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Abstract

In the early phases of growth, resurgent epidemic waves of SARS-CoV-2 incidence have

been characterised by localised outbreaks. Therefore, understanding the geographic dis-

persion of emerging variants at the start of an outbreak is key for situational public health

awareness. Using telecoms data, we derived mobility networks describing the movement

patterns between local authorities in England, which we have used to inform the spatial

structure of a Bayesian BYM2 model. Surge testing interventions can result in spatio-tempo-

ral sampling bias, and we account for this by extending the BYM2 model to include a random

effect for each timepoint in a given area. Simulated-scenario modelling and real-world analy-

ses of each variant that became dominant in England were conducted using our BYM2

model at local authority level in England. Simulated datasets were created using a stochas-

tic metapopulation model, with the transmission rates between different areas parame-

terised using telecoms mobility data. Different scenarios were constructed to reproduce

real-world spatial dispersion patterns that could prove challenging to inference, and we

used these scenarios to understand the performance characteristics of the BYM2 model.

The model performed better than unadjusted test positivity in all the simulation-scenarios,

and in particular when sample sizes were small, or data was missing for geographical areas.

Through the analyses of emerging variant transmission across England, we found a reduc-

tion in the early growth phase geographic clustering of later dominant variants as England

became more interconnected from early 2022 and public health interventions were reduced.

We have also shown the recent increased geographic spread and dominance of variants

with similar mutations in the receptor binding domain, which may be indicative of convergent

evolution of SARS-CoV-2 variants.
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Author summary

Emerging variants of SARS-CoV-2 have been a significant catalyst of epidemic waves of
incidence globally. These variants have caused concern due to transmission advantages,
changes in the infection severity profile and immunological evasion. Understanding the
spatial dispersion of a novel variant can be obfuscated by limited geographic test coverage,
the ascertainment rate, and the proportion of tests that undergo sequencing or genotyp-
ing. Therefore, we have developed a spatial modelling approach based on the changing
mobility patterns across England. We have used a BYM2 model structure that has been
extended to include a random effect on each timepoint to account for variable daily test-
ing patterns. This approach was assessed using simulated epidemic scenarios in England
that would accurately reflect the spatial patterns of an emerging variant. The model esti-
mated variant prevalence more accurately than unadjusted test positivity in every scenario
tested particularly, when testing coverage was low and missing for some locations. We
have used this modelling approach to estimate the spatial dispersion and growth for every
dominant variant since the start of the SARS-CoV-2 pandemic.

Introduction

The COVID-19 pandemic has precipitated unprecedented public health interventions to
reduce the transmission of the virus. Outbreaks of emerging variants have driven resurgent
epidemic waves of incidence globally from SARS-CoV-2. The public health response to these
outbreaks can be impacted by the limited understanding of emerging variants’ spatial disper-
sion. This is a consequence of limited data at the start of an outbreak and geographical bias in
testing coverage and reverse-transcription polymerase chain reaction (RT-PCR) sequencing or
genotyping.

Localised geographic monitoring of SARS-CoV-2 transmission across the pandemic in the
UK has been largely conducted through the widespread use of RT-PCR and lateral flow tests
(LFTs) [1,2]. RT-PCR testing became available for all symptomatic individuals in the UK from
May 2020 [3] and more accessible across the country as laboratory infrastructure was devel-
oped [4]. Geographic and socio-economic disparities in test availability were apparent at the
start of the pandemic [5,6] and this became less significant with the Home Test Service (HTS)
that delivered RT-PCR tests through the postal service. In October 2020, LFTs became avail-
able in a limited capacity, and began to be used more widely in April 2021 within institutional
settings and for asymptomatic infections [7]. Public health policy initially required that posi-
tive LFTs were confirmed with an RT-PCR test although this policy was later dropped. Consid-
erable ascertainment bias was an inevitable consequence of this test by request strategy, which
impacted the representation of minority and lower socio-economic groups [5] in the testing
data. Targeted or surge testing was conducted in localised areas with high levels of transmis-
sion throughout the pandemic [8] or where novel variants had been detected [9]. This ham-
pered the spatial and temporal understanding of localised prevalence as some areas were
disproportionately sampled. Free mass testing came to an end in April 2022 [10] and conse-
quently RT-PCR tests are only conducted for the clinically extremely vulnerable, in hospital
settings, and until the end of March 2023 through the Office of National Statistics Community
Infection Survey [11].

Resurgent outbreaks of COVID-19 have been largely driven by more competitive variants
of SARS-CoV-2 and changes in the policy of non-pharmaceutical interventions (NPIs). The
spatial patterns of emerging variant introductions have been heterogeneous and influenced by
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the site of emergence and the number of seeding events. The Alpha variant, which was first
detected in England from a sample in September 2020, caused the second wave of incidence of
SARS-CoV-2 infections in the UK [12]. Transmission of this variant initially clustered in the
county of Kent and then spread throughout England but was particularly concentrated in the
South East of England [13]. The Delta variant began replacing Alpha [14] in April 2021, which
was during a time of national NPI easing. Delta was largely introduced through international
travel from India, where it was first detected in late 2020 [15]. The strict NPIs that were
enforced, slowed the rate that Delta replaced Alpha, leading to one of the longest periods of
dominant variant replacement [16]. Despite the long period of time it took for Delta to become
dominant, early cases of this variant were spatially dispersed due to many early seeding events
across England [14]. The Delta period was characterised by oscillations in incidence, which
was likely a result of NPI easing throughout 2021.

Omicron BA.1 was first detected in South Africa in November 2021 and importations of
this variant were detected in England by the end of the month [17]. The outbreak of Omicron
BA.1 was initially concentrated in the South East of England, with a considerable proportion
of the international importations into this area. It had the shortest replacement period of any
variant to date and had the greatest absolute growth rate [16]. Omicron BA.2, which was intro-
duced in December 2021, began to replace Omicron BA.1 in January 2022 [17]. Then in May
2022, Omicron BA.4 and BA.5 began to grow in the UK, with an early growth rate advantage
noted for Omicron BA.5 [18]. Despite Omicron BA.4 becoming dominant in South Africa in
April/May 2021, it was largely Omicron BA.5 and its sublineages that went on to become dom-
inant across the regions of England [19].

