learning

Social psychology.Aprimary goal in empirical psychology is to de-
scribe the causal underpinnings of human behavior [146, 187, 220].
Researchers identify hypotheses representing predictions about
variables that constitute observed data. Often these constitute “weak
theories” [147], predicting a directional di�erence or association
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between variables but not the size of the e�ect. They design observa-
tional processes to gather data for testing hypotheses, typically con-
trolled human-subjects experiments that record the thoughts, emo-
tions, or behavior of subjects, under di�erent conditions thought to
interact with the latent phenomena of interest. The approximating
functions that researchers learn from these observations (often low
dimensional linear regressions) are thought to capture key structure
in the latent psychological phenomena. Claims about cause and
e�ect hinge on interpreting the parameter values of the �tted func-
tion in light of hypotheses and their sampling variation within a
statistical testing framework. A function is commonly deemed wor-
thy of interest if it’s p-value is below a false-positive rate de�ned in
the Neyman-Pearson framework, typically U = 0.05. Direct claims
take the form of statements about novel, statistically signi�cant
causal attributions, and have been called “stylized facts” [83, 112]
implied by authors to be generally true about human behavior. For
example, thinking about old age induces old-like behavior [13].

Machine learning. A primary goal in supervised ML research
is to facilitate the learning of functions which achieve high predic-
tive accuracy in tasks like classi�cation. Researchers hypothesize
procedures or abstractions that may improve the state-of-the-art in
subareas (e.g., natural language processing (NLP), vision), which is
captured by benchmarks: abstractly de�ned tasks (e.g., image classi-
�cation, machine translation) instantiated with learning problems
consisting of datasets (input, output pairs) and an associated evalu-
ation metric to be used as a scoring function (e.g., accuracy) [137].
Standard methods like using a train-test split and cross validation
are designed to ensure good predictive performance of a �tted
model on unseen data. Claims made in empirical research papers
typically report performance of a new learner (i.e., �tted model) on
benchmarks, compared to baselines representing the prior state-of-
the-art. Formal proofs of the statistical properties of new methods
are also common.

3 THREATS TO LEARNING IN SOCIAL
PSYCHOLOGY AND MACHINE LEARNING

We describe threats to valid learning according to whether they
involve data selection and preparation, model development (includ-
ing choosing a representation and a model selection and evaluation
approach), and communication of results in a research paper.

3.1 Data collection and preparation
Social psychology. High measurement error relative to signal, un-
acknowledged �exibility in de�ning data inputs, underspeci�ed or
non-representative subject samples, and underspeci�cation of stimuli
generation, and other “design freedoms” can threaten the validity of
conclusions drawn in empirical psychology research.

The design of many psychology experiments implies that re-
searchers do not grasp the implications of using small samples and
noisy measurements to draw inferences about e�ects that are a pri-
ori likely to be small. For example, a thought-to-be pervasive belief
is that if an experiment registers a “statistically signi�cant” e�ect
on a small sample, then that e�ect will necessarily remain signi�-
cant with a larger sample [42, 188]. In reality, with a lower powered
study, not only is there a lower probability of �nding a true e�ect of
a given size, but there is a lower probability that an observed e�ect
which passes a signi�cance threshold actually re�ects a true e�ect

that will appear under replication [42]. Under low power, estimates
of observed e�ects will tend to re�ect sampling error that derives
from the limited size of the sample relative to a target population,
and forms of measurement error [140], such as random variation
due to noise in taking measurements that produces a di�erence
between observed and true values. Studies are “dead on arrival”
when standard error due to measurement and sampling variation
is large relative to any plausible e�ect size [90].

Inherent �exibility in how a researcher speci�es an analysis is
a di�erent type of threat. A “researcher degrees of freedom” or
“garden of forking paths” metaphor [87, 188] suggests that human
tendencies toward self-serving interpretations of ambiguous evi-
dence (e.g., [11, 58] as cited in [188]), make researchers likely to
draw conclusions that verify their hypotheses. Given an outcome of
interest (e.g., self-reported political preference), an analyst may bias
results toward a preferred conclusion by selecting data transforma-
tions and outlier removal processes, or choosing between di�erent
predictor variables or ways of operationalizing the outcome vari-
able, conditional on seeing the results of these choices, without
necessarily recognizing they are doing anything improper. More
broadly, when a researcher can tweak the design of experiment
conditions with feedback through pilot experiments via the design
of stimuli, instructions, and elicitation instruments, they may grav-
itate toward designs that exaggerate e�ects in some conditions,
resulting in a form of procedural over�tting.

Scholars have pointed to study results not being reproducible
because they use non-representative samples of a target population,
such as convenience samples of university students from western
educated industrialized rich democratic (WEIRD) countries [111].
As researchers have become more accustomed to the importance
of statistical power and representative samples, online recruitment
of participants in social psychology [179] has increased. However,
it is unclear that sample homogeneity is addressed by online sam-
ples [46] and this trend has led to greater use of self-reported mea-
sures [179] that contribute additional noise. More generally, failure
to recognize the implications of non-random sampling can lead to a
“big data paradox” of overcon�dence as sample size increases [149].
Another fundamental but often overlooked issue concerns how
psychologists often leave the target population of their inferences
unspeci�ed [92], making it ambiguous what is being learned at all.

Machine learning. Standardization of benchmarks and the pro-
hibitive cost of amassing large datasets means that researchers often
rely on existing datasets [107, 196], typically obtained through crowd-
sourced annotation and web-scale data (e.g., [61, 134]). Similar to
psychology, factors like choosing how to transform data after seeing
results, the use of non-representative samples, and underspeci�cation
of the population captured in data threaten the validity of claims.
More frequently discussed issues include the di�erential e�ects of non-
random measurement error on real world outcomes when a model is
deployed and the way that a “good” predictive model can perpetuate
forms of historical bias like stereotypes.

