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The classical variogram estimate is convenient but can be unacceptably variable. Improved estimators are
possible, especially when the locations of the available data are highly clustered. Using a simple theoreti-
cal example, we demonstrate that weighting can dramatically increase the efficiency of classical variogram
estimates from clustered data. We give expressions for the weights that lead to minimal variance estima-
tors and indicate some obstacles to the use of these weights. We then introduce a simple iterative weighting
scheme intended to approximate optimal weighting. We apply the new weighting to the example that mo-
tivated this research—estimating the variogram of home radon levels—and demonstrate its performance

in a simulation study.
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1. INTRODUCTION
1.1 The Classical Variogram Estimate

The classical variogram estimator is a standard tool in geo-
statistics (see Journel and Huijbregts 1978; Cressie 1993). It
has several purposes including investigating the possibility of
spatial correlation without postulating a functional form for the
variogram, for exploratory purposes in selecting a parametric
form for the variogram that ensures the resulting estimate is
conditionally nonnegative definite, and for fitting a paramet-
ric variogram model using least squares (or some variant, such
as weighted least squares). The standard classical variogram
estimate—simple averages within distance bins—is convenient
but can be highly variable. In this article we propose using
weighted averages in each bin to improve the estimation of
the variogram (averaged over these bins). We argue that this
weighting is most beneficial when the locations at which there
are measurements are highly clustered. With the recent growth
in applications of spatial methods to problems in epidemiology
and the social sciences (see, e.g., Lawson 2001), there are in-
creasing numbers of datasets that have observations clustered
in space. This clustering is a natural consequence of clustering
of human populations and is less common in applications of
spatial methods in geology. Clustering has established advan-
tages for estimating the variogram in that it allows sampling
at small spatial resolution, which is essential for prediction un-
der infill asymptotics (see, e.g., Warrick and Myers 1987). Here
we show how accounting for this clustering can lead to an es-
timate that is less variable than the usual classical variogram
estimate. In practice, we would first use tools from the analysis
of spatial point patterns (such as Ripley’s K function) to inves-
tigate the extent of clustering of locations where we had sam-
ples. Throughout, we suppose that such an investigation has led
to the conclusion that clustering of locations is present.

The effect of variation in the extent of clustering of the mea-
sured locations depends on assumptions regarding the stationar-
ity of the field. If the random field is not intrinsically stationary,
then clustering of observations will result in a variogram esti-
mate characteristic of the region that is more intensively sam-
pled, at least for some distances (as in Chiles and Delfiner 1999,

sec. 2.2.6). We do not consider the issue of nonstationarity in
this article.

As we show in this article, clustering can lead to inefficient
classical variogram estimates even for data arising from a sta-
tionary random field. In this situation, we can potentially obtain
a more efficient estimate by using weighted averages instead
of the simple binned averages used in the construction of the
unweighted classical variogram, because we are averaging cor-
related quantities. Weighted averages have been suggested in
this context before (Omre 1984), but the motivation in the past
has been to obtain resistant variogram estimates, not more ef-
ficient estimates. (See Cressie 1984 for more discussion of re-
sistant estimators.) The approach of Omre was to use a general
method for resistant estimation for spatial processes originally
attributable to Switzer (1977).

The use of weighted estimates has been considered in the
context of fitting parametric models to the classical variogram
estimate (see, e.g., Genton 1998; Lee and Lahiri 2002). That
work differs from what is proposed here in that the weights used
in that work were defined at the level of the bin, not the level of
the paired differences. The aim of those methods is to construct
a more efficient estimate of a conditionally nonnegative definite
variogram estimate by accounting for correlation in the binned
averages. In contrast, here we use weights to estimate the bin
averages themselves more efficiently, without necessarily mod-
eling the functional form of the variogram. Further gains possi-
bly could be obtained by combining the two approaches.

Finally, we see the present analysis as a first step toward the
more ambitious goal of determining the effect of clustering of
observed locations on the estimation of variogram parameters
in the context of likelihood-based approaches. Nonetheless, as-
certaining the effect of the clustering of observed locations on
the classical variogram estimate is of interest in its own right.
Although likelihood-based techniques are in general preferable
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to variogram estimation techniques rooted in the classical var-
iogram estimate, there are three reasons for continued interest
in the classical variogram estimate. The first is that likelihood-
based techniques in geostatistics are not computationally feasi-
ble for large datasets. For example, in the application presented
in Section 5, the use of likelihood-based techniques would en-
tail the repeated inversion of a 64,000-dimensional matrix. The
second reason for interest in the estimate is model selection for
the functional form of the variogram. For example, when fitting
a convex form for the variogram when in fact the variogram is
concave, identifiability problems may be encountered. Thus a
common approach to variogram estimation is to examine the
classical variogram estimate and use this as a tool to select a
functional form for the variogram, the parameters of which are
then estimated using likelihood-based techniques. Finally, in-
vestigating the possibility of spatial correlation is a common
technique in the context of exploratory data analysis. Graphi-
cal tools are indispensable for thoughtful data analysis. In any
event, an estimator with lower variability would be preferred
over the standard classical estimate, which remains a standard
tool in geostatistics. In Section 6 we describe some simulations
indicating that the proposed estimate is not only more efficient,
but also leads to a higher rate of correct model identification.