Understanding the localised spatial growth of emerging variants is obfuscated by disparities
in geographic test coverage, the ascertainment rate of infections between areas, and the pro-
portion of diagnostic tests that undergo sequencing or genotyping. Approaches to understand
localised growth have included the use of generalised additive models to calculate the instanta-
neous growth rate for each Lower Tier Local Authority (LTLA) [14]. These models describe
growth within LTLAs but do not account for spatial dispersion and can be limited by the ascer-
tainment rate of tests being an accurate representation in the trend of incidence. Exceedance
models [20] were commonly used by Public Health England to differentiate LTLAs based on
the RT-PCR positivity rates. A limitation of this approach is that a meaningful baseline, which
is required to calculate the exceedance, can be difficult to define particularly with unbalanced
testing coverage across different geographic levels. The use of presence-absence modelling to
understand the spatial spread of SARS-CoV-2 were explored by Smallman-Raynor et. al [21]
and this approach can be useful to monitor the rate of spatial dispersion. However, this
approach will not allow for the determination of within LTLA spatial growth or the differentia-
tion in variant prevalence between locations.

In epidemiological modelling, mobility data plays a key role in performing large-scale spa-
tio-temporal modelling of epidemics. Often, mobility data is used to construct spatial metapo-
pulation models of epidemics, which use simulations to model the course of the epidemic,
such as projections that estimate the impact of lifting lockdowns [22], investigating the effects
of travel bans [23], and the spatial spreading of epidemics [24]. In this paper we seek to infer
the spatial spread of emerging variants. Simulation-based approaches are not suitable for this
problem given that parameter estimates for emerging variants are likely to be highly uncertain.
Therefore, rather than using mobility data to perform simulations, we are interested in using
mobility data to conduct inference and to inform prior distributions. For example, Lemey et.
al. used mobility data in conjunction with genetic sequence data to reconstruct the phyloge-
netic tree for SARS-CoV-2 [25] and influenza H3N2 [26]. Models such as the BYM and BYM2
are often used to conduct the mapping of a disease or inferring the spatial pattern of a feature
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of a disease [27–29]. However, in such models it is common for the spatial correlation struc-
ture to be determined by either geographical distance, proximity, or adjacency. Given the
geography of the UK however, and our goal of inferring the spread of an emerging variant, it is
likely that these proxy choices are not appropriate for determining spatial relationships.

In this paper, using telecoms data, we derive mobility networks that describe the movement
patterns between LTLA’s in England, which we use to construct the spatial structure of a
Bayesian BYM2 spatial model. We have performed spatial modelling of emerging variant
growth using whole-genome sequencing, and genotyped RT-PCR tests. We further assess the
performance of the model through simulated epidemics with scenario analysis.

Methods

All data were anonymised prior to data access and conducted in line with the UK govern-
ment’s response to COVID-19.

Data

The data used in this study was aggregated to LTLA level geography, which is a local govern-
ment geographic area defined by the UK government and there were 309 areas designated in
England during the majority of this study. RT-PCR test results were sourced at LTLA from the
Second Generation Surveillance System. RT-PCR whole-genome sequencing and genotyped
tests were categorised through a rules-based decision algorithm for the confirmed and proba-
ble categorisation of variant and mutation (VAM) profiles from genotype assay mutation pro-
files. This information is provided at an individual level through the UK Health Security
Agency (UKHSA) internal VAM linelist. Analysis of variants with receptor binding domain
mutations which converge on the same site including: R346T, N460K, K444T, G446S, F486S,
R346I, K444M, N450D, V445A, K444R, F490S, and F486P was also conducted. Population
level data for LTLAs in England was provided by the 2011 population adjusted Office of
National Statistics census [30]. Mobility data was sourced from a mobile telecom provider,
which supplied the average number of journeys for each given hour in a day between origin
and destination LTLAs by commuters and ‘other’ [31]. This data was aggregated to provide a
single relative weighting for each origin-destination pair by week, covering the period of the
study, which was the 12th November 2020 to the 27th October 2022. Maps were created from
geographical files using the House of Commons Library, which is under the Open Parliament
License v3.0 [32].

BYM2 spatial model

We are interested in modelling the spread of emerging variants across England, given that we
have various indicators of variant proportions with heterogenous coverage. Therefore, our aim
is to use a modified BYM2 model [33,34] for spatially correlated count data with random
effects to estimate the proportion of infections in an area that are due to a specific variant.

Each of the n2N areas in our dataset are assigned an integer identifier, such that A = {1,. . .,
n} denotes the set of all areas. For each area we observe T2N days of data. Hence, for a given
area i2A, and a given time point t2{1,2,..,T} we observe the pair (Ni,t, yi,t) where Ni,t2N[{0} is
the number of positive tests and yi,t2{0,1,..,Ni,t} indicate the number of test results that were
infected with our target variant. Therefore, our aim is to model pi,t2[0,1] using the likelihood
function

yi;t ⇠ BinomialÖNi;t; pi;tÜ;
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where pi,t is the proportion of cases that have variant status in an area i at time t. To model p a
generalised linear model with spatial correlation and random effects is employed, where p =
logit-1(α+γ). As in standard generalised linear models, α is our intercept term, whereas the γ
vector is the contribution from a combined spatial and random effects model that we adapt to
our setting from the work of Riebler et. al [33] who developed the BYM2 model. The contribu-
tion of the BYM2 model over the original BYM model was to re-parameterise the combined
spatial and random effects such that it is easier to set priors on the relative contribution of the
spatial effects versus the random effects.

The formulation of BYM2 does not include a time dimension, and as such the combined
spatial and random effect for an area i is defined using

gi à yi á fi à s
ÅÅÅ
r
t

r
� y∗i á

ÅÅÅÅÅÅÅÅÅÅÅ
1� r
p

� f∗
i

✓ ◆
;

where θ2Rn is the spatial component, and f2Rn is the random effects component. These
components are a rescaling of θ*, f*2Rn which are the spatial and random effects components
respectively scaled to have unit variance. As such, the overall variance of the combined spatial
and random effects is controlled by σ2R+, and r2[0,1] controls the relative contribution of
spatial effects against the random effects. The parameter τ is a scaling component adjusting for
the fact that the random effects and the spatial effects occur on different scales and allows for
meaningful priors to be set.

For our data, a key concern is the presence of surge testing effects that can cause sampling
bias. It is possible many tests could be conducted over a short period of time and in specific
locations that may be at high risk of being infected with a single variant. One example might
be that a variant of interest is detected in a care home, which could lead to the testing of all
members of that care home resulting in many tests that are positive for that variant of interest.
Given the scale of surge testing in comparison to regular testing, it is possible for a small num-
ber of days of data to skew the sample prevalence for a given area, therefore we consider it
appropriate to model the data at a daily resolution, and to adjust for random effects.