Recent work in ML points to analogous concerns to psychology
in recent acknowledgement of �exibility in data transformation,
such as in �ltering data in ways that simplify a prediction prob-
lem (e.g., removing translation artifacts in machine translation to
improve prediction accuracy [136] as cited in [137]).
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Non-representative samples are also a concern, including vio-
lations of the assumption that the development distribution from
which the training and test data are presumed to be randomly
drawn is the same as the deployment distribution from which
samples will be drawn in real-world applications [14, 163, 197].
‘Representation bias” [197] involves development data that under-
represent some parts of the input space of an ML algorithm, leading
to higher error rates for less-represented instances in the input
space (e.g., [41, 162, 223]). Suresh and Guttag [197] de�ne this bias
as a positive value for a measure of divergence between the prob-
ability distribution over the input space and the true distribution,
noting that it can occur simply as a result of random sampling
from a distribution where some groups are in the minority. Others
describe how error in the (often unreported [77]) labeling process
used to construct ground truth can lead to over�tting [38, 158],
as well as how data preparation steps lose information whenever
majority-rule is used to construct a ground truth without preserv-
ing information about label distributions (e.g., describing variance
across annotators) [57, 97].

However, criticism of data practices in ML often focuses on sys-
tematicmeasurement error (i.e., bias) in collected data that threatens
construct validity: whether the measurement is actually capturing
the intended concept. “Measurement bias” [197] has been used to
refer to di�erential measurement error [207], where a measurement
proxy is generated di�erently across groups due to di�ering gran-
ularity or quality of data across groups, or reduction of complex
target category (e.g., academic success) to a small number of proxies
that favor certain groups over others (e.g., [133] as cited in [197]).
Jacobs and Wallach [125] attribute many misleading claims in the
fairness literature in ML to unacknowledged mismatches between
unobservable theoretical constructs in ML applications (e.g., risk
of recidivism, patient bene�t) and the measurement proxies that
researchers often tend to assume capture them, and suggest the use
of latent variable models to formally specify assumptions.

A novel concern about measurement bias in ML relative to psy-
chology occurs when biased input data are used to train a model
and contribute to undesirable social norms. Data may record his-
torical biases [197] (e.g., training a model to recognize successful
applicants on data where women were admitted less due to bias).
“Harms of representation” [1, 52] refers to how model predictions
can reinforce potentially harmful stereotypes when trained on data
exhibiting bias. For example, returning pictures of only white males
on a Google search for CEO reinforces notions that other groups are
not as appropriate for CEO positions [131]. The fact that ML is often
intended for prescriptive use in the world, rather than descriptive
use as in psychology research helps explain the prevalence of these
concerns and the emphasis on systematic measurement error.

Finally, data concerns in ML increasingly refer to forms of un-
derspeci�cation of population details and underacknowledgment
of the constructed nature of data, instead taking data as given [20,
77, 121, 182]. These concerns also imply that real-world harms may
result from practices that extract away the subjective judgments, bi-
ases, and contingent contexts involved in dataset production [163].

3.2 Model representation
Learning from data requires selecting a model representation, a
formal representation that de�nes what functions can be learned.

Social psychology. Researchers commonly overlook the impor-
tance that the small world of model con�gurations they explore cap-
tures or well approximates the true DGP for valid inference, hold
unrealistic views about the separability of large e�ects in the world,
and tend to incorporate prior knowledge into modeling informally
rather than explicitly.

When modeling a latent psychological phenomenon, often via
simple measures of correlation and linear parametric models [30,
31], researchers implicitly assume that there is a true DGP that
exactly captures how the target arises as a function of other factors
thought to in�uence it. Once an observational model is de�ned,
inference is con�ned to the mathematical narratives represented
by these functions [88]. However, the validity of claims made about
causal e�ects by following this process depend upon judicious
choices about how to represent structure in the true DGP in the
constrained small worldmodel space, which psychology researchers
often overlook [209].

A �rst complication arises from the fact that inference is more
straightforward when the true DGP is included in the small world
of con�gurations under consideration [26]. However, the sorts of
human behaviors psychologists tend to target are thought to be
conceptualizable but too complicated to specify explicitly, or not
even conceptualizable [209]. Under these conditions, the validity
of conventional interpretations of �tted models depends on the
observational model faithfully approximating the true DGP [88].

However, this is not the case when a model is structurally mis-
speci�ed, meaning the �tted models do not adequately capture the
true causal structure and/or the functional form of the relationships
between variables in the true DGP [209]. For example, if the DGP
in a psychology study can be described as a weighted sum of the
set of input variables that are represented in the chosen functional
form, and all of these predictors are exogenous (i.e., completely in-
dependent), then parameters estimated using ordinary least squares
can be interpreted according to convention as information about
the target phenomena (e.g., comparing two items that di�er by one
unit in predictor G while being the same in all other predictors will
di�er in ~ by \ , on average). However, when the true DGP is more
complex than the functional form, the choice of which potential
confounding variables one measures and includes in the regression
equation becomes important. Not including variables that in�uence
a regressor and the outcome [7] or including variables that could in
principle be a�ected by experimental manipulations (and hence rep-
resent outcome variables themselves [51]) cause the conventional
interpretation of the �tted parameter values not to hold. However,
researchers seldom acknowledge these limitations.