1.2 Notation and Background

We assume continuous data y;, i =1, ..., n, observed at point
locations s; in the plane. The primary tool used by geosta-
tisticians for quantifying the extent of spatial correlation in a
random field is the variogram. If y(s) is a stochastic process
for s € S (here S is some subset of the plane) and we assume
that y(s; — sp) = %var(y(sl) — y(s2)) is well defined for all
S1,82 € S, then y (s) is called the semivariogram (or sometimes
the variogram). If the process y(s) also has a constant mean,
then it is said to be intrinsically stationary. We further assume
that the process is isotropic (rotationally invariant), so that the
variogram is actually only a function of the distance between
any two sites: y(s; — s2) = y(||s; — s2]]). In deriving vari-
ance estimates, we assume that the data follow a multivariate
Gaussian distribution and the process is second-order station-
ary, which is a standard assumption for applications such as pro-
ducing prediction intervals in kriging, for which variogram es-
timates are commonly used (see, e.g., Cressie 1993). Although
checking stationarity assumptions can be difficult, a classical
variogram estimate that grows markedly more than a quadratic
or clearly fails to have a sill indicates that second-order station-
arity may not be a useful approximation.

To investigate spatial correlation, a common practice of geo-
statisticians is to first divide a certain portion of the range of
observed distances between sampled points into a number of
equal-width bins, then find the average squared difference in
each bin (see, e.g., Cressie 1993). Denote the realized value of
the process at site s; by y; for i =1,...,n, and use y for the
vector of these realized values. Then the classical estimate of
the semivariogram is

2
l Z(i,j) such that ||s;—s;l€(dx—d; i) Qi = V)
2 N(dy)

);classical (d) =

ey
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for k such that d € (dy — dy, dy. + di], where N(dy) is the num-
ber of observed distances between sampled points that fall in
the bin centered at distance d;. We label these distances in
increasing order as dx,k = 1,..., K. Often the set of points
(dk, Velassical (di)) is taken to be the classical estimate of the
semivariogram.

1.3 Weighted Classical Variogram Estimates
We consider weighted estimates of the form

2
A 1 Z(lj) such that ||s;—s;||€(dx—d1,dr+d1] Wij(yi - yj)
yd) =5

. (2

2 Z(i,j) such that ||s;—s; € (dg—dy ,dy+di] Wij

for k such that d € (dy —dy, di +d1], where a weight is assigned
to each pair of points. We also consider the special case of (2)
in which weights are assigned to individual points,

P = )3

(i,j) such that ||s;—s;|| € (dr—dy,dx+d1]

2

X
((i,j) such that ||s;—s;||€(dx—d,dx+d]

wi(di)w;(di) (vi — y)?

-1
Wi(dk)Wj(dk)> .

3)

Expression (3) has the computational advantage of requiring nK
weights rather than of order (3).

In Section 2 we demonstrate, using simple examples, that
weighted variogram estimates can be much more efficient than
unweighted estimates. In Section 3 we derive the optimal
weights for the variogram estimate (2) for any configuration of
points; unfortunately, with datasets of the size considered in the
application here, these general weights require too much com-
putational effort to be useful in practice and require specifica-
tion of a parametric form for the variogram (which is undesir-
able for exploratory data analysis). In Section 4 we present an
approximate iterative weighting scheme of the form (3). In Sec-
tion 5 we illustrate the problem that motivated this research—
estimating of the spatial correlation of home radon levels—and
in Section 6 we explore the effectiveness of the weighted esti-
mate in a simulation study. We discuss the results and the rela-
tion to other approaches in Section 7.

2. CLASSICAL VARIOGRAM ESTIMATES FROM
CLUSTERS OF POINTS

When data are sampled at locations that are clustered, the
classical semivariogram estimator (1) can be considered a sum
of contributions of terms from different clusters. For example,
if a cluster of m; points is a distance d away from a cluster
of my points, then these two clusters contribute mmy terms to
the classical variogram estimate at distance d. Our basic idea
is to estimate the variance of the sum of these mjmy terms, as
a function of mj, my, and d, and then assign a weight that is
inversely proportional to the variance.

In general, we are considering a scenario in which there
is clustering in the data at a scale smaller than the scale at
which the variogram changes; that is, there are clusters of points
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within radius § for which y(d) = y(d + §). Thus, if the vari-
ogram is estimated within bins of width 24, then we are con-
cerned with clustering at a scale smaller than §. This condition
is the background within which we construct our weights. The
simulation study in Section 6 checks the performance of the
weighted variogram estimate under a range of conditions. Such
investigations are instructive because we generally do not re-
quire data-dependent bin widths.

2.1 Estimating the Variogram for Small Distances

In classical variogram estimation, y (07) is estimated from
pairs of points less than some distance é apart. Consider a clus-
ter of m > 2 points within a circle of diameter §. These points
together form an estimate of the semivariogram at short dis-
tances; hence if y1, ..., y,, are data points in such a cluster, then

1) Z(Yz YJ

l<j

J; (O+ ) cluster =

= sample variance of {y1, ..., ym}. “4)

This estimate is approximately unbiased (approximate because
of the binning) and has a sampling distribution approximately
proportional to X,%, 1» and thus has expectation y(0™) and vari-
ance —y (02,

If we consider our combined estimate of y(07) from all of
the data to be a weighted average from clusters such as this,
then it is optimal to weight each cluster inversely proportional
to the variance—that is, the cluster’s weight should be propor-
tional to m — 1. (This weighting is actually optimal only in the
absence of correlation between the clusters and thus is only an
approximation in reality. In Section 3 we discuss why it is not
feasible to determine exactly optimal weights.)