Consequently, we find it necessary to extend the BYM2 model to include a daily-level ran-
dom effect for each LTLA via

gi;t à yi á fÖ1Üi á fÖ2Üi;t à s
ÅÅÅÅÅ
r1

t

r
� y∗i á

ÅÅÅÅÅ
r2

p � fÖ1Ü;∗i á ÅÅÅÅÅ
r3

p
fÖ2Ü;∗i;t

✓ ◆
;

where θ is an LTLA level spatial component, f(1) is an LTLA-level random effect component
and f(2) is an LTLA-time level random effect component. The three different components are

a rescaling of y∗i ;f
Ö1Ü;∗
i ;fÖ2Ü;∗i;t which are constrained to have unit variance. The proportion of

variance attributed to each component is controlled via r 2 R3
á which is constrained such that

P3

ià1 r à 1 (i.e., a simplex). This parameterisation maintains the properties that Riebler et. al.

[33] identified as being advantageous, while incorporating area-time level random effects.
For the spatial component θ* an intrinsic conditional autoregressive (ICAR) random vari-

able is used—a degenerate case of conditional autoregressive (CAR) random variables that are
commonly used in spatial modelling. The distribution of the elements of θ* are defined condi-
tional upon a weighted sum of the other elements of the random variable:

yijy�i ⇠ N Ö
X

j6ài

wijyj; vÜ;

where wij2R+ represents the spatial correlation between two areas, and θ−i is θ with the ith ele-
ment omitted. This conditional definition of the ICAR random variables results in a Gaussian
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Markov random field, defined on a weighted graph structure that we need to construct. The
spatial component is further constrained to sum to zero to ensure identifiability of the model.
The prior distributions for the model parameters can be seen in Table 1.

As an input to the ICAR random variables we construct a graph of our LTLAs, where
each LTLA is represented as a vertex, and two LTLAs are connected by an edge if we con-
sider them to be connected in some sense. If two regions are not connected by an edge, then
this implies wij = 0 in the ICAR random variable. This graph encodes the spatial correlation
structure of our data in an adjacency matrix which we use as an input for computing the dis-
tribution of our ICAR random variables. The spatial spread of human-to-human transmit-
ted pathogens is, by its nature, facilitated by individuals from one area visiting another area
and infecting or being infected. This suggests that methods for constructing the edge net-
work that do not account for mobility patterns will not truly capture the spatial correlation
of the pathogen. For example, one common method of constructing the edge network is
spatial adjacency, where two areas are connected if they are adjacent to one another, how-
ever this method could in theory connect two areas where there is little to no human mobil-
ity between those areas. Alternatively, commuter towns where a substantial portion of the
population commute to another area to work may not be directly connected if there is no
spatial adjacency, despite these commutes coupling the epidemic in the two areas. As such,
we have obtained and used telecoms mobility data to construct a graph of how individuals
move between areas, termed the mobility rate graph. The resulting graph is weighted, and
undirected, with no self-edges allowed.

We introduce sparsity in the mobility rate graph to keep computational times reasonable,
by removing edges if wij<0.001*max(W) where W is the matrix of unweighted edges prior
to thresholding. The resulting graph consists of a single component, with an edge density of
15.6%, and each area is connected to 48 other areas on average. In Fig 1 we visualize the
sparse edge network, where edges with low weights have been removed, overlaid on a hex
map of England. The size of each LTLA in the hex map corresponds to size of the population
in that area. Each edge is plotted between the centroids of different LTLA’s, with the inten-
sity of the edge weight corresponding to the rate of journeys between those two LTLA’s,
normalised to take values in [0,1]. For comparison, the spatial adjacency-based network
graph has an edge density of 1.6%, and each area is connected to 5.2 other areas on average.
As discussed previously, the scaling factor τ must be computed for this, and we find that
τmobility = 1.981.

The model is implemented in Stan [35], and we use Hamiltonian Monte Carlo to draw
samples from the posterior. We use 4 chains, discarding the first 2000 samples from each
chain as warm up, and each chain draws 1000 samples from the posterior. Model conver-

gence is assessed through potential scale reduction factor or bR where a value less than 1.01 is
desirable.

Table 1. Prior distributions for key model parameters.

Parameter Prior Distribution

α N Ö0; 1Ü
β N Ö0; 1Ü
σ N Ö0; 1Ü
r Dirichlet(2,2,2)

f(1),*, f(2),* N Ö0; 1Ü
θ* ICAR prior with unit variance and constrained to sum to 0

https://doi.org/10.1371/journal.pcbi.1011580.t001
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Analysing the spread of variants across England

The BYM2 model can be fit for various time periods, typically for an infectious disease a mean-
ingful window is in the order of a week and up to a month. We modelled SARS-CoV-2 variants
using the proportions of sequenced or genotyped RT-PCR tests, with variant designations,
across defined temporal windows.

Synthetic metapopulation analysis

A key goal of our work is to understand the robustness and performance of the inferences
made by the BYM2 model, particularly when provided with challenging data scenarios that
may arise as the SARS-CoV-2 response continues to evolve. We have identified the following
as potential scenarios that may prove challenging for the BYM2 model and could potentially
degrade its performance: extremely sparse data availability; large random effects due to tar-
geted testing; and highly localised spread of variants, such as clusters of a new variant. To

Fig 1. The mobility network overlaid on a hex map of England, where the edge weight describes the rate of journeys between
different LTLA’s, normalised to take values in [0,1]. Created from geographical files using the House of Commons Library, which
is under the Open Parliament License v3.0.

https://doi.org/10.1371/journal.pcbi.1011580.g001
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explore model performance under these scenarios, we simulated the spatial spread of a syn-
thetic SARS-CoV-2-like epidemic using a susceptible infected recovered (SIR) metapopulation
model [36]. The model is at LTLA-level and spread between different LTLAs was parame-
terised using the mobility dataset.

Each individual in the metapopulation model is in one of three states: susceptible, infected,
or recovered. We let K = {1,. . .,n} represent a set of labels for each of the n different areas in
the model. Let the state of the epidemic in the kth area, k2K at time t2R+ be is given by Ak(t)
which describes the size of the susceptible, infected and recovered subpopulations respectively,
Ak(t) = (Sk(t), Ik(t), Rk(t)). Each area has fixed population given by Nk = Sk+Ik+Rk, and we do
not model birth/death processes, or migration between areas.