Researchers often choose designs based on a preference for
simpler models. Perhaps the most common example is preferring
between-subject designs based on their asymptotic properties: as
the size of the (random) sample increases toward the population
size, a between-subjects design provides a simpler procedure for
estimating average treatment e�ects relative to a within-subjects
design, which requires estimating carryover e�ects between treat-
ments experienced by the same individual [157]. However, high
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Social Psychology Machine Learning

Data selection
and prepara-
tion

� High measurement error relative to the size of effects
being studied [15, 62, 140]

� Data transformations decided contingent on (NHST)
results [87, 188]

� Non-representative [111, 149] or underde�ned sam-
ples [92]; insuf�cient stimuli sampling [91, 214, 219]

� Small samples and noisy measurements (low
power) leading to biased estimates [42]

� Differential measurement error (e.g., across social
groups) [41, 162, 197, 223] which is not modeled [125, 133]

� Label errors [38, 158] and disagreement [57, 97]
� Data transformations decided contingent on performance com-

parisons [33, 136]
� Underrepresentation of portions of input space in training

data [14, 163, 197]
� Input data too huge to understand [20, 163]

Model represen-
tation

� Overreliance on models and designs with good as-
ymptotic guarantees [157]

� No explicit representation of prior/domain knowl-
edge [79, 88]

� Inappropriate expectations [49, 81, 219] in light of
crud factor [147, 160]; belief in many nudging fac-
tors with large consistent e�ects on outcome [205]

� Unacknowledged multiplicity of solutions [220]
� Structural misspeci�cation [143, 209]

� Overreliance on asymptotic (worst-case) guarantees [65]
� Underspeci�cation of desired inductive biases [54, 123]; failure

to prevent shortcut learning [78]
� Inappropriate i.i.d. assumption in light of real-world nonsta-

tionarity [29, 194, 216]
� Reliance on �ne-tuning/foundation models for which hyperpa-

rameter tuning is opaque [64, 217]
� Convergence in architectures around large models [20, 32, 195]

Model selection
and evaluation

� Implicit optimization for statistical signifi-
cance [84, 86, 87, 96, 120, 135]

� Inference as black box [92, 135, 213]; Not moti-
vating choice of estimator or optimization for
particular inference goal [24, 211]

� Misunderstanding/misusing ideas of statistical
signi�cance [80, 101, 119, 120, 210]

� Multiple comparisons problem [85]

� Implicit optimization to beat SOTA [113, 184]
� Knowledge of how OOD test sets are constructed used to

choose representation/method [203]
� Overlooked sensitivity of optimizer performance to hyperpa-

rameters [36, 47, 93, 166, 183]; computational budget [202]
� Presence of implementation variation [137] and tricks [6, 110]
� Misuse of cross validation [25, 45, 108, 115, 203]
� Optimism of cross validation [71, 144]
� Loss metric misalignment [118]
� Not comparing to simpler baselines [53, 184] or priors [100]

Communica-
tion of claims

� Unwarranted speculation about what evidence a p
value provides [200]

� Overgenerationalization (i.e., beyond studied popula-
tion) [60, 104, 174, 190, 219]

� Unavailable data and code [82, 116, 151]
� Not acknowledging having explored multiple anal-

yses conditioned on data [85, 188]
� Inaccurate descriptions of what p values

mean [4, 28, 89, 200]

� Unwarranted speculation about causes [130, 137, 139]
� Implying equivalence of learning problems and human perfor-

mance on a task [130, 137, 139]
� Lack of dataset documentation [20, 77, 163]
� Inaccessible data, code, computational resources [98, 178, 193]
� Not reporting implementation conditions/sources of vari-

ance [139, 184]
� Underpowered performance comparisons [3, 36]; ignoring

sampling error [3, 137, 171]
Table 1: Overview of learning concerns, roughly ordered to emphasize similarities across social psychology and ML.

variation between people can lead to poor estimates of average treat-
ment e�ects if the treatment interacts with background variables
associated with di�erences in individuals and contexts [143, 157].

More generally, psychology researchers have been criticized for
estimating e�ects as if they are constant rather than assuming
they will vary across people or contexts [81]. This can manifest,
for example, as model speci�cations that ignore the importance of
modeling variation in stimuli and other experimental conditions as
well as subjects [219] (e.g., a “�xed e�ect fallacy” [49]).

Tendencies to overlook important sources of variation in model-
ing are implied byMeehl’s conception of the “crud factor” [147, 160],
which emphasizes how causal attribution using constrained model
spaces to approximate a highly complex true DGP is fundamentally
challenged by the prevalence of “real and replicable correlations” re-
�ecting “true, but complex, multivariate and non-theorized causal
relationships” between all variables [160]. Problems arise when
researchers overlook model misspeci�cation due to conventional
but questionable beliefs about reality. For example, a tendency

toward reporting model �ts suggesting that novel yet seemingly
trivial “nudging” factors (e.g., whether or not someone is menstruat-
ing [70] or whether there was a recent shark attack [2]) have large
and consistent e�ects on the same outcomes (e.g., voting behavior)
overlooks the fact that if such e�ects were large, we should expect
them to interact in complex ways. Hence, we should expect it to be
very di�cult to observe stable and replicable e�ects [205].

In this way, choices ofmodel representation (i.e., low dimensional
linear regressions) are not fully consistent with prior knowledge.
Conventional approaches to estimating an e�ect of interest are also
memoryless in the sense that even when prior estimates of an e�ect
of interest are available, e.g., from past experiments, they are gener-
ally not incorporated in the model representation. Combined with
incentives to publish surprising results [73, 181] and the in�ated
probability of observed e�ects to be overestimates in small sample
size studies (Section 3.1), this can result in published e�ects that
seem suspiciously big in light of prior domain knowledge.
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Machine learning. In theory, optimizing for predictive accuracy
does not require well-approximating a true DGP. However, researchers’
commonly assume that unseen data are drawn from the same distri-
bution as training data and use asymptotics to motivate model choice,
leading to unrealistic beliefs about the predictability of real world pro-
cesses. Threats also arise from failures to explicitly represent a priori
human expectations about what predictors are valid for a task, and
a convergence on hard-to-analyze models that combine pre-trained
representations with domain-speci�c data.