We must now translate the cluster weights into weights on
pairs of points as in (2) or on individual points as in (3). Allo-
cating the cluster weight of m — 1 among the (m — 1)m/2 pairs
in the sum (4) leaves a weight of 2/m for each pair. [Recall that
the smallest possible value of m for estimating y (07) is a single
pair, or m = 2, which then gets a weight of 1.]

For the weights to work out in (3), the product of the indi-
vidual weights on any two points in a cluster must equal their
pair weight of 2/m, so each individual point gets a weight of
+/2/m, where m is the number of points in the cluster of diame-
ter § containing this point. Once again, points in clusters of size
m = 2 each get weights of 1.

2.2 Estimating the Variogram for Larger Distances

The classical estimate of the variogram at distance d is de-
rived from all pairs of points approximately d units apart. Clus-
tering in the data results in clustering of the pairs. As before,
we would like to assign weights to each pair and then to the in-
dividual points, so that each cluster is weighted inversely pro-
portionally to the variance of its contribution to the estimated
variogram at distance d.

First, consider a pair of points, y; and y, separated by a dis-
tance d that are sufficiently well isolated from the rest of data
to be approximately independent of other values of the process.
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If we assume that the data follow a multivariate normal distri-
bution and the process is second-order stationary, then the dif-
ference (y; — y2) has a normal distribution with mean O and
variance 2y (d); we can then evaluate the variance of this pair’s
contribution to the classical variogram estimate,

1
var(Pisolated (@) = var[i o1 —y2)2:|

1
= ZE[(yl ) - —[E(yl )1
LN LI

4 4
=2y (d)>. ®)

Next, consider the more general case where the variance of
the estimate of y (d) obtained from the mmy pairs corresponds
to a cluster of m points separated from a cluster of m, points
by approximately distance d. The variance of the estimate based
on the clusters also can be approximated using the multivariate
normal distribution; see Appendix A for details. (This is an ap-
proximation due to the binning that the estimate entails.) The
approximation is

Var()?clusters (d))
2 _3_3 ! 2
~2y(d) +2(1 prl ZM1M2)V(O )
1 1 +
_4< —ﬁ—z—)mmo ), ©)

which reduces to (5) in the special case where m; =my = 1. In
the limit of large m; and my, the variance (6) reduces to

lim  var(Petusiers(d)) ~ 2(y (d) = y (07))%.

mp,my
This perhaps surprising result indicates us that as the cluster
sizes increase, their contribution to y (d) approaches an asymp-
tote in precision. Thus each of the individual mm; pairs is con-
tributing, in the limit, an amount of information proportional to
1/(m1my). This implies a drastic downweighting of the contri-
butions of large clusters to the variogram.
For finite m; and my, we can approximate (6) by

1
var(Pelusters (d)) ~ 2(3/ (d) — |:1 - ]V(O+))
mj

1 +
X(V(d) - [1 — —}V(O )>; @)
my

see Section A.3 for details. This approximation is exact for
m1 = my = 1 and in general has a relative error of at most 1.
Applying inverse-variance weighting to the clusters implies
that each of the mjmy pairs within the sum gets a weight of
times a factor inversely proportional to (7). Thus, each
m1m2
pair can be given a weight in (2) of

1
Y= 0N+ Iy @) —

y (0H)]m)
1
X
yOH) +[y@ —

y (0F)]my



WEIGHTED VARIOGRAM ESTIMATION

More generally, if n; is the number of points in the cluster cor-
responding to point i, then each point can be given a weight in
(3) of
1

y(OH) + [y () — y(0)In;’
If we estimate these weights using some semivariogram esti-
mate y(d) (that is not necessarily conditionally nonnegative
definite), then we use the absolute value of the difference be-
tween 7 (d) and p(07) in the last expression,

1
PO +1pd) —pOF)|n;
For isolated points (i.e., n; = 1) the weight (8) reduces to

wi(d) = ﬁ, and for large n;, the weight assigned to point 7 is
approximately proportional to 1/n;.

wild) = ®)

wi(d) =

)

3. OPTIMAL WEIGHTS FOR THE CLASSICAL
VARIOGRAM ESTIMATE

It is straightforward to determine the weights that lead to a
minimal variance classical estimate of the variogram under the
assumption of multivariate normality and second-order station-
arity. Toward this end, we introduce some notation. Let A de-

note the (5) x n matrix that maps y to the (3)-vector of pair

differences, and let B; be an ('21) X (g) diagonal matrix with the
(i, i) element equal to w; if the ith pair difference is in the bin
centered at distance d and O otherwise. [Here w; is the weight
for the ith pair difference, i.e., wj(d) for some j, k.] We sup-
pose that there are p, differences in bin d. Then the optimally
weighted classical semivariogram estimate can be expressed

as
. 1
Yopt(d) = > Y/A/BdAY

If we suppose that y ~ N(0, X), then, letting ®; = A’'ByA, we
find that

. 1
var(Yopt(d)) = Etr(Z D, Xd,).

If we let wopi(d) denote the vector of optimal weights for dis-
tance d and choose this vector to minimize the variance of the
classical variogram estimate, then we find that

Wopt(d) = X'A;' DAL,
where Ay =L/ (AXA’ ® AXA')L; and Ly is a matrix of di-

. 2 . .
mension (})” x pg that maps the pg vector of weights at dis-

tance d to the vector of length (g)z obtained by the vec op-
eration (i.e., stacking of the columns) on the matrix B,;. The
derivation uses standard results from linear algebra; we do not
provide details here, because we do not use these results in what
follows.