The infection is propagated by a contact occurring between different individuals. Specifi-
cally, if there is a contact between an infected individual, and a susceptible individual, then
there is a probability of transmission occurring which can result in the susceptible individual
moving to the infected state. For within-area contacts, we assume homogenous mixing. This
assumption implies that each case makes contacts at the same rate, and the recipient of those
contacts are selected uniformly at random. For between-area contacts, we specify the total
rates of contacts between those two areas using our mobility data, however we still assume
homogenous mixing in the sense that given a contact has occurred, the two individuals making
the contact are selected uniformly at random from each area.

Let β12R+ be the within-area force-of-transmission parameter, defined as the rate that a
given infected makes infectious contacts–contacts that would lead to infection if the contact
recipient is a susceptible individual. As the contacted individual is selected uniformly at ran-
dom, for the kth area the probability that the infectious contact is to a susceptible individual is

given by Sk
Nk

. Therefore, since there are Ik infected in the area, the rate at which susceptible indi-

viduals in area Ak are infected due to within-area transmission is given by:

b1

IkSk
Nk

; k 2 K

Next, we consider the rate at which susceptible individuals in area Ak are infected due to
contacts with infected individuals in area Aj, for j, k2K. So that our model is parameterised
using mobility networks, we assume that the rate at which contacts occur between areas j, k is
proportional to wj,k. The probability that a contact is between an infected individual in area j,
and a susceptible individual in area k is given by

IjSk
NjNk

. If we assume that each contact causes

infection with probability β2, then the rate at which susceptible individuals in area k get
infected due to transmission from infected individuals in area j is proportional to

b2wjk

IjSk
NjNk

; j; k 2 K; j 6à k

In practice, since we have assumed that wjk is proportional to the number of contacts, we
include this proportionality constant in β2, so that β22R+ rather than specifically being a prob-
ability. As a result, the above equation gives the exact rate at which susceptible individuals in
area k are infected due to contacts with infected individuals in area k.

When an infected individual recovers, they move from the infected state to the recovered
state. For all infected individuals, recovery happens at constant rate γ2R+. Once an infected
individual is in the recovered state, they remain there and cannot return to the susceptible or
infected state.
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Putting this all together, we arrive at a system of ordinary differential equations that
describe the spread of the infection. For k2K we have the state of the epidemic evolves accord-
ing to

dSk
dt
à �b1

SkIk
Nk
� b2 �

X

j2NÖkÜ

wjk

IjSk
NjNk

;

dIk
dt
à �gIk á b1

SkIk
Nk
á b2 �

X

j2NÖkÜ

wjk

IjSk
NjNk

;

dRk

dt
à gIk;

where N(k) denotes the neighbour set of area Ak, defined as areas that are connected to Ak by
an edge.

Two epidemics, one labelled ‘variant A’ and the second labelled ‘variant B’, are simulated
using this metapopulation model. These are independent epidemics, and we do not simulate
two variants competing for dominance. The spatial pattern of each synthetic variant is
obtained by sampling the epidemics at different points in time. Testing data for each LTLA
was generated by assigning probabilities that, during our assumed time period of interest,
infected cases are tested with probability ρ2[0,1]. We make the simplifying assumption that all
tests of infected individuals return a positive, and that all tests of susceptible or recovered indi-
viduals return a negative. For an area Ak, let the number infected with variant A be given by IAk ,

and the number infected with variant B be given by IBk . The number of tests positive for variant

A in area k is given by PA
k ⇠ BinomialÖIAk ; rÜ, and the number of tests positive for variant B in

an area k is given by PB
k ⇠ BinomialÖIBk ; rÜ.

In order to add random effects into the data generating process, each area is assigned prob-

abilities such that the kth area has probability ~rA
k of testing an individual who is positive with

variant A, and probability ~rB
k of testing an individual who is positive for variant B. Both ~rA

k and
~rB
k are obtained by perturbing the baseline probability of testing a infected individual, ρ, from

it’s original value via ~rA
k à logit�1ÖlogitÖrÜ á xA

k Ü and likewise for variant B where ξA, ξB~N(0,

σ) for some value of σ2R+.

The true proportion of variant B in area Ak is given by Zk≔
IBk

IAk áI
B
k
, and let bZk be an estimate of

ηk. We evaluate the performance of this estimate using the L1 error defined as:

S1 à
Pn

kà1 j bZk � Zkj=n, which is interpreted as the average absolute difference between the

true value, and the estimate across all areas. For the BYM2, we use the posterior mean as our

estimate of ηk, which we denote as dZbym2
k . We compare the performance of the BYM2 estimate

against a simple binomial proportion estimator given by bZnaivek ≔ PBk
PAk áP

B
k
, which we term the naïve

estimator, given that it does not include any spatial autocorrelation.
The BYM2 model performance is then assessed under three main scenarios that describe

different spatial patterns of variants, and as such present different challenges to conducting
inference. For scenario 1, variant B has a relatively homogenous spread across England, and
this scenario may simulate a variant that is unable to completely replace the existing dominant
variant or is slowly replacing with little to no geographical heterogeneity. Scenario 2 introduces
a more complicated spatial spread pattern, with variant B primarily concentrated in London,
though with significant case numbers observed in most areas of England. This spatial pattern
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is typical for variants that are being imported at high rates, as cases in London are expected to
take off first due to its intrinsic connectedness and large population sizes, before reaching less
well-connected areas of England. Scenario 3 simulates clusters of emerging cases that are
highly localised to specific regions of England, as might be expected for a newly evolved variant
undergoing rapid growth but has not yet disseminated across England. As such, scenario 3
represents the most challenging spatial spread pattern under which inference must be con-
ducted. Moreover, estimating the localised spread could be further complicated if sequencing
or targeting coverage is particularly poor in an area with a localised cluster.

The ability of the model to conduct inference under each scenario is first conducted under
ideal conditions, and then stress-tested by exploring model performance under modified ver-
sions of the scenario that have small sample sizes resulting in several areas with missing data,
large random effects, and simultaneously small sample sizes and large random effects.

Results

Simulation Study Results

Descriptive summaries and insights from each scenario of the simulation study can be seen in
Table 2. The average error and the total reduction in error for the scenarios can be seen in
Table 3. For scenario 1, we assumed a relatively uniform spread of variant B across England–

Table 2. The summary and key insights for the simulation scenarios.

Scenario Scenario summary Key insights

1 This scenario was designed so that an emerging
variant had relatively uniform spatial dispersion
across England, with no well-defined clusters of
prevalence. Small random effects were present
during the data generation process. In several
LTLAs there were zero samples, with no LTLA
having more than 150 samples. The relatively
uniform spatial dispersion would not have been
immediately apparent from the data.

