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Fig. 15. Total mass assigned to the k largest weights versus k for (a) a flat prior for {3 and (b) Jeffreys's prior for {3

evaluation of which requires 4n IB evaluations; maximization can be done via grid search or possibly
a derivative-based method since aLla{3i' aLlaw and aLlav can be directly computed. The Bayesian
model is completed by taking independent uniform priors for wand v and, given w, a flat or Jeffreys
prior for {3.
We applied this model to a data set described in Aitkin et al. (1989) (n = 33). Allowing for interaction,

(3 becomes four dimensional. Aitkin et al. (1989) fit, among other models, an exponential generalized
linear model which corresponds to our base-line model. We fit the six-dimensional Bayesian model in
two ways. We ran a weighted likelihood bootstrap (WLB) using 1000weights drawn from Dirtol) with
0'= 0.7 and 0'= 1.6 thus obtaining 1000 samples approximately from the posterior under a flat prior.
We ran an adaptive Metropolis-within-Gibbs (MWG) algorithm for both a flat and a Jeffreys prior
following Muller's (1991) suggestions, stopping each of five strings after 500 iterations using the last
200 iterations from each again to obtain 1000 samples approximately from the posterior. Run times
for the WLB on an IBM 3094 computer were 220 min for each a: for the MWG 40min. Using either
the WLB or the MWG samples we obtained the importance weights uj as defined by the authors.
In Fig. 15 we plot the total mass assigned to the k largest weights against k for the two WLBs and

the MWG. The MWG weights are dramatically better than the WLB weights even under a flat prior.
The latter has much more mass attached to far fewer points.

Andrew Gelman (University of California, Berkeley): As the authors point out, the weighted likelihood
bootstrap (WLB) can be used in place of the Gibbs sampler or Metropolis algorithm in a wide class
of problems for which it is a fairly close fit to the target posterior distribution (so that, after importance
resampling, the distribution will be almost exactly correct). One tricky point in application seems to
be determining whether the importance ratios are sufficiently close for the method to be accurate. As
with any approximate method that is based on overdispersion, the WLB has the potential for an even
wider range of practical applicability: for problems in which the WLB simulation distribution is not
a close fit, it may still be useful to use the sampling-importance resampling (SIR) samples as starting
points for a Markov chain simulation. For example, Section 4.2 of Gelman and Rubin (1992) illustrates
SIR samples (although not from the WLB) used successfully as a starting distribution for parallel runs
of a Gibbs sampler.
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(20)

(21)

Variation of importance ratios also seems like a potential difficulty in the estimates of the marginal
likelihood presented in Section 7. Meng and Wong (1993) present a similar method for estimating marginal
likelihoods and normalizing constants that uses samples from two distributions to achieve a lower variance
than the harmonic mean estimator.
Let pj(B), BE8;, i= 1,2, be two densities, each of which is known up to a normalizing constant:

p;(B) = qi(B)lzi, i = I, 2. The following identity is fundamental to our approach:

ZI Ez{ql (B) a(B)}

Zz Edqz (B) a(B)}

where E, denotes the expectation with respect to the Pi (i = I, 2) and a(B) is an arbitrary function defined
on the common support, 8 1n 8 z , such that the two expectations are finite and non-zero. Given draws
from both densities and a choice of a, the numerator and denominator on the right-hand side of equation
(20) can be simulated easily.
The 'harmonic mean' (13) corresponds to choosing q, (B) = p(x IB)p(B), qz(B) = p(B) and a(B) =

(P(x IB)p(B)t I. Similarly, equation (14) corresponds to the same choice of q., i = I, 2, with a(B) = I.

For these choices of a, as the authors noted, the resulting simulation may be unstable because the
corresponding integrands are not necessarily square integrable. Furthermore, they provide legitimate
estimates only when the prior p(B) is proper. By suitable choices of a in equation (20), however, all
these problems can be avoided. For example, choosing a = l/.J(ql qz) leads to

ZI Ez [.J{ql(B)lqz(B)}J
E I [.J{qz(B)lql(B)J] '

where both integrands are always square integrable with respect to the corresponding densities.
Implementing equation (20) with the optimal choice of a is also straightforward, as is detailed in Meng
and Wong (1993). Continuous extensions of these methods are presented in Gelman and Meng (1993).

A. P. Grieve (ZENECA Pharmaceuticals, Macclesfield):On the basis of their experiences the authors
suggest that the overdispersion parameter a should be chosen 'rather close to I'. How are we to interpret
this in the light of their use of values for a of 0.7 and 1.6? Is this effectively a recommendation to
use purely uniform Dirichlet weights?
To understand to what extent a blanket adoption of uniform Dirichlet weights is reasonable I have

applied the weighted likelihood bootstrap (WLB) to the family of distributions

exp [XB - b(B) + c(X, 1)
a(c1» J

and have assumed
(a) that c1> is known, which gives the exponential family with canonical parameter B, and
(b) that interest centres on making inferences about the mean value parameter /l =E(X) =b '(B).

For data Xi (i= 1, ... , n) and a given set of random uniform Dirichlet weights Yi (i= 1, ., n),
the WLB gives, as a random estimate of u,

n

ii= Y;Xi·
;=1

(22)

E(ji)=x,

Using standard properties of the uniform distribution on an n-dimensional simplex it is possible to
show that

_ n -I SZ
var(ji) = ---.

n+ I n

There are two features of this result which are potentially disturbing, both of which arise because the
WLB does not use all available information. Firstly, irrespective of which member of the exponential
family I am interested in, the WLB simulates from the same data-based distribution, although the
posteriors are very different in shape. Secondly in the concrete example of a normal distribution with
known variance aZ we would presumably be wanting to simulate from a distribution with mean xand