Using the optimal weights entails practical difficulties.
To start with, these weights depend on the variogram itself
(through X), and hence we would have to solve for the weights
iteratively. For this process to work, we must use a valid form
for the variogram estimate; otherwise, the covariance matrix
can be nonpositive definite, which can lead to the nonexistence
of A~!. But then we are assuming the data are multivariate nor-
mal (to derive the optimal weights) and a functional form for
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the variogram; thus it would be more effective to simply per-
form maximum likelihood estimation. Moreover, the optimal
weights cannot be computed for large datasets (of the sort for
which classical variogram estimation is often used), because
calculating these weights involves inversion of a matrix that is
potentially huge.

4. AN ITERATIVE WEIGHTING SCHEME

4.1 Estimating the Variogram

We use the analytical results from Section 2 to derive an itera-
tive algorithm for improved weighted variogram estimation. As
explained in Section 3, exact optimal weighting for all pairs of
points is not feasible; instead, we assign a weight w;(dy) to each
individual point i at each distance di and then use the product-
weighted estimate (3).

We assign the weights in four steps. First, we compute, for
each point i, the number n; of points within a distance § of the
point, including point i itself (so that n; > 1). [More generally,
we could use a weighted sum that counts nearby points more
than faraway points, e.g., n; = Zj exp(—|Isi — sj||2/(§2). As with
other nearest-neighbor methods, a more complicated counting
scheme of this form can possibly increase efficiency by reduc-
ing discontinuities at the edges of clusters.]

Second, we estimate ¥ (07), the semivariogram at small dis-
tances, using (3), with each point i given the weight w;(0") =
/2/n;. These weights are noniterative, and so the estimate
7(07) is done.

Third, we assign initial values for the weights w;(dj) to be
used for estimating the variogram at distances d > 0, most sim-
ply by setting w;(dy) = 1 for all k. We then estimate the semi-
variogram y (d) for each bin using (3), and then use the result-
ing estimate p (d), along with p(0T), which we have already
computed, to construct weights w;(dy) from (9).

Fourth, we reestimate the variogram using (3) and the newly
calculated weights, and repeat the algorithm until convergence
of the estimate occurs. A discussion of the convergence of
the algorithm is presented in Section 4.4. It usually converges
within several iterations.

4.2 Choice of §

An essential component of the algorithm is specification of
the distance & that defines the local density n; of points in the
neighborhood of each point i. As §— 0, we getn; =1 for all i,
and as § — oo, we get n; = n for all i, so that in either of these
limits, all points have equal weights and (3) reduces to the clas-
sical unweighted variogram estimate.

For positive and finite values of S, however, the weighted
variogram estimate depends on 5. Methods are available to
investigate clustering at various distances (e.g., Ripley 1976;
Reilly, Schacker, Haase, Wietgrefe, and Krason 2002), and
these could be used to select a value of 3, but we prefer a model-
free approach given the nonparametric setting. Our approach is
choose § to approximately minimize the mean squared error of
the weighted estimate; that is, we attempt to minimize

K
1 .
= > E{l73(d) — v @01}
k=1
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As we show in Appendix B, minimizing this expression is ap-
proximately equivalent to choosing § to minimize [suppressing
the dependence of Ps(d) on 4]

E[} (dk) — y (di)T?

K
- Z(k — D{=2E[y (dx) — 7 (d-D]ly (d) = 7 (dr-1)]
k=2

+E[p(dy) — P (di-D1*} /K.

This is a weighted sum with larger weights assigned to
large k. If K is large, then the first term will be negligible com-
pared with the sum, so we ignore this term here. The rest of
the expression depends on the unknown y(d), which we es-
timate by substituting 7 (d). We then choose § to minimize
Zszz %[)7 (dy) — P (dx—1)]?. Because this objective function
gives more weight to large d, it tries to take advantage of the
near-0 derivative of the variogram for large d, which we expect
for a variogram with a finite effective range (where the effec-
tive range is the range for a variogram with a finite range and
the distance at which the variogram has reached 95% of its sill
for variograms with asymptotic sills). If the unweighted classi-
cal estimate suggests that the variogram does not have a finite
effective range, then this procedure’s intuitive basis is some-
what suspect. A classical variogram estimate suggesting that
the process does not have a finite effective range would also
cast doubt on whether the process has a constant mean and is
second-order stationary, and hence the assumptions that moti-
vate our weights would be suspect as well. For computational
purposes, we typically use a grid search to find the minimizing
value of 5.

4.3 Switching Estimates

At the start of Section 2, we considered the situation in which
the extent of clustering is at a scale smaller than the rate of
change of the variogram [i.e., y (07) &~ y(8)]. If we treated S
as an estimate of the range of clustering witnessed in the data,
then we would expect our weighted estimate to outperform the
unweighted classical estimate for distances greater than this dis-
tance, but it is not clear whether the weighted estimate would
outperform the classical estimate for shorter distances. For this
reason, we use the weighted estimate for bin averages only for
distances >4 , and we continue to use the unweighted estimate
for distances <. If there is clustering at large distances, then
the weighted estimate will reduce to the unweighted estimate,
because the justification for the choice of weights would no
longer be relevant. Alternatively, we could use the estimate of
8 to make a decision regarding the bin width, but then the es-
timate may not be relevant for variogram estimation if this bin
width is large relative to the rate of change in the variogram.