In this scenario the measured model performance
was high, estimating a spatial spread pattern that
was very close to the truth, and it successfully
imputed the variant proportion for areas with no
samples.

1.1 This scenario assumed the same spatial dispersion
and random effect sizes as scenario 1. However,
sample sizes have been reduced so that there were
no LTLAs which had more than 25 samples.

Despite small sample sizes at LTLA, the model was
able to recover the spatial dispersion pattern
successfully. There was some evidence of bias
towards a larger proportion of variant B.

1.2 This scenario assumes the same spatial dispersion
and sample sizes as scenario 1. However, the scale
of random effects had been increased during the
data generating process.

The presence of large random effects impeded
model performance. The fitted spatial spread
pattern was less smooth than in scenarios 1 and
1.1.

1.3 This scenario assumed the same spatial dispersion
as scenario 1. However, the sample size was reduced
and the scale of random effects in the data
generating process were increased.

Model performance was again impeded by large
random effects, and the fitted spatial dispersion
was less smooth than the true spatial dispersion.
However, the additional reduction in sample sizes
did not lead to a substantial reduction in model
performance compared to scenario 1.2.

2 In this scenario approximately 50% of cases in
London were variant B. In LTLAs that were not
strongly connected to London the prevalence of
variant B was very low. This pattern of geographical
concentration in London was observed in real
world data of emerging variants. Sample sizes range
from 0 to 170 at LTLA level, and random effects
were present but small.

The model correctly estimated the spatial
dispersion of variant B was concentrated in
London, with several emerging hotspots outside of
London.

(Continued)
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Table 2. (Continued)

Scenario Scenario summary Key insights

2.1 This scenario assumed the same spatial dispersion,
and random effect sizes as scenario 2. However,
sample sizes were reduced so that no LTLA had
more than 30 samples.

Despite the small sample sizes, the model correctly
estimated that variant B was spatially concentrated
in London. However, due to the small sample sizes
at LTLA level, some of the emerging hotspots
outside of London were not identified.

2.2 This scenario assumed the same spatial dispersion
and sample sizes as scenario 2. However, the scale
of the random effects in the data generating process
were increased.

The model performed well in terms of estimating
the central cluster of cases in London.
Additionally, the model did estimate that there
were some hotspots outside London, however the
spatial dispersion patterns for these hotspots were
not well recovered in some instances due to the
large random effects.

2.3 This scenario assumes the same spatial dispersion
as scenario 1. However, the sample size has been
reduced and the scale of random effects in the data
generating process has been increased.

The model performed well at estimating the
central cluster of variant B cases in London. Some,
but not all, of the hotspots outside of London were
also included in the spatial pattern.

3 In this scenario, we set up several dense clusters of
variant B cases. Outside of these clusters, there were
very few variant B cases, with the exception of some
early spread in London.

The model performed well in terms of estimating
the spatial dispersion for each of the localised
clusters and captured the initial spread of variant B
in London.

3.1 This scenario assumed the same spatial dispersion
and random effect sizes as scenario 3. However,
sample sizes were reduced so that no LTLA had
more than 25 samples.

The model performed well at estimating the spatial
pattern for each of the localised clusters, but the
initial spread of variant B in London was not
captured due to the small sample sizes at LTLA
level.

3.2 This scenario assumed the same spatial dispersion
and sample sizes as scenario 2. However, the scale
of random effects in the data generating process
were increased.

The model performed well at estimating the spatial
dispersion of the clusters outside of London, with
some small errors introduced by the random
effects. The initial spread of variant B in London
was also partially captured, with random effects
leading to errors in the estimated spatial patten.

3.3 This scenario assumed the same spatial dispersion
as scenario 3. However, the sample size has been
reduced and the scale of the random effects in the
data generating process was increased.

The model provided good estimates of the spatial
pattern of clusters outside of London and the
initial spread within London. In several LTLAs
nearby to the clusters the model over-estimated
variant B proportion due to the large random
effects and small sample sizes at LTLA level.

https://doi.org/10.1371/journal.pcbi.1011580.t002

Table 3. The average error for the naïve estimate (%), BYM2 (%), and total reduction in error (%) for the simula-
tion scenarios.

Scenario Average Error for Naïve Estimate
(%)

Average Error for BYM2 Estimate
(%)

Reduction in Error (%)

1 7.41 2.42 67.3

1.1 15.11 3.48 77.0

1.2 10.04 5.81 42.1

1.3 16.76 6.30 62.4

2 5.79 3.63 37.3

2.1 11.03 5.20 52.9

2.2 8.03 5.53 31.1

2.3 12.73 6.46 49.2

3 2.66 2.00 24.6

3.1 5.50 3.21 41.6

3.2 3.82 2.90 24.2

3.3 5.45 3.41 37.4

https://doi.org/10.1371/journal.pcbi.1011580.t003
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this was similar to the spread of Omicron BA.5. Sample sizes vary, with some areas having
close to 150 sequenced test results, and other areas having far fewer sequenced results. Notably,
some areas have no sequenced results, indicated in red within Fig A1 in the S1 Text, and the
model must impute the proportion of variant B for these areas. Across all variants of scenario
1, we found that the model offered an improvement over the naïve estimator–particularly
when there were very small sample sizes, and small random effects. As the random effects
increased in magnitude, the model still offered an improvement over the naïve estimator, how-
ever the amount of spatial smoothing performed by the model is reduced as the underlying sig-
nal is obscured.

Scenario 2 explores a situation where a new variant had emerged and was concentrated in
London and a few other regions that were highly connected to London. This was designed to
approximate the early spread of Omicron BA.1, where it clearly reached large well connected
population centres first, such as London, Manchester, Birmingham, before rapidly spreading
outwards. For the baseline version of the scenario, with small random effects and large sample
sizes, we found both the BYM2 and the naïve estimator were able to produce good estimates of
the localised spread patterns with the BYM2 modelling offering a modest improvement over
the naïve estimator. However, the benefit of the BYM2 modelling is highlighted for the scenar-
ios where there were small sample sizes and large random effects, where the modelling offered
a significant improvement over the naïve estimator.

For the final scenario, we considered small highly localised outbreaks of variant B. This sce-
nario may occur, if a new highly infectious variant evolved in England, and the initial infec-
tions were geographically spread out. This scenario is important, given that highly localised
clusters of infections can be subject to targeted interventions such as enhanced contact tracing.
For our simulated scenario, variant B was localised in the West Midlands, Essex, parts of

Fig 2. A clustered bar chart of the reduction in the average L1 error, for each scenario, variation, and model.

https://doi.org/10.1371/journal.pcbi.1011580.g002
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central London, and Gloucestershire. We found that the performance of BYM2 modelling over-
all provided improved estimates over the naïve estimator for all version of this scenario, with
the BYM2 modelling being particularly important when sample sizes were particularly small.
The BYM2 modelling did have slight difficulty in estimating the early spread of the variant in
areas of central London, where the weak signal is possibly obscured by random effects or noise.