The biggest point of contrast between representations in su-
pervised learning in ML and social psychology is that the former
traditionally do not assume that the learning process is “realiz-
able” [177] in the sense that the true DGP is in the set of learnable
functions (or hypothesis space), nor even that the �tted function
approximates the structure of the true DGP. Instead, the goal of
learning can be formulated as identifying a function with error that
can be guaranteed to fall within some bound of the best possible pre-
dictor over possible samples [206]. Choosing a representation (i.e.,
hypothesis space) requires reasoning about the inductive biases (i.e.,
properties of the predictors) it will return. This is often motivated
using theoretical guarantees about convergence or generalization
ability relative to worst-case bounds. However, as when psycholo-
gists overrely on between-subjects designs, when ML researchers
overrely on asymptotic statistical guarantees they ignore mis�t
with the setting in which they are applying the techniques [65].

One of the most commonly cited de�ciencies attributed to model
representations in applied ML involves assuming a static relation-
ship between the predictor variables and the outcome [208], which
supports conventions like shu�ing input data to create training
and test sets [9]. This assumption makes models vulnerable to con-
cept drift [216] (a.k.a. covariate shift [29] or distribution or dataset
shift [194]), where predictions are inaccurate post-hoc due to non-
stationarity in the real-world relationship between the inputs and
outputs due to temporal changes (e.g., [142]), behavioral reactions
(e.g., [165]), or other unforeseen dynamics [168]. Under conven-
tional “distribution unawareness,” it also becomes di�cult to distin-
guish when unexpected errors arise from distribution shift versus
ine�ciencies in the learning pipeline [23]. Distribution shift can
lead to poorly calibrated estimates of the uncertainty of model per-
formance [161], similar to how choosing estimators by convention
rather than guided by one’s inference goal (see Section 3.3) biases
uncertainty estimates for e�ects observed in psych experiments.

Distribution shift motivates greater focus on how di�erent mod-
els fare at out-of-distribution (OOD) error and their robustness
to adversarial manipulation, i.e., small changes to an input in fea-
ture space that dramatically change the predicted output (e.g., [16,
44, 175, 198, 203]). Recent results related to adversarial nonrobust-
ness [123], underspeci�cation [54], shortcut learning [78], simplic-
ity bias [186], and competency problems [76] suggest that beliefs
about the true DGP in predictive modeling as in ML are not neces-
sarily as distinct from explanatory, attribution-oriented modeling
as past comparative accounts (e.g., [39]) imply.

For example, one understanding of concept drift that we can
relate to the so-called crud factor in psychology is that the concept
of interest (or target task) in an ML pipeline for discriminative
learning often depends on a complex combination of features that
are not explicitly represented in the model. Geirhos et al. [78] use

“shortcut learning” to refer to a tendency for ML models to learn
simple decision rules (e.g., [10, 128, 145]) that perform well on
standard benchmarks. While these features represent “real” cor-
relations, the problem is that singular predictive features mined
in training data often do not perform as well in more challenging
testing situations, where a humanmight naturally expect successful
performance to require combinations of features (e.g., derived from
several di�erent object attributes in object recognition). Shortcut
learning and related vulnerabilities to adversarial manipulation
imply not a failure in learning from a modeling standpoint, nor
even a failure of a �tted function to generalize [78], but a mismatch
between a human’s conception of critical, stable properties that
predict under the true DGP and those that drive the predictions of
the �tted model [54, 78, 123].

A related theory representing a symptom of predictive multi-
plicity is underspeci�cation [54]: speci�cally, a failure to represent
in the learning pipeline which inductive biases are more desirable
to constrain learning. Underspeci�cation occurs when predictors
with equivalent performance on i.i.d. data from the same distri-
bution as training degrade non-uniformly in performance when
probed along practically relevant dimensions [54]. Underspeci�ca-
tion is distinct from forms of distribution shift that may give rise to
shortcut learning, such as the presence of spurious features in the
training data that are not associated with the label in other settings.
Instead, it captures how a single learning problem speci�cation
can support many near-optimal solutions but which might have
di�erent properties along some human relevant dimensions like
fairness or interpretability [176].

A common approach to overcoming poor generalization of a
model is to combine multiple representations. Representation learn-
ing—automated, untrained learning of input representations (i.e.,
generic priors) on huge datasets that capture structure in domains
like language or vision—reduces the di�culty of achieving high
accuracy in domains where labeled data is costly [22]. “Fine-tuning”
pretrained “foundation” models [32] for domain-speci�c applica-
tions has become standard practice based on the performance
that can be achieved over conventional domain-speci�c learning
pipelines [103, 196, 217]. Though training on highly diverse input
data tends to provide foundation models with inductive biases that
improve extrapolation, a challenge is that �ne-tuning performance
can be highly sensitive to how poorly-understood parameters are
set, making results hard to replicate [64]. For example, the robust-
ness of a �ne-tuned model has been found to vary considerably
under small changes to hyperparameters [217]. Related is a concern
that the convergence in deep learning research around large DNN
model architectures with minimal task-speci�c parameters [32]
doubles down on an approach that imposes unreasonable environ-
mental [20, 195] and research opportunity costs [20].

More generally, understanding the implications of model selec-
tion is complex for DNNs, where classical theory falls short of ex-
plaining the generalization performance (e.g., [17, 18, 55, 126, 222]).
This has motivated lines of theoretical work that explore di�erent
explanations of phenomena like “double descent” [17], where the
generalization performance of a deep model continues to improve
even after it has achieved zero loss on (or perfectly interpolated)
the training data. For example, some analyze the properties of over-
parameterized linear regressions [55].
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3.3 Model selection and evaluation
Model-based inference involves explicit and implicit choices of
objective function, optimization approach, and evaluation metric.