4.4 Convergence of the Algorithm

We can show that the dynamical system obtained through the
recursive algorithm of Section 4.1 is stable with high probabil-
ity. Recall from (9) that for each bin, our estimate is a weighted
average where the weights depend only on the weighted clas-
sical variogram estimate at short distances and d itself. Hence
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to consider the behavior of the algorithm, it suffices to consider
what happens in a single bin—that is, what happens for one
of these weighted averages. We must show that the algorithm
converges for each bin separately. Let

Yo iwi(0)zi
Zi w;(x) '
where z; is the ith squared difference in a bin and w;(x) is the

weight for this squared difference. Then our iterative scheme
takes the form

h(x) =

X1 = h(xg),

where h is a random function of the point process giving rise
to the measurements and the real valued process on the plane
whose variogram we are trying to estimate.

To demonstrate convergence, we show that there exists a
unique solution to the equation

xX* =hx")

with high probability, and the derivative of the function % is <1
in absolute value at this solution with high probability. Now

Do iwi(x) Y Wiz — Do wi(x) Do wi(0)z
(Zi Wi(x))2

_ Y iwi) (zi — h(x))

Zi wi(x) ’

Taking expectations and denoting the set of functions w;(x)
by w, we have that

H(x) =

EN' (x) = E[E[K (x)|w, w']]

_ E[ZW;(X)E[Z,' — h(x)|w]]
D iwilx)

~ 0,

because E[h(x)|w] & E[z;|lw] (where the approximation is due
to the binning). Hence the expected value of the derivative of
the function is approximately 0. This implies that if there are
sufficient squared differences in each bin, then 4 will be roughly
constant, and the algorithm will converge immediately to the
unique fixed point. In practice, / usually deviates slightly from
a constant function, and so the algorithm executes several iter-
ations before convergence. It is indeed possible, however, that
[/ (x)| > 1, and so the algorithm can fail to converge. Because
any more precise statement would depend on properties of the
spatial processes involved, we simply note that failure of the al-
gorithm to converge can be remedied by pooling bins, which
reduces the variation in /. This strategy has worked every
time that we have used the procedure. Finally, we note that
our weight functions w;(x) are actually nondifferentiable func-
tions (because they involve the absolute value), but this poses
no problem, because we can always suppose that in practice we
are actually using a regularization of the absolute value function
that has the necessary differentiability.
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5. APPLICATION TO HOME RADON
MEASUREMENTS

We now apply the method to the problem that motivated
the research: variogram estimation for a dataset of radon mea-
surements in England. This dataset consists of approximately
64,000 observations in homes in a 40-km circular area (see
Fig. 1). We work with the log radon level because this is better
approximated by a normal distribution. Prolonged exposure to
radon has been associated with lung cancer; hence identifying
houses with high radon levels is a public health concern. Predic-
tion of home radon levels is an important first step that a home-
owner should take in ascertaining health risks in a dwelling
(Nazaroff and Nero 1988). If a neighbor’s radon level is known,
then this information is potentially useful for predicting one’s
own radon level. This is because radon is frequently associ-
ated with certain soil features and is known to have a higher
concentration near certain deposits, such as uranium deposits.
The presence of such geological features is likely to impact the
radon levels in multiple nearby houses. To use the neighbor’s
radon level, one must have an estimate of the correlation in
home radon levels as a function of distance. For our applica-
tion, we then use this correlation function (obtained from the
English dataset) in the United States to predict radon levels in
houses based on neighboring houses. This is necessary because
we do not have a comparable dataset for the United States but
nonetheless would like to make predictions using information
available on any neighbor’s radon level. Thus, although our ap-
plication does involve spatial interpolation, it would not be ac-
curately described as kriging, given that the correlation struc-
ture is estimated from an entirely different location.

Figure 2 shows the unweighted and weighted variogram es-
timates (with § estimated using the method from Sec. 4.2). The

&0

60

40

20

320

Figure 1. The Sampled Locations for the Radon Data, Which Were
Recorded at All Houses in a Small Circular Area in England. The axes
are in kilometers from an arbitrary zero. Each point represents the loca-
tion of a radon measurement.
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Figure 2. The Weighted (—) and Unweighted (---) Classical Semi-
variogram Estimates for the Radon Dataset, With § Estimated From the
Data. The weighted estimate has not been smoothed in any way; its
cleaner appearance derives from the greater efficiency of the estimate
at each distance.

estimated value of § (here §= 138) is such that we should use
the unweighted estimate for the first two bins; nonetheless, we
display both sets of estimates here for illustration. One undesir-
able feature of the unweighted estimate is the apparent periodic
behavior of the estimated variogram. Such behavior is difficult
to interpret in a spatial setting, although this is mathematically
possible. The estimated variogram using the weighted method
has a more reasonable interpretation and suggests that an expo-
nential model is suitable. This difference is attributable to the
lower variability of the weighted estimate. Such periodic be-
havior is often witnessed due to the substantial correlations that
exist between bin averages in variograms.

The weighted classical variogram estimate in Figure 2 was
used to fit an exponential variogram model using Cressie’s
(1985) approximation to weighted least squares, which was
then used to derive a correlation function. This function in turn
can be used by homeowners to update the predictive distrib-
utions for their home radon levels given measurements from
nearby houses. This updating is performed using a previously-
fitted hierarchical linear regression of home radon measure-
ments (Lin, Gelman, Price, and Krantz 1999).