Overall, we concluded that for all simulated scenarios, there was no discernible disadvantages
to using this model framework to estimate the spatial spread of a new variant. When the sample
sizes we provided to the model were particularly small, it became significantly more important to
use BYM2 model to estimate the spatial spread of variant and to produce outputs that could pro-
vide adequate situational awareness of the spread pattern. The scenarios with large random effects
showed a reduction in model performance, however there was still an improvement over the
naïve estimator. The magnitude of the random effects we considered in our model may be unreal-
istic, given what has been generally observed in real-world data, however the purpose was to stress
test the model to understand its performance in difficult conditions that may arise as the SARS--
CoV-2 response continues to evolve. The average L1 error across the modelled scenarios can be
seen in Fig 2 and the full results can be seen in Figs A1-A36 in the S1 Text.

Fig 3. Gene target and sequencing data coverage over time for RT-PCR positive tests in England.

https://doi.org/10.1371/journal.pcbi.1011580.g003
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Geographic coverage of sequenced RT-PCR tests and RT-PCR tests with
gene targets

The spatio-temporal variation of sequenced, genotyped and RT-PCR tests that provided gene
target information across the regions of England can be seen in Fig 3. We found that overall,
the South West had the lowest rate of tests that provided gene targets and Yorkshire and the
Humber, the North West and the North East had the greatest proportion. The probability of a
test being sequenced or genotyped was highly temporally heterogeneous with the greatest pro-
portion of tests sequenced observed in 2021. We also found, akin to gene target test coverage,
that the South West had the lowest proportion of RT-PCR tests that were sequenced and that
the regions in the North of England had the greatest proportion. Since the end of mass testing
in April 2022 all regions experienced a substantial decline in the proportion of tests being
sequenced but that the level is now roughly constant. Tests that provide information on the
gene targets of a case has largely ceased since April 2022.

Spatial modelling of emerging variants

Resurgent epidemic waves of SARS-CoV-2 incidence have been largely a consequence of
emerging variants in England. The BYM2 spatial modelling estimates for the growth of the
Alpha, Delta, Omicron BA.1, Omicron BA.2, and Omicron BA.5, through the use of
sequenced and genotyped RT-PCR test data, can be seen in Figs A37 to A86 in the S1 Text. The
modelled estimates were influenced by the spatial dispersion of the variant, localised rates of
growth, sequencing coverage, the number of tests conducted and the temporal spacing
between them.

There was increased sequencing coverage in the South East and London in November 2020
due to the detection of the Alpha variant (Fig A37 in the S1 Text). During the early phases of
growth for Alpha it was concentrated in Kent and the associated networks of this county in the
South East and London region of England (in particular, Norfolk, London boroughs, East Sus-
sex, and Essex), which can be seen in Fig 4. The dissemination of Alpha, as a result, came
through the branching out of networks associated with these areas. The Alpha wave remained
predominantly concentrated in the London and South East regions of England, until a rapid
increase in the spatial dispersion of this variant across all regions when it reached, nationally,
around 60% of sequenced cases (Fig A43 in the S1 Text).

In Figs A47 to A56 in the S1 Text we found that the proportion of PCR tests that were
sequenced markedly increased on targeted locations where Delta was detected, which can
cause increased geographic bias in the naïve test positivity data. In contrast to Alpha, with its
high early concentration in the South East and London regions of England, the Delta variant
saw more dispersive clustering across LTLAs in England (Fig 5), though particularly in the
locations within the North West, London, and South East regions. This led to a different spa-
tially dispersive pattern relative to Alpha and when Delta was at a prevalence of around 60%
nationally (Fig A53 in the S1 Text), it was highly concentrated in areas connecting the North
West and the South East of England, with lower prevalence in the South West and North East.

The early phases of growth for Omicron BA.1 were predominantly concentrated in the
South East, London, and the North West (Fig 6). This is a similar to the spatial pattern
observed for Delta, however the early growth phase of Delta was characterised by smaller clus-
ters of LTLAs with higher prevalence, due to NPIs, whereas Omicron BA.1 was more spatially
dispersive within these regions. During the early growth phases of Omicron BA.1 increased
sequencing was conducted within targeted LTLAs, and this period had greatest absolute num-
ber of tests that were sequenced or genotyped in England. The spatial spread of Omicron BA.1
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can be seen through its propagation across the mobility networks closely connected to London
and South East regions.

Omicron BA.2 began to replace Omicron BA.1 in February 2022 (Figs A67 to A76 in the
S1 Text). When Omicron BA.2 began to grow it was more spatially dispersed and regionally
homogenous than had been observed for previously dominant variants. This was likely a con-
sequence of earlier introductions of this variant in late 2021. However, the modelling illus-
trated that this variant was still predominantly dispersed from the London and South East
regions in the early stages of growth (Fig 7). We found that sequencing was also conducted in a
less targeted manner during the growth phases of Omicron BA.2 than had been observed in
December 2021 and January 2022 to detect Omicron BA.1.

The end of free mass testing occurred during the final stages of the Omicron BA.2 growth
period and therefore, the spatial coverage reduced substantially during the growth in Omicron
BA.5. Omicron BA.5 began to grow in May 2022 and this variant was predominantly in com-
petition with Omicron BA.4 in the early growth phases. We found Omicron BA.5 (Fig 8) was

Fig 4. The BYM2 estimated model positivity of the Alpha variant as a proportion of sequenced tests from 12th November 2020 to 21st March 2022.
Created from geographical files using the House of Commons Library, which is under the Open Parliament License v3.0.

https://doi.org/10.1371/journal.pcbi.1011580.g004
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notably more spatially dispersed across England in the early phases of growth compared to
Alpha, Delta, and Omicron BA.1, which was similar to the pattern observed for Omicron
BA.2.

The more recent waves of incidence have been difficult to ascribe to one particular lineage
due to the considerable diversity now observed for Omicron sublineages. We found that since
June 2022 there have been growth and considerable dominance of variants that share conver-
gent mutations in the RBD (Fig A87 in the S1 Text). This has been relatively spatially homoge-
nous with particular concentrations around London, the South East, the North West, and the
Midlands regions. We also found considerable spatial dispersion for three significant RBD
mutations F486V, N460K, and R346T in Figs A88 to A90 in the S1 Text.