Social psychology.Claimsmade in social psychology research are
threatened when researchers treat conventional approaches to model-
based inference as a black box for consuming data and outputting
inferences [12, 92, 135], and by researchers’ implicit use of statistical
signi�cance alone as a criterion for deciding what to report.

It is relatively rare for psychology research contributions to in-
clude explicit motivation for the estimators and loss functions used
in modeling. Such “inference by convention” can produce mislead-
ing claims without outright cheating or motivated reasoning similar
to how blindly preferring between-subjects designs can. For exam-
ple, conventional use of maximum likelihood estimators based on
their consistency [213] may lead researchers to overlook critical
assumptions required for these estimators to be well-calibrated
(i.e., have sampling distributions which are asymptotically nor-
mal). Analytical approaches to optimization bring convenience, but
commonly-used approaches to model �tting and selection tend
to be based on pre-experimental guarantees (i.e., before data are
collected), which cannot guarantee that they will be appropriate
(e.g., well-calibrated) on a particular dataset [24, 211].

A di�erent source of misleading claims is the use of statistical
signi�cance as a coarse objective function. Implicit optimization
for signi�cance, in which researchers are essentially searching
through a garden of forking paths for speci�cations that achieve
signi�cance as a sort of quasi-optimization approach [87], means
that conventional interpretations of �tted models and statistical
tests on parameter estimates will not hold. For example, themultiple
comparisons problem, in which researchers neglect to control for
data-dependent selection in what they report, alters the statistical
properties of estimates and tests [85]. At the highest level, bias
a�ects the published record when researchers decide whether to
report results based on the signi�cance levels [84, 181].

Using “statistical signi�cance” as an implicit objective does not
line up with scienti�c goals (e.g., [80, 101, 119, 120, 210]). For exam-
ple, the use of ?-values and statistical signi�cance in psychology
research is described as fundamentally confused in that rejection of
straw-man null hypotheses is inappropriately taken as evidence in
favor of researchers’ preferred alternatives [96, 120, 135]. In other
words, hypothesis testing can sometimes be used as a sort of “truth
mill” in psychology [84, 86].

Related problems include not acknowledging that as a random
variable, ? can vary considerably even under idealized replica-
tion [34, 89, 96, 152, 185], such that the di�erence between sig-
ni�cant and not signi�cant is not itself signi�cant. Researchers also
overlook the fact that for ? to be a valid estimate of the probability of
observing an e�ect as large or larger than that seen, all assumptions
about the test and observational process must hold [5, 102, 169].

Machine learning.Claims are oftenmade inML research without
acknowledging that they depend critically on choices of hyperparam-
eters, initial conditions, and other con�guration details that directly
in�uence performance in non-convex optimization. Researchers also
may exploit �exibility in designing performance comparisons in or-
der to achieve superior performance for their contributed approach
relative to alternatives [113, 184].

In contrast to loss functions in simple regression models, ML
models tend to have high dimensional non-convex loss. While this
does not necessarily prevent generalization [48] it makes solutions
like saddle points, which can give the illusion of a satisfactory local
minimum, of greater concern [56, 180]. Optimizers—algorithms
that prescribe how to update parameter values like weights during
inference to reduce the value of the objective on the training data—
are critical to the accuracy gains seen in recent years. However, to
make non-convex optimization tractable requires setting various
opaque hyperparameters and initial conditions that in�uence how
the loss landscape is traversed [47, 93, 183].

For an optimization approach like stochastic gradient descent
(SGD), hyperparameters like the learning rate a�ect how quickly
it learns the local optima of a function: too high a rate means the
function cannot converge, too low and it may require too long [36].
Adaptive optimizers (e.g., Adagrad, Adam) allow hyperparameters
like learning rate to vary for each training parameter, inducing a
new dynamical system with each run and complicating attempts to
explain what parts of a pipeline improved performance.

Hyperparameter tuning is also a computationally expensive
task [202], inducing uncertainty about how a solution might di�er
under a larger computational budget or di�erent parameter set-
tings. Some recent work �nds that given a �xed computational
budget, choosing the best optimizer for a task with the default
parameters performs about as well as choosing any widely-used
optimizer and tuning its hyperparameters, questioning claims of
state-of-the-art performance of newly introduced optimizers across
tasks [183]. Similarly, su�cient hyperparameter optimization can
mostly eliminate claimed performance di�erences in generative ad-
versarial networks (GANs) [141], and better hyperparameter tuning
on baseline implementations can eliminate evidence of performance
advantages of new learning methods [110, 148]. Liao et al. [137]
use the broader term “implementation variation” to refer to how
variations in how inference techniques are implemented—including
use of speci�c software frameworks and libraries, metric scores, and
implementation “tricks” [6, 110]—can a�ect their performance in
evaluations. A related concern in subareas like reinforcement learn-
ing is when researchers overlook sources of inherent stochasticity
in the training process and evaluation environment [132, 153, 215].

Other inference concerns pertain to the external validity of the
functions that are learned: will they predict well on unseen data? In
the absence of a theoretical foundation for understanding DNN per-
formance, exploratory empirical research aims to identify proxies
for properties like learnability and generalizability (e.g., [126, 222]).
Recent results show how counter to classical expectations about
over�tting, minimizing training error without explicit regulariza-
tion over overparameterized models tends to result in good gener-
alization [156, 191, 222], driving a new theoretical agenda aimed
at disentangling optimization methods and statistical properties of
the solutions they �nd. Some emergent properties have been criti-
cized. Related to shortcut learning, SGD has been shown to exhibit
“simplicity bias”—a preference for learning simple predictors �rst,
resulting in neural nets relying exclusively on the simplest features,
for example, image color and texture, and remaining invariant to
complex predictive features, for example, object shape [129, 186].