Suppose that we are interested in a particular house’s log
radon level, given a vector of measurements X = (x1, ..., Xp)
at m nearby houses. We define 6; as the log radon level that
we are trying to predict, 0, as the m-vector of log radon levels
for the nearby houses, X as the vector of regression predictors
for the target home, and X as the matrix of predictors for the
m other homes. We are interested in p(61|X1, X3, X). (We im-
plicitly condition on the characteristics of the house for which
we desire the prediction and the characteristics of the nearby
houses.) We suppose that we observe the radon level in any
home subject to independent measurement error with variance
o2 hence x = 0, + € for some mean-0 error €. Here the vari-
ance of this noise is sufficiently well understood to be taken as
known (o = .47), but if this were not the case, then it could
be estimated from data. From the model of Lin et al. (1999)
we have approximately (given the home characteristics and lo-
cation) p(01|X1, X2) = p(011X1) = N(6; |m1,s%) for some val-
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ues mj and s% that depend on the location and the house-

level predictors. Similarly, p(02]|X;, X2) = N(02|m;, S,) for
some m-vector mp and m X m matrix S;, the nondiagonal ele-
ments of which we estimate using the standard deviations from
the regression model and the correlations based on our esti-
mated variogram; thus x|X1, Xy ~ N(my, S> + 021), where 1
represents an m x m identity matrix. If we use the notation
cov(f1, 071X, X2) = S12, then cov(d;, x| X1, X2) = S12, and so
we find (after an application of the theorem on the regression
of components of a multivariate normal vector on one another)
that 6;]X1, X2, x ~ Ny + S12(S2 + oD~ I(x — mp), s7 —
S1285 1521). For the most common setting for this particular
application of m = 1 (a measurement from a single neighbor),
we have implemented these computations on a radon measure-
ment and remediation website (www.stat.columbia.edu/radon).

6. SIMULATION STUDY

Because our estimator does not have any guaranteed opti-
mality properties, here we demonstrate the gains in efficiency
that are possible using this estimator. Because we are primar-
ily interested in the efficiency of our estimator as a function of
the extent of clustering, we vary the extent of clustering (we
use two levels here). We also vary the extent of spatial corre-
lation (two levels: long-range and short-range autocorrelation)
and the sample size (with mean number of points either 250 or
500). We consider two types of point processes to model the lo-
cations where there are measurements: homogeneous Poisson
and a Poisson cluster process, both defined on the unit square.
Samples from the Poisson cluster process are generated by first
simulating the parent locations uniformly over the region. Then
offspring locations around each parent are simulated from a bi-
variate normal distribution with standard deviation .03 and no
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correlation. We always use 10 parents and vary the sample size
by varying the number of offspring. Throughout we assume that
the semivariogram has the exponential form

yd)=1—e%,

where ¢ = 2 for the long-range variogram and ¢ = 20 for the
short-range variogram. Finally, we set the marginal variance of
the process to 1. The choice of marginal variance and the pres-
ence of a nugget effect have no impact on the simulation results.
For each simulation condition, we used 1,000 independent sam-
ples. We repeated the simulations with different seeds, and re-
peated some conditions with 10,000 samples. These exercises
indicate that the Monte Carlo error does not affect the overall
conclusions.

In general the performance of the estimator improves with
the extent of clustering and with larger sample sizes. Simula-
tion results for the long- and short-range variograms are shown
in Figures 3 and 4. The weighted estimate is more efficient for
some bins even when the point process is homogeneous Pois-
son. On average, not much is gained in efficiency for this case;
the average efficiency across bins is about 1.1 for these simu-
lations. In contrast, substantial gains in efficiency are possible
when there is considerable clustering (as high as 1.8 for one bin
average and on average 1.3—1.5). The simulations demonstrate
that the estimate is more efficient for the short-range variogram
than for the long-range variogram. The relative efficiency is al-
ways 1 in the first bin because if § =0, then the weighted es-
timate equals the unweighted estimate, whereas if 5> 0, then
we use the unweighted estimate in the first bin; hence the esti-
mates coincide in this case as well. Finally, we also computed
Cressie’s robust estimate (Cressie 1984) in these simulations,
but the efficiency of this estimate was invariably lower than the
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Figure 3. Efficiency of the Weighted Classical Semivariogram Estimate Relative to the Unweighted Average for a Simulation Study Assuming
Long-Range Spatial Correlations. We consider two point processes and two sample sizes.
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Figure 4. Efficiency of the Weighted Classical Semivariogram Estimate Relative to the Unweighted Average for a Simulation Study Assuming
Short-Range Spatial Correlations. We consider two point processes and two sample sizes.

unweighted estimate. This is not surprising given that the goal
of that estimator is to construct a robust estimate, not a more
efficient estimate, and as such is more variable than the simple
unweighted average.

6.1 Improved Model Selection

Although a more efficient estimate of the classical variogram
estimator is of interest in its own right, because this estimator
is often used as an exploratory tool to investigate the possibility
of spatial correlation and as an intermediate step in prediction,
as discussed in Section 1, we also note that the improved esti-
mator also leads to higher rates of correct model identification.
To investigate this, we extended the previous simulations to fit
several parametric forms (exponential, spherical, and power) to
the various binned average estimators (i.e., the unweighted es-
timate, the weighted estimate introduced here, and Cressie’s ro-
bust weighted estimate) using the approximation to weighted
least squares mentioned previously. The parametric form that
resulted in the lowest weighted error measure was then deemed
the form selected by that particular binned average—type esti-
mate. So for each binned average—type estimator, given a set of
simulation conditions, we can determine the proportion of the
time that a particular estimator identified the correct parametric
form. For datasets with no clustering of observed locations, all
three binned average estimators performed comparably, but for
the cluster process described earlier, gains of 5-10% over the
unweighted estimate were typical for the weighted estimate,
whereas gains over Cressie’s weighting were typically in the
10-15% range for the weighted estimate.