Discussion

The distinctive and heterogeneous dispersion of novel variants of SARS-CoV-2 has con-
founded efforts to understand and slow their growth. This has been impacted by spatio-

Fig 5. The BYM2 estimated model positivity of the Delta variant as a proportion of sequenced tests from 28th April 2021 to 1st July 2021. Created from
geographical files using the House of Commons Library, which is under the Open Parliament License v3.0.

https://doi.org/10.1371/journal.pcbi.1011580.g005
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temporal variation of testing, sequencing, and genotyping coverage across the pandemic. We
found that through the development of a mobility derived network with a Bayesian BYM2
model we could substantially improve the spatial understanding of dispersive variant growth.
We have assessed this approach through simulation analysis to measure model performance
and real world data to understand the spatial growth of emerging variants. The model was
found to be of most utility when sample sizes are small, as it can provide improved situational
public health awareness of the spatial pattern of an emerging variant. This has become of
increased significance with the cessation of free mass testing in the UK and the reduction in
variant identification through RT-PCR tests.

Across the SARS-CoV-2 pandemic, probable and confirmed novel variants were identified
through whole-genome sequencing and genotyped RT-PCR tests. In closer to real time,
emerging variants were also identified through RT-PCR tests that provided gene targets. We
found considerable geographical heterogeneity observed in the probability that a given test is
either sequenced or has gene target information available [14]. There is a considerable time lag

Fig 6. The BYM2 estimated model positivity of the Omicron BA.1 variant as a proportion of sequenced tests from 11th October 2021 to 15th January
2022. Created from geographical files using the House of Commons Library, which is under the Open Parliament License v3.0.

https://doi.org/10.1371/journal.pcbi.1011580.g006
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for whole genome sequencing, of around 14 days, that can delay the understanding of variant
spatial patterns of growth in real time [37]. Tests that provide gene targets were provided in a
far more timely fashion but were a cruder approximation of the variant under investigation.
Alpha and Omicron BA.1 were identified through S-gene target failure [14,17] with Delta and
Omicron BA.2 being S-gene target positive variants. However, a proportion of these tests are
incorrectly designated, and this was found to be exacerbated with CT values over 30 [38].
Moreover, gene targets were only available for RT-PCR tests in certain geographic locations in
the UK and therefore some areas were preferentially sampled. We found that the model perfor-
mance of the BYM2 with a mobility derived network was most pronounced in scenarios where
this type of sampling bias was apparent, particularly when samples were small and missing
within certain locations.

The spatial patterns for novel variants were a consequence of the number of seeding events,
the localised susceptibility of population, the extent of NPIs and behavioural change over the

Fig 7. The BYM2 estimated model positivity of the Omicron BA.2 variant as a proportion of sequenced tests from 20th December 2021 to 2nd May 2022.
Created from geographical files using the House of Commons Library, which is under the Open Parliament License v3.0.

https://doi.org/10.1371/journal.pcbi.1011580.g007
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pandemic. We found the increased connectivity of the London region plays an important role
in the mobility network of England. Every variant of SARS-CoV-2 that became dominant saw
early clustering around the London region and its dispersive mobility networks drove early
increases in transmission. This is particularly apparent for Alpha, which was initially detected
in Kent [13], and due to its close proximity and connectedness to the London region it spread
across the South East region very quickly. The significance of the London region is also due to
increased international travel arriving through this region and therefore, a higher concentra-
tion of importations of novel variants. The introduction of Delta was reliant upon interna-
tional importation routes, which concentrated in the North West and London. Moreover,
transmission of Omicron BA.1 was initially heavily concentrated in the South East and Lon-
don, which had the greatest international links to South Africa. Omicron BA.2 and BA.5 were
less dependent upon the London network for their spatial dissemination. This is a conse-
quence of the cessation of NPIs and resumption of more normative behavioural patterns,
which we found increased the strength of connectivity across the country.

Fig 8. The BYM2 estimated model positivity of the Omicron BA.5 variant as a proportion of sequenced tests from 31st May 2022 to 4th September 2022.
Created from geographical files using the House of Commons Library, which is under the Open Parliament License v3.0.

https://doi.org/10.1371/journal.pcbi.1011580.g008
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We investigated the idea of convergent evolution in RBD mutations that may aid in the
immunological evasion from previous variants or vaccination [39]. Despite many of these vari-
ants deriving from divergent evolutionary backgrounds they have acquired RBD mutations
that are convergent. Furthermore, there is evidence that mutations on these residues are eva-
sive of prevailing antibody responses [40]. This was found most strikingly in sublineages of
BA.2.75, BA.5 and XBB variants, which have showed considerable growth rate advantages
[41]. This significant increase in variant diversity, with similar fitness advantages, has made
tracking individual variants more difficult for operational public health response. The Septem-
ber 2022 wave of SARS-CoV-2 incidence was related to an increase in variants that share com-
mon RBD mutations. Therefore, understanding the spatial dispersion of variants that share
mutations, which may confer a transmission advantage, has become of greater public health
relevance.