Other concerns with external validity arise when an explicitly
chosen objective function is not a good proxy for the metric of
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interest in using the models, called “loss-metric misalignment” and
threatening generalization [118]. For example, cross-entropy loss
is often used as a loss function, whereas the evaluation metric
of interest is often classi�cation error or AUCPR. More generally,
reporting single scalar error measures by convention overlooks
important error variation (e.g., [69]).

Internal and external validity is threatened by leakage—broadly,
using information from the test data in training—paralleling the
reuse of data for choosing and evaluating a model’s �t in psychol-
ogy. Leakage can arise through misuse of cross validation when a
single CV procedure is used for model tuning and estimating error
at once [45, 108, 115]. Failure to carefully consider which steps in-
volved in model training should be performed on each fold during
CV can bias error estimates on test data [108], as can contaminating
the procedure with future data in time series applications [25]. More
generally, the use of CV for performance evaluation has been shown
to lead to overoptimistic results in the presence of dependencies
between the training and test set under certain conditions [71, 144].
Not unlike how low-power experiments lead to overestimates of
e�ects in psychology, under such dependencies, underestimating
test error from CV becomes more likely.

Other issues occur in performance comparisons of models or
algorithms. Similar to data issues in psychology, sampling error
can be overlooked, including low power in performance compar-
isons [43] and failure to acknowledge that performance estimates
on the standard train-test splits common in benchmark datasets
may not hold for randomly created train-test splits [98].

Finally, implicit optimization for good performance results can
also occur in ML. Improving performance on benchmark datasets,
which have been thought to have caused most major ML research
breakthroughs in the last 50 years [66], is how researchers show-
case improvement in model performance to get published in top
conferences and journals [170, 184] across ML subareas (e.g., [61,
117, 212]). This can create incentives for researchers to implicitly
optimize inference around a goal of seeing their new technique
rank best in performance in an evaluation, such as selectively re-
porting results to highlight the best accuracy achieved (Section 4),
choosing among performance measures conditional on results, or
failing to acknowledge how simpler baselines perform relative to
a new approach (e.g., how well the “language prior,” the prior dis-
tribution over labels [100], performs in a popular visual question
answering task (VQA) [8]). Attempts to use OOD data to improve
task performance are not valid when researchers rely on explicit
knowledge of how the OOD splits were constructed or use the OOD
test set for model validation [203].

4 COMMUNICATION OF CLAIMS
Sources of error can remain unacknowledged due to communication
norms that suppress uncertainty and limit reproducibility.

Social psychology. The contribution of a social psychology exper-
iment can be framed as a stylized fact: a statement presumed generally
true and replicable [83, 112] about some aspect of the world. Results
are used to motivate broad claims [60], with de�ciencies attributable
to authors failing to acknowledge exploration of multiple analysis
paths contingent on the data, and tending to downplay inherent de-
pendencies and uncertainty when describing results.

Because stylized facts derive from the results of experiments
in laboratory-like environments, often on non-representative sam-
ples [83], credible reporting would emphasize the speci�c condi-
tions studied [190]. Instead, however, researchers routinely state
their �ndings in broad terms in articles, referring to how an inter-
vention or trait a�ects “people” or entire groups [60, 104, 174], not
acknowledging potential variation untested by theory and data.

Authors can perpetuate ?-value fallacies when they write about
e�ects as if present or absent (e.g., [28]) or overinterpret alternative
hypotheses [200]. Or they may imply that a lack of signi�cance is
evidence of an absence of e�ect [4, 28] or that there is a signi�cant
di�erence between signi�cant and non-signi�cant results [89].

Finally, while sharing of data and analysis code has increased in
psychology in recent years, many authors have not adopted such
sharing (e.g., [201]). When authors don’t publish data or analysis
code they used to arrive at a conclusion, readers cannot as easily
identify problems or replicate the work, potentially slowing the
rate at which errors that invalidate claims are caught [82, 116, 151].

Machine learning. Communication concerns in ML include ten-
dencies to not report trial and error over the modeling pipeline and
evaluationmetrics (leading to biased claims about model performance)
and to downplay dependencies and uncertainty a�ecting performance.

ML researchers often report point estimates of performance
without quantifying uncertainty [3, 137, 171] or reporting key in-
puts such as hyperparameter and computational budget settings
in non-convex optimization. This can result in performance re-
sults for which the source of empirical gains is unclear or misat-
tributed [139]. As examples, authors often do not report the number
of models trained and the negative results found before the one
they highlight is selected [3, 184]. Authors may cut corners since
computing uncertainty and variance in ML models can incur signif-
icant computational costs, especially for large ML models [3, 36].
When not presented along with an estimate of the uncertainty
of model performance arising from sources of variation like the
choice of train-test split [98], the computational budget [63], the
choice of hyperparameter values, and the random initialization of
ML models [47, 141, 183], point estimates of performance represent
the best-case rather than expected model performance. Worse, re-
searchers sometimes apply CV to tune a model then report the best
performing model’s error on the training set (i.e., the “apparent
error”) as if it were cross-validated error [155].

As with psychology, researchers may be tempted to speculate
about causes without couching them in speculative terms [139].
Overgeneralization occurs from the loose connection between a
task (e.g., reading comprehension, image classi�cation) given in
colloquial and anthropomorphic terms as what a model has learned
to do, and a more speci�c de�nition of the problem [137, 139]
for which publishable results were achieved. For example, using
“reading comprehension” to refer to a process is misleading when
the model may not have used what a human would call critical
information, like the text it is “comprehending” [130] (Section 3.3).
More broadly, claims about performance are rarely evaluated in the
context of relevant real-world applications [137].