7. SUMMARY

With spatially nonuniform data, clusters of points become
highly influential in the classical variogram estimate (especially
for distances that happen to equal the distance between two
clusters). When standard practice is followed and equal weights
are given to all pairs of points, the resulting variogram estimate
can be inefficient and thus highly unstable. These problems are
reduced using a weighted variogram estimate that downweights
data points in denser areas. We have demonstrated that one
tractable form of these weights can lead to improved estimates.

We have made a number of assumptions in the present work,
and generalizing these could add to the value of the method. It is
not clear how the assumption of intrinsic stationarity in lieu of
second-order stationarity would affect the weights, but other as-
sumptions clearly would have a meaningful impact. As a simple
example, if the observations had heavier tails than a normal dis-
tribution, then the sample variance of y would be greater than
in the case of normally distributed data. Hence when we esti-
mated y (07), we should downweight large clusters even more
strongly than in the Gaussian case. Another extension would
be to consider the effect of anisotropy. In that case, we could
use ellipsoidal neighborhoods to compute the n; for each i. This
necessitates further investigation.

To summarize our method, the goal is to compute a semi-
variogram estimate p(d) as a function of distance d using
the weighted-average formula (3), with local point densities n;
computed using an estimated distance scale 5. The steps are as
follows:

1. Begin with an initial estimate of the semivariogram,
7@ (dy) in bins dj, using the simple method of unweighted
averages within bins, and choose an initial value for the
distance scale §.
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2. For each point i, compute n;, the number of points (in-
cluding point i itself ) within a radius § of the point.

3. For computing 7 (0"), the semivariogram in the first bin,
assign to each point i the weight w;(0) = \/2/n;.

4. In each bin dy for k > 1, compute )?(j+1)(dk) given
the previous estimate, p ) (dy), assigning to each point
i a weight equal to wi(dy) = (p(OF) + [pP(dy) —
7O 5)m)~".

5. Reestimate the semivariogram using (3) and the newly
computed weights.

6. Recompute § to minimize the cross-validatory measure of
mean squared error as described in Section 4.2, a measure
motivated by the assumed smoothness of the variogram
for large distances.

7. Repeat steps 4—6 until convergence.

This procedure is algorithmic and could be used automatically
for classical variogram estimation (e.g., replacing the vgram
command in the fields library for the statistical software R). An
R function that implements the algorithm (calling C routines) is
available for free at www.biostat.umn.edu/~cavanr.

A related idea is to use weighting to adjust for sampling bias,
as is done in the survey literature (see Lohr 1999). In our con-
text, this would be appropriate for estimating the average var-
iogram of a nonstationary process. For example, in the radon
problem, one might be interested in a geographical rather than
a population-weighted average. This would presumably suggest
even further downweighting of the points from densely popu-
lated areas, with the amount of downweighting depending on
the extent of the estimated nonstationarity of the process. Fur-
thermore, these considerations naturally lead to considerations
regarding optimal sampling schemes for geostatistical problems
in which the goal is to estimate the variogram; such consid-
erations are currently being pursued. Finally, another avenue
for investigation of these matters is provided by the theory of
marked point processes, but we leave these considerations to
future research.
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APPENDIX A: DERIVATION OF THE SAMPLING
VARIANCES FOR THE CLUSTERED
VARIOGRAM ESTIMATE

A.1 Setting up the Problem Using the Multivariate
Normal Distribution

We derive the variance of var(Ycpusters(d)), the estimated
semivariogram from the clustered data in the simple example
of Section 2, under the assumption that the data come from a
multivariate normal distribution with correlations as specified
by the variogram y ; in fact, we need only work with y (0") and
y(d).

We will need the following simple moment calculation: If u
and v are jointly normally distributed with means 0, standard
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deviations o, and correlation p, then E(u?v?) = (1 4+ 2p%)o*.
This can be derived using the iterated expectation,

E(uv?) = EEWV?|u))
= EW?E(0* )
=E(?(0*u? + (1 — pH)a?)
= 3p2(74 + (1 - p2)04
= (142p%)0c".

A.2 Evaluating the Variance by
Decomposing the Summation

We are now ready to estimate var(Veusters(d)), the variance
of the classical semivariogram estimate from two clusters con-
taining m and my points and separated by a distance d. Let yj
represent the ith value of the process in cluster k for k =1, 2.

Our basic strategy is to evaluate var(Pelysters) = E( Aczlusters) —
(E(ﬁclusters))z. From the definition of the variogram, we have
approximately (due to binning) E(vi1 — yi2)? = 2y (d), and thus
E(pclusters) = m 2721 ]r-n=21 2]/ (d) = )/(d), which makes
SENSe; Pelusters 1S an approximately unbiased estimate (approxi-
mate due to the binning).

To determine E(?Czlusters), we decompose the square of sums,

1 my my
A2 2
Yclusters — dm2m? <Z Z(yil —y2) )

1m2 i=1 j=1

my mp
x (ZZ(yn—yjz>2>. (A.1)

i=1 j=1

This summation has m%m% terms, which fall into three cate-
gories:

1. mymy terms of the form (y;; — yj2)4: products of two iden-
tical factors

2. mymy(my +my — 2) terms of the form (yi1 — yp2)? (i1 —
yp)? or (vit = yp)* (it — yy2)? for i # i’ and j # j': one of
the points is common to both pairs

3. mymp(m1 —1)(my — 1) terms of the form (y; —yjz)z(y,vl —
yy2)? for i #i and j # j': two different pairs of points.