Conclusion

Understanding the spatial spread of emerging variants is essential to be able to provide an ade-
quate public health response. The cessation in free mass testing in the UK has substantially
reduced the geographic coverage and the sample size of RT-PCR tests. Consequently, it has
become increasingly difficult to understand the spatial dispersion of emerging SARS-CoV-2
variants through test positivity. Through simulation scenario modelling we found the BYM2
model framework proposed in this paper was able to substantially improve the understanding
of a variant’s spatial dispersion relative to unadjusted RT-PCR positivity. We found that when
the sample sizes we provided to the model were particularly small or testing coverage was
sparse, it became significantly more important to use this approach to estimate the spatial
spread of a variant. The simulation scenarios which included large random effects were found
to reduce the performance of the model, however there was still an improvement over the
naïve estimator. The development of this proposed modelling framework can help to improve
real-time public health situational awareness during outbreaks of novel variants of SARS--
CoV-2.
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Delta variant as a proportion of sequenced tests, the model adjustment, the proportion of tests
that were sequenced, and the sample size for the time period. Fig A56. The BYM2 estimated
model positivity of the Delta variant as a proportion of sequenced tests, the model adjustment,
the proportion of tests that were sequenced, and the sample size for the time period. Fig A57.
The BYM2 estimated model positivity of the Omicron BA.1 variant as a proportion of
sequenced tests, the model adjustment, the proportion of tests that were sequenced, and the
sample size for the time period. Fig A58. The BYM2 estimated model positivity of the Omicron
BA.1 variant as a proportion of sequenced tests, the model adjustment, the proportion of tests
that were sequenced, and the sample size for the time period. Fig A59. The BYM2 estimated
model positivity of the Omicron BA.1 variant as a proportion of sequenced tests, the model
adjustment, the proportion of tests that were sequenced, and the sample size for the time
period. Fig A60. The BYM2 estimated model positivity of the Omicron BA.1 variant as a pro-
portion of sequenced tests, the model adjustment, the proportion of tests that were sequenced,
and the sample size for the time period. Fig A61. The BYM2 estimated model positivity of the
Omicron BA.1 variant as a proportion of sequenced tests, the model adjustment, the propor-
tion of tests that were sequenced, and the sample size for the time period. Fig A62. The BYM2
estimated model positivity of the Omicron BA.1 variant as a proportion of sequenced tests, the
model adjustment, the proportion of tests that were sequenced, and the sample size for the
time period. Fig A63. The BYM2 estimated model positivity of the Omicron BA.1 variant as a
proportion of sequenced tests, the model adjustment, the proportion of tests that were
sequenced, and the sample size for the time period. Fig A64. The BYM2 estimated model posi-
tivity of the Omicron BA.1 variant as a proportion of sequenced tests, the model adjustment,
the proportion of tests that were sequenced, and the sample size for the time period. Fig A65.
The BYM2 estimated model positivity of the Omicron BA.1 variant as a proportion of
sequenced tests, the model adjustment, the proportion of tests that were sequenced, and the
sample size for the time period. Fig A66. The BYM2 estimated model positivity of the Omicron
BA.1 variant as a proportion of sequenced tests, the model adjustment, the proportion of tests
that were sequenced, and the sample size for the time period. Fig A67. The BYM2 estimated
model positivity of the Omicron BA.2 variant as a proportion of sequenced tests, the model
adjustment, the proportion of tests that were sequenced, and the sample size for the time
period. Fig A68. The BYM2 estimated model positivity of the Omicron BA.2 variant as a pro-
portion of sequenced tests, the model adjustment, the proportion of tests that were sequenced,
and the sample size for the time period. Fig A69. The BYM2 estimated model positivity of the
Omicron BA.2 variant as a proportion of sequenced tests, the model adjustment, the propor-
tion of tests that were sequenced, and the sample size for the time period. Fig A70. The BYM2
estimated model positivity of the Omicron BA.2 variant as a proportion of sequenced tests, the
model adjustment, the proportion of tests that were sequenced, and the sample size for the
time period. Fig A71. The BYM2 estimated model positivity of the Omicron BA.2 variant as a
proportion of sequenced tests, the model adjustment, the proportion of tests that were
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sequenced, and the sample size for the time period. Fig A72. The BYM2 estimated model posi-
tivity of the Omicron BA.2 variant as a proportion of sequenced tests, the model adjustment,
the proportion of tests that were sequenced, and the sample size for the time period. Fig A73.
The BYM2 estimated model positivity of the Omicron BA.2 variant as a proportion of
sequenced tests, the model adjustment, the proportion of tests that were sequenced, and the
sample size for the time period. Fig A74. The BYM2 estimated model positivity of the Omicron
BA.2 variant as a proportion of sequenced tests, the model adjustment, the proportion of tests
that were sequenced, and the sample size for the time period. Fig A75. The BYM2 estimated
model positivity of the Omicron BA.2 variant as a proportion of sequenced tests, the model
adjustment, the proportion of tests that were sequenced, and the sample size for the time
period. Fig A76. The BYM2 estimated model positivity of the Omicron BA.2 variant as a pro-
portion of sequenced tests, the model adjustment, the proportion of tests that were sequenced,
and the sample size for the time period. Fig A77. The BYM2 estimated model positivity of the
Omicron BA.5 variant as a proportion of sequenced tests, the model adjustment, the propor-
tion of tests that were sequenced, and the sample size for the time period. Fig A78. The BYM2
estimated model positivity of the Omicron BA.5 variant as a proportion of sequenced tests, the
model adjustment, the proportion of tests that were sequenced, and the sample size for the
time period. Fig A79. The BYM2 estimated model positivity of the Omicron BA.5 variant as a
proportion of sequenced tests, the model adjustment, the proportion of tests that were
sequenced, and the sample size for the time period. Fig A80. The BYM2 estimated model posi-
tivity of the Omicron BA.5 variant as a proportion of sequenced tests, the model adjustment,
the proportion of tests that were sequenced, and the sample size for the time period. Fig A81.
The BYM2 estimated model positivity of the Omicron BA.5 variant as a proportion of
sequenced tests, the model adjustment, the proportion of tests that were sequenced, and the
sample size for the time period. Fig A82. The BYM2 estimated model positivity of the Omicron
BA.5 variant as a proportion of sequenced tests, the model adjustment, the proportion of tests
that were sequenced, and the sample size for the time period. Fig A83. The BYM2 estimated
model positivity of the Omicron BA.5 variant as a proportion of sequenced tests, the model
adjustment, the proportion of tests that were sequenced, and the sample size for the time
period. Fig A84. The BYM2 estimated model positivity of the Omicron BA.5 variant as a pro-
portion of sequenced tests, the model adjustment, the proportion of tests that were sequenced,
and the sample size for the time period. Fig A85. The BYM2 estimated model positivity of the
Omicron BA.5 variant as a proportion of sequenced tests, the model adjustment, the propor-
tion of tests that were sequenced, and the sample size for the time period. Fig A86. The BYM2
estimated model positivity of the Omicron BA.5 variant as a proportion of sequenced tests, the
model adjustment, the proportion of tests that were sequenced, and the sample size for the
time period. Fig A87. The BYM2 estimated model positivity of convergent receptor binding
domain mutations as a proportion of sequenced tests from 24th June 2022 to 27th October
2022. Fig A88. The BYM2 estimated model positivity of F486V receptor binding domain
mutation as a proportion of sequenced tests from 24th June 2022 to 27th October 2022. Fig
A89. The BYM2 estimated model positivity of N460K receptor binding domain mutation as a
proportion of sequenced tests from 24th June 2022 to 27th October 2022. Fig A90. The BYM2
estimated model positivity of R346T receptor binding domain mutation as a proportion of
sequenced tests from 24th June 2022 to 27th October 2022.
(DOCX)

S1 Data. The Stan code of the Bayesian BYM2 model structure.
(ZIP)
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