ML faces analogous issues to the lack of open data and code
in social psychology [68, 98, 106, 178, 193]. Details about dataset
limitations that can threaten external validity [20, 77, 163] are often
unreported in ML literature (Section 3.1), perhaps because new
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techniques for model creation have historically been valued over
documenting datasets [182]. As in psychology, checking compu-
tational reproducibility of results requires making the complete
code and data available with published papers [40]. Recent work
attempts reproducibility checklists, documentation checklists, com-
munity challenges, and workshops [77, 150, 167]. However, while
assessing replication in the social sciences is not trivial (e.g., [192]),
a somewhat unique challenge in ML is that with the creation and
widespread use of large ML models requiring signi�cant computa-
tional resources [20], especially in NLP tasks, it becomes impossible
for many researchers to even attempt replicating certain results.

5 IMPLICATIONS: WHAT CANWE LEARN
FROM THIS COMPARISON?

As researchers move toward integrative modeling, they should
grasp common blind spots; the summary in Table 1 roughly orders
issues to emphasize where concerns overlap between the two �elds.

We see evidence of di�erent ways in which researchers place un-
due con�dence in particular statistical methods. In ML, the use of a
train/test split and cross validation can give the illusion that the in-
herent inability to know performance on unseen data is manageable.
In social psych, belief in the power of randomized sampling and
statistical testing leads researchers to overlook the importance of
satisfying other assumptions or modeling other forms of variation,
like in sampling stimuli. Motivating choices like model representa-
tion using asymptotic theory without considering its applicability
to the speci�c inference problem is conventional. In both cases,
researchers’ trust in methods is undergirded by unrealistic expec-
tations about the predictability of real-world behavior and other
phenomena. Social psychologists ignore the “crud factor” [146]
and improbability that multiple predictors thought to have large
e�ects on the same outcome would not also correlate with one
another [205]. ML researchers seem to embrace the crud factor
by recognizing the importance of using many predictors to avoid
over�tting when the signal from any one predictor is likely to be
small [55], but have been slow to part with i.i.d. assumptions.

Norms around what is publishable in each �eld incentivize re-
searchers to hack results to meet implicit objectives such as statis-
tical signi�cance or better-than-SOTA performance, to the detri-
ment of practical signi�cance or external validity. Important depen-
dencies in the analysis process—from types of data �ltering and
reuse to unacknowledged computational budgets or unspeci�ed
populations—are often overlooked, so that results do not generalize
as assumed. Overgeneralization and suppression of uncertainty via
binary statements—about the presence of e�ects or rank of model
performance relative to baselines—are common in reporting results.

5.1 Irrefutable claims
On a deeper level, claims researchers are making in both �elds
appear to be irrefutable both by design and convention. In social
psychology, this manifests as papers that set out to con�rm hypothe-
ses that associations will exist, or be in a certain direction, rather
than mechanistic accounts that enable more speci�c predictions.
When hypotheses provide only weak constraints on researchers’
ability to �nd con�rming evidence and there is �exibility in the
analysis process (not to mention incentives to publish positive ev-
idence on often counterintuitive e�ects [73, 181]), “false positive

psychology” [188] is not a surprising result. Consider how much
more di�cult, even impossible, it for those who wish to refute,
rather than support, a given theory: showing no association, for
example, means providing evidence for a point prediction of null
e�ect. At the same time, in the absence of well-motivated stimuli
sampling strategies, de�ned target populations, and attempts to
model other sources of contextual variation, assuming that claims
made about any particular parameter estimates obtained through
analyzing experiment results generalize beyond that particular set
of participants, stimuli, etc. is not credible.

Turning toML, many reproducibility failures seem to derive from
a similar tolerance for irrefutable contributions, manifesting as a
confusion between engineering artifacts and scienti�c knowledge.
Consider a typical supervised ML paper that shows that an innova-
tive algorithm, architecture, or model achieves some accuracy on a
benchmark dataset. Even if we assume the reported accuracy is not
optimistic for the various reasons discussed above, the researcher
has contributed an engineering artifact, a tool that the practicing
engineer can carry in their toolbox based on its superior perfor-
mance to the state-of-the-art on a particular learning problem. New
observations based on additional data cannot refute the perfor-
mance claim of the given algorithm on the dataset, because the
population from which benchmark datasets are drawn are rarely
speci�ed to the detail needed for another sample to be drawn [127].
Attempts to collect a di�erent sample from an implied population to
refute claims are rare; when they have been attempted, researchers
have found that the original claims no longer hold [172]. Further,
when researchers have tried to compare model performance across
benchmark datasets, they have found that results on one benchmark
rarely generalize to another, and can be fragile [59, 204].

At a higher level, analogies between human and arti�cial intelli-
gence are embedded in AI and ML culture, but are hard to render
refutable. Without a priori speci�cation of the neurocomputational
processing involved in high-level cognition [173], whether ML ap-
proaches capture critical aspects of human consciousness (e.g., [99])
or new algorithms intended to instantiate human-like mechanisms
(e.g., [21]) succeed in a human-like way is entirely speculative.

The acceptance of non-refutable research claims as research
contributions, as in social psychology, creates a culture in which
other methodological issues amplify the di�culty of building gen-
eralizable knowledge. Hubris from beliefs that big data renders
modeling requirements like uncertainty quanti�cation unneces-
sary [35, 59, 138], a lack of rigor in evaluation [137, 184], and over-
reliance on theory [94, 139] may leave ML plagued with repro-
ducibility and generalization issues. One potential bright spot lies
in widespread recognition that the �eld is lacking foundational
statistical theory to explain DNN performance. This could natu-
rally encourage a more cautious and empirical mindset among
researchers, but only if pressures to make bold claims from struc-
tural incentives that encourage “planting one’s �ag” before others
do [184] don’t outweigh the trend toward embracing uncertainty.