We separately figure out the expectation of each of these three
terms, nothing that, by symmetry, all of the terms in each cate-
gory have the same expectation:

1. The squared term, E(y;; — yj2)4, is simplest. The differ-
ence (y;1 — yj2) has approximately mean O and variance
2y (d). Thus, assuming normality,

E(i —yp)* ~ 12y (). (A.2)

2. To evaluate the term E((y;; — yjz)z(yiq — yjz)z), we work
with the joint normal distribution of the two factors (y;; —
¥j2) and (y;1 — yj2). Each approximately has mean 0 and
variance 2y (d), and their covariance is approximately

E(it = y2) it — y2) 2y (d) — y (0™).
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We can now use the E(u?v?) result derived at the begin-
ning of this appendix to obtain

E(0it — )i — yj2)?)
~ 12p(d)> + 2y (07)* = 8y (d)y (0T). (A3)

3. We determine E((y;] — yjz)z(yi/l — yj/z)z) in a similar way.
The two factors (y;1 — yj2) and (yy; — yy2) have a joint
normal distribution, each with approximate mean O and
variance 2y (d), and their covariance is approximately

E(i1 —y2) 01 — yp2) 2 2(y(d) — y(07)).
The E(u?v?) result then yields
E((vit — ) (it — ){/’2)2)
~ 12y (d)* 48y (07) — 16y ()y (01).  (A4)

Expressions (A.2)—(A.4) give the approximate variances of
the individual terms of (A.1); putting them all together yields

B2 @t 21— = — 3w L), 0ty
clusters 4m1 4m2 2m1m2
1 1
41— — — —Jy@yo*
( 5 )y( ) (0%).

We can now determine the approximate variance of the estima-
tor,

Var();clusters (d))
= E();czlusters) - (]':‘(];clusters))2
3 3
~y@r 21— - 0%)?
Y+ ( 4my 4m2+2m1m2)y( .
1 1
—41= 5 = 5y @O0, (A.5)
2m;  2m

A.3 Approximate Factorization of the Variance

We can approximate expression (A.5) with the simpler form,

1
Varapprox();clusters @) =2yd—-|1- V(O+)
mj

1 +
X[)/(d)— <1 - —)V(O )], (A.6)
my

which conveniently factors into a term for each cluster. This ap-
proximation is exact for m; = my = 1 and in general has a rela-
tive error of at most 1. The relative error of (A.6) as an approxi-

mation to (A.5) [i.e., (var(Pelusters (@) — VaTapprox (Velusters (@)))/
var(Velusters (d))] can be expressed as

1 my g ey
3 2
42 =21 = g = )+ = o — G+
where x = y(d)/y (07). Note that
1 1 3 3 2
2
o1l — e — )1 -
* x( 2my 2m2> + dmy  4my + mimy
3 ! 1\\?
a 2m1 2m2
1 1\? 3 3 2
2m 1 2m2 4m1 4m2 mimy
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so that if y(d) > y(0") (as would usually be the case), then
x> 1, and so

1 1 \\? 1 1\?
(1= =5—)) 2(5—+5—) .
2my 2my 2m 2my

which implies that the denominator in our relative error expres-
sion is bound.ed from below by T T am t mlmz . Hence the
relative error is bounded from above by the expression

1 1 2

my m_z_mlmz

=t et

m1 nmy

and this latter expression is bounded from above by 1 (the value
to which it converges in the limit m| = 1, my — 00).

APPENDIX B: CALCULATIONS RELATING
TO THE CHOICE OF §

Here we provide details on the computations for approximat-
ing the average variance of the semivariogram. These computa-
tions provide a motivation for the method used to determine the
distances over which to summarize clustering in the data. The
dependence of y;(d) on §is suppressed throughout.

Fork > 1,

E[ (dy) — y (di)]
=E{[p(d) — P(d-DT
—2[y(dy) — p(di—D]1ly (dx) — P (di-1)]
+ [y (di) — P (di—DT?},
but
Ely (dy) — 9 (dr-1)]?
=E{[y(d) — ydi-)]?
—2[y(dk) — y (dr—DY (dk—1) — v (dr-1)]

+ [P (dk=1) — ¥ (de=DT?}
~E{ly (d) — v (die) P + [9 (die1) — y (di—D)1?},

because y (dy) is approximately unbiased (due to binning) for
any §. Hence if we define

g(k) =E[p(dy) — v (@dp]?,
then we find that
g(k) ~ Ely (di) — y (di—1)1?
—2E[p(dr) — y (dk—1)1ly (dr) — y (dx-1)]

+E[p(dy) — P(d-)]* + gk — 1)

for k > 1. If we define
= E[y (dp) — y (di—1)]
—2E[y (di) — P (de—1)]1ly (di) —

+E[P(di) — 7 (die—)]?,
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then we are choosing § to minimize % Zszl g(k) ~E[y(d)) —
y(d)1? + % Zszz(K — k 4+ 1)a(k), and because one term of a
is not a function of 3, we define

b(k) = —2E[ (d) — P (di—1)1[y (di) — P (dk—1)]
+E[P (dk) — P (dk—1)T?

and minimize E[} (d1) — v (d)]* + %ZkKZZ(K —k+ D)bk).
We can use the recursion for g to solve for g(k) as a function of
g(K): g(k) ~ g(K) — Y1, | a(j). Hence

(k — Da(k)
K

’

1 K K
= D El7 ) —y P ~g(K) =}

k=1 k=2

and we choose § to minimize g(K) — Zszz (k—1)b(k)/K.

[Received August 2004. Revised May 2006.]
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