5.2 Latent expectations versus reality
Characterizing the conventions that give rise to irrefutable claims
as forms of underspeci�cation—meaning that some aspect of the
learning problem has not been formalized to an extent that allows
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it to be solved—might help point researchers toward new meth-
ods to address what is missing. In particular, the role of human
expectations in de�ning “success” in learning has been implicit, but
innovations are often driven by making these expectations explicit.

Colloquially, many ML methods are assumed to free researchers
from theorizing howwell a �tted function captures critical structure
in the true DGP. Yet, many weaknesses being identi�ed suggest
that the reality of non i.i.d. test data is pushing ML researchers
in “purely” predictive areas toward philosophies underlying ex-
planation. Recent de�nitions of underspeci�cation [54], shortcut
learning [78], adversarial vulnerability [123], etc. motivate the need
to impose more constraints on what is learned, and the most natural
source is the human who assesses and interprets the results.

In social psychology, DGPs are modeled, if only as a symptom of
using conventional inference. However, we see a displacement of
prior knowledge in designing and interpreting experiments, where
a priori expectations about how big an e�ect could be are often
overlooked. There is also a failure to acknowledge how the styles
of research the �eld rewards, such as showing that many small
interventions can have large e�ects on a class of outcomes, are
incompatible with common sense expectations of correlated e�ects.

There is little reason to believe that taking steps toward inte-
grative modeling will greatly improve practice if researchers fail
to actively monitor what new methods help them learn for the
issues listed in Table 1. The worst of both worlds would result if
instead they assume that any use of integrative approaches must
increase rigor, because “now we do statistical testing,” “now we do
human-subjects experiments,” or “now we use a test/train split.”

Another bright spot in times of methodological crisis is that
when mismatch is recognized, it can lead to new technical innova-
tions. Paradoxically, striving to identify a single foolproof solution
to a recognized learning problem can drive new techniques to close
the gap between expectations and reality. For example, in ML recog-
nizing the “brittleness” of deep learning models in light of human
perceptions of learning has led to major improvements to gener-
alization from new approaches to adversarial robustness. ML may
have an advantage over psychology in addressing reproducibility
problems in that cleverly changing the de�nition of a learning prob-
lem to overcome weaknesses is held in high esteem. Perhaps the
most important question for modern AI and ML is what, if any,
forms of mismatch between human expectations and model behav-
ior cannot be solved through a reframing of the learning problem.

5.3 Epistemological gaps and rhetorical risks
It is natural for �elds to amass signals thought to be proxies of
trustworthiness to enable judging work at the time of publication,
when how well a claim replicates or generalizes is not known.
However, a fundamental challenge in doing this is the need for
reformers to recognize the incompleteness of their own knowledge.

Consider how irrefutable theories and claims induce greater
dependence on imperfect ways of validating claims. In social psy-
chology, replication is an indirect test for whether e�ects persist
under the same or similar conditions. However, experts do not al-
ways agree on what constitutes successful replication [164], and
intuitions can be proven wrong. For example, under a formal de�-
nition of a study’s reproduciblity rate, reproducing experimental
results does not necessarily indicate a “true” e�ect, and vice versa

for a “false” e�ect [62]. In ML, tests are similarly indirect, but the
stakes often higher: when an approach fails to perform as expected
in the world, researchers may scrutinize the original claims, but at
the expense of those a�ected in deployment. Progress can be hard to
judge due to the speed of discovery [37] and con�icting valuations
of standard approaches like benchmarks (e.g., [170, 218]).

There is a need to accurately diagnose the fundamental problems,
rather than symptoms only, and avoid the sort of part-for-whole
substitution in reforms that drive methodological overcon�dence.
As �elds work toward consensus views on errors, uncertainty must
be embraced. For example, debates over what core problems pre-
registration addresses point to the challenge of determining when
a given reform should have privileged status [154, 189, 199].

Trusting amethod (whether it be a statistical idea such as Bayesian
inference or causal identi�cation, or an ML idea such as deep learn-
ing or cross validation) without examining the applied context can
mislead researchers by implying that better results can be achieved
via a singular universal method of statistical inference [92]. It can be
that more careful researchers tend to use more sophisticated meth-
ods, which will show up as a correlation between methodological
sophistication and the quality of research—but this can also create
an opening for methods to be used as a signal of research quality
even when that is not the case. For example, it makes sense for open-
science reforms to be supported by researchers who do stronger
work (and there is evidence from betting markets that experts can
predict reproducibility with some accuracy [67]) and opposed by
those whose work has failed to replicate (for example, [221]). This
would lead to open-science practices themselves being a marker of
research quality. On the other hand, honesty and transparency are
not enough [82]: all the openness and preregistration in the world
won’t endow replicability to a psychology study with a high ratio of
noise to signal, which can happen with experiments whose designs
focus on procedural issues (e.g., randomization), to the detriment
of theory and measurement. Open-science practices can be a signal
of replicability without that holding in the future.

Steps can be taken to reduce rhetorical risks. For example, De-
vezer et al. [62] propose accompanying colloquial statements about
reproducibility problems and solutions with formal problem state-
ments and results, and provide questions to guide researchers in
doing so. Greater rigor in reform arguments can mean quicker iden-
ti�cation of logical errors, misintepretations of constructs, or other
blind spots in attempts to steer a �eld back on track.
6 CONCLUSION
Our analysis of learning errors across psychology and supervised
ML points to fundamental blind spots in inductive learning related
to overtrusting theory and conventional practice for producing
(irrefutable) claims and simpli�ed assumptions of real-world varia-
tion, among others. We argue that many learning errors arise at the
method-human interface, especially underspeci�cation of human
biases, which integrative approaches alone cannot solve without
greater awareness of these blind spots.